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MODIFIED ACTION FOR LIGHT QUARKS
IN THE INSTANTON VACUUM
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The procedure of averaging in an instanton medium on quarks with any number of 	avors is
discussed. It is shown that the effect of the instanton medium is equivalent to an interaction of light
quarks with dynamically generated mass (four-quark interaction Nf = 2) and massless bosonic spinor
ˇelds (ghosts). The fact that the instanton liquid is dilute makes it possible to use perturbation theory.
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INTRODUCTION

Important progress was achieved in understanding of the mechanism of spontaneous break-
ing of chiral invariance in [1Ä5] and, consequently, in understanding of the physics of particles
of the pseudoscalar meson octet [5Ä7]. The constructed model, a vacuum instanton liquid,
made it possible to ˇnd the low-energy characteristics of π, K mesons, in good agreement
with the experimental data [5, 8Ä10]. The method of calculation of the correlation functions
in an instanton medium was proposed by Diakonov and Petrov. In the framework of this
method the superposition of instantonÄanti-instanton (pseudoparticle) pairs is considered as an
external classical ˇeld. Correlation functions calculated in this ˇeld depend on characteristics
of all pseudoparticles, i.e., their sizes ρI , orientations U , and centers z. Averaging over a
statistical ensemble of instantons with a distribution function of instanton sizes gives the exact
correlation function in the instanton vacuum. This distribution function, which is a probability
that a 	uctuation with given parameters occurs, is determined exclusively by the interaction
of the pseudoparticles and does not contain corrections from the quarkÄpseudoparticle inter-
action, i.e., in the quenched approximation Nf/Nc � 1, where Nf and Nc are the numbers
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of 	avors and colors, respectively. The averaging simpliˇes substantially because of the
following approximations:

a) when Nc is large, the distribution function of the instanton sizes d(ρI) is very narrow
and tends to a δ-function shape as Nc → ∞. It means that in the leading order in 1/Nc the
instanton sizes ρI can be replaced by their average value ρ [4],

b) the packing parameter of the instanton liquid η = ρ/R, where R is the average
distance between pseudoparticles, is small, η ≈ 1/3, and therefore the pseudoparticles can be
considered as uncorrelated ones,

c) the Hilbert space of quarks is projected into the space of fermion zero modes. This
approximation is valid for long wave vacuum 	uctuations (scale > 0.3 fm) and is based on
the fact that the spectrum of the Dirac operator in an instanton ˇeld is characterized by a gap
of the order of ρ−1 ≈ 600 MeV [5].

A diagrammatic averaging procedure was developed and two-point correlation functions
were calculated. However, it is problematic to calculate three-point and multipoint correlation
functions by using this method. The difˇculty is due to the absence of any method for treating
the coupled ladder diagrams in different directions and ˇnding the solutions of coupled
equations of the BetheÄSalpeter type. Therefore, there is a problem of ˇnding a realistic
algorithm to calculate other Green functions.

The idea how to overcome this difˇculty is to start with the multi-pseudoparticle partition
function and by averaging to obtain more general effective action which is equivalent to
the previous model. Several attempts have been made to construct such an action [11Ä15].
However, none of these actions is equivalent to the previous one (see, for instance, [14]). From
our point of view, this is connected with subtleties of the averaging procedure that was not
properly taken into account. Namely, the effect of quarks on the distribution function d(ρI)
(which implies an elimination of zero modes and ultraviolet divergences from the fermion
determinant) was neglected, but this nonregularized determinant was included in the deˇnition
of the correlation function [16]. In this paper we investigate the problem of averaging more
accurately. In Sec. 1 we obtain the multi-pseudoparticle partition function from the QCD
Lagrangian in the approximations (a-c) in the case Nf = 1. This effective action already
contains a nontrivial interaction of quarks in contrast to the previous results [11Ä15]. Case
Nf = 2 we investigate in Sec. 2. Section 3 is devoted to the vector channel.

1. MULTIPARTICLE PARTITION FUNCTION

The partition function of QCD in Euclidean space is

ZQCD =
∫

e−S(ψ,ψ+,A)DψDψ+DAμ. (1)

The main assumptions of the model are that the integration over the gauge ˇeld Aμ is
equivalent to averaging over a statistical ensemble of pseudoparticles with known distribution
function for a given conˇguration and the ˇeld Aμ in the interaction term is replaced by a

superposition of instantonÄanti-instanton conˇgurations Aμ =
∑

I

AI
μ +

∑
Ī

AĪ
μ

Z
′
=
∫ 〈〈

exp
{∫

[ψ+(i∇̂ + im)ψ + η+ψ + ψ+η]d4x
}〉〉

DψDψ+, (2)
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where ∇̂ = ∂̂ + Â and 〈〈. . .〉〉 stands for an average over the collective coordinates: an
integration with respect to the positions zi of the pseudoparticles and their orientations Ui

(following approximation (a) we must put all the sizes of pseudoparticles equal to ρ ≈
(600 MeV)−1). However, Z

′
turns out not equivalent to the previous model [4, 5, 17] since

〈〈AB〉〉 	= 〈〈A〉〉〈〈B〉〉. Under deˇnition (2) the quark propagator is

S
′
= −〈〈(i∇̂ + im)−1Det (i∇̂ + im)〉〉

〈〈Det (i∇̂ + im)〉〉
. (3)

The determinant in the denominator of (3) contains ultraviolet and infrared (m → 0) di-
vergences which must be regularized in order to make S

′
to be unambiguous (see [5]). In

turn, this requires allowance for the back reaction effect of the fermions on the instanton
medium (which is beyond the framework of the quenched approximation considered) and a
modiˇcation of the distribution function. As a result, the propagator (3) is not equal to that
found in [5]:

S = −〈〈(i∇̂ + im)−1〉〉. (4)

In order to solve this problem and construct a theory with quark propagator identical
to (4), we use the following trick. Let us introduce additional boson spinor ˇelds (ghosts)
χ and χ+ in the effective action to compensate the contributions from the quark degrees of
freedom

Z =
∫ 〈〈

exp
{∫

[ψ+(i∇̂ + im)ψ + χ+(i∇̂ + im)χ + η+ψ + ψ+η]d4x
}〉〉

×

× DψDψ+DχDχ+. (5)

In this way the whole averaging process is not modiˇed. We recall that the distribution
function was obtained in the quenched approximation neglecting the contributions from quark
ˇelds. This approximation corresponds to neglecting dynamical quark loops included into the
determinant. In order to keep the distribution function obtained in the quenched approximation
untouched, the determinant term is compensated by introduction of additional ghost ˇelds. It
is this point that makes our approach essentially different from those proposed previously.
Following approximation (c) we must replace the exact quark propagator in the ˇeld of a
single instanton by the model propagator

SI(x, y) = S0(x, y) − φI(x)φ+
I (y)

im
, (6)

where S0(x, y) is the free propagator, and φI(x) is the quark zero mode in the ˇeld of
Ith pseudoparticle: a right-handed (left-handed) Weyl spinor for an (anti)instanton. This
model propagator interpolates the correct behavior at small momenta ρp � 1 (the region
where spontaneous breaking of chiral invariance occurs) and at high momenta where (6)
becomes the free quark propagator. Using S−1

0 = −(i∂̂ + im), S−1
I −S−1

0 = −iÂI , we have

−iÂ =
∑

I

(S−1
I − S−1

0 ) +
∑

Ī

(S−1
Ī

− S−1
0 )

S =

[
S−1

0 +
∑

I

(S−1
I − S−1

0 ) +
∑

(I → Ī)

]−1

. (7)
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Equations (6) and (7) give

i∇̂ + im = i∂̂ + im +
∑

I

[
1 + (i∂̂ + im)

φIφ
+
I

im
− 1

]
(i∂̂ + im) + [I → Ī]. (8)

Using the chiral properties and the normalization conditions for the zero modes 〈φ+
I | i∂̂+im |

φI〉 = im, [
1 + i∂̂

φIφ
+
I

im

]−1

= 1 − i∂̂
φIφ

+
I

im
,

[
1 + (i∂̂ + im)

φIφ
+
I

im

]−1

= 1 − (i∂̂ + im)
φIφ

+
I

2im
,

we obtain from (5) in the chiral limit

Z =
∫

DψDψ+DχDχ+ exp
{∫

[ψ+(i∂̂)ψ + χ+(i∂̂)χ + η+ψ + ψ+η]d4x

}
×

×
〈〈∏

I,Ī

exp
{

i

m

∫
ψ+i∂̂φId

4x

∫
φ+

I i∂̂ψd4y +
i

m

∫
χ+i∂̂φId

4x

∫
φ+

I i∂̂χd4y

}〉〉
. (9)

Using the properties of Grassmann variables ψ, ψ+, we get for Z(η, η+)

Z
(
η, η+

)
=
∫

DψDψ+DχDχ+ exp
{∫

[ψ+(i∂̂)ψ + χ+(i∂̂)χ + η+ψ + ψ+η]d4x

}
×

×
〈〈∏

I,Ī

exp
{

i

m

∫
χ+i∂̂φId

4x

∫
φ+

I i∂̂χd4y

}(
1 − 1

im

∫
ψ+i∂̂φId

4x

∫
φ+

I i∂̂ψd4y

)〉〉
.

(10)

We shall average Z over the positions and orientations of the pseudoparticles using the
density matrix of fermion zero modes [5]

φI
ia(x)φI+

jb (y) =
∫

d4kd4p

(2π)8
eik(x−zI)−iq(y−zI ) φ(k)φ(q)

8 | k || q |

(̂
kγμγν q̂

1 − γ5

2

)
ij

(
UIτ

−
μ τ+

ν U+
I

)
ab

.

(11)
Here, a, b(i, j) are color (spinor) indices, τ±

μ are Nc × Nc matrices with (τ̄ ,∓i) in the

upper left corner (the other elements are zero), τ are the Pauli matrices and k̂ = kμγμ. The
function φ(k) is related to the Fourier transform of the zero modes:

φ(k) = πρ2 d

dz
[I0(z)K0(z) − I1(z)K1(z)]

z= |k|ρ
2

=

⎧⎪⎪⎨
⎪⎪⎩

−2πρ

| k | , | k | ρ � 1

−12π

k4ρ2
, | k | ρ � 1

⎫⎪⎪⎬
⎪⎪⎭ . (12)
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For anti-instantons one has γ5 → −γ5 and τ±
μ → τ∓

μ , and in averaging over the orienta-
tions with the Haar measure normalized to unity the relations are used:∫

dU = 1,

∫
UmiU

+
jndU =

1
Nc

δijδmn,
(13)∫

UkpUlqU
+
mrU

+
nsdU =

1
N2

c − 1

[
δkrδls

(
δmpδnq −

1
Nc

δnpδmq

)
+
(m → n

r → s

)]
.

In the leading in 1/Nc approximation only planar terms are kept when integration over the
orientation matrices UI is performed. We denote the integrals considered below by I

′
and

Iab
ij (λ ≡ i/m)

I
′
=
∫

dUexp
[
λ

∫
χ+i∂̂φId

4x

∫
φ+

I i∂̂χd4y

]
,

(14)

Iab
ij (k, q) =

∫
dU

[
k̂φI(k)

]a

i

[
φ+

I (q)q̂
]b
j
exp

[
λ

∫
χ+i∂̂φId

4x

∫
φ+

I i∂̂χd4y

]
.

From the explicit expression (12) it follows that I
′

can contain only scalar and tensor
products of left-handed components. However, we note that the tensor terms are suppressed
in the limit Nc → ∞. Thus, I

′
is a function of variable t, i.e., I

′
(t), with

t =
λ

Nc

{
χ+

LχL

}
,

where brackets denote the convolution

{
A+a

i Bb
j

}
(z) =

∫
A+a

i (k)Bb
j (q) exp [iz(k − q)] a(k)a(q)

d4kd4q

(2π)8
, a(k) =| k | φ(k).

We note that I
′
and Iab

ij are related by

λ2
∂Iab

ij (k, q)
∂λ

+ λIab
ij (k, q) =

δ2I
′

δχ+a
i (k)δχb

j(q)
.

Solving this differential equation we ˇnd

Iab
ij (k, q) =

1
Nc

I
′
(t) − I

′
(0)

t
δab

(
1 + γ5

2

)
ij

a(k)a(q) exp [iz(k − q)]+

+
λ

N2
c

1
t

(
d

dt
I

′
(t) − I

′
(t) − I

′
(0)

t

)
a(k)a(q) exp [iz(k − q)]

{
χ+b

j χi

}
. (15)

From the observation [18] that an integration over the group is equivalent to a projection
of the tensor product of the fundamental representation onto the singlets of the group (see,
for instance, Eqs. (13) and also [14]) we obtain

I
′
=

1

1 − λ

Nc

{
χ+

LχL

} . (16)
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Substituting (15) into (10) and integrating over the positions of pseudoparticles we ˇnd for
Nf = 1 [16]

Z(η, η+) =

=
∫

DψDψ+DχDχ+exp[−J0 + (η+ψ)(ψ+η)]
[

1
V

∫
d4K+

]N+ [ 1
V

∫
d4K−

]N−

, (17)

where

J0 = −
∫ [

ψ+i∂̂ψ + χ+i∂̂χ
]
d4x, K− = K+(L → R),

and

K+ = I
′
(t) +

i

mNc

(
I

′
(t) − I ′(0)

t

){
ψ+

L ψL

}
+

+
(

i

mNc

)2 1
t

(
d

dt
I

′
(t) − I

′
(t) − I

′
(0)

t

){
ψ+

L χL

}{
χ+

LψL

}
.

Note that this expression is ˇnite in m and the chiral limit m → 0 is valid. The action
contains the dynamical mass M(k) ∼ (Nc)0 and the interaction potential is ∼ N−1

c (number
of instantons, N , is proportional to the number of colors, Nc). Retention of the potential is
justiˇed by the fact that it leads to results which are stable in Nc for correlation functions
of colorless currents. The N−1

c suppression of the potential is compensated by extra powers
of Nc from fermion-ghost loops [16]. Note that the dependence of the product {χ+χ} (z)
on z can be neglected. This approximation, which is valid in the chiral limit, is based on
the fact that the function a2(k) decreases rapidly (see also [19]) for average values of the
ghost ˇelds {χ+χ} ∼ 1/k2 and the largest contribution to integral comes from the region
k ∼ q ∼ 0. In the chiral limit m → 0 the dependence on z vanishes. We recall that our Z is
normalized to unity and that any suppression is compensated by the analogous contribution of
the determinant from ψ+, ψ, i.e., the dependence on z in I

′
(t) can be neglected. It must be

emphasized that when mass corrections are taken into account, the integration over the ˇelds
χ and χ+ can be carried out exactly, and the result in the limit m → 0 is the same as the
approximate one [16]. The advantage of this approximation is that the interaction potential
can be calculated. Beyond the chiral limit it is very hard to ˇnd. In accordance with what
we have said above, we shall write down the action keeping the terms O(1/Nc) and making
replacement

{
χ+

LχL

}
(z) →

{
χ+

LχL

}
(0):

J = J0 − N+ ln
[
1 +

i

mNc

{
χ+

LχL

}
(0) +

i

mV Nc

∫
ψ+

L ψL(k)a2(k)
d4k

(2π)4

]
+

+
(

L → R

N+ → N−

)
. (18)

In the thermodynamic limit, when N → ∞, V → ∞ , we have N+ = N− = N/2

J = J0−
N

2
ln
[
1 +

i

mNc

{
χ+

LχL

}
(0)

]
− N

2mV Nc

∫
ψ+

L ψL(k)a2(k)
d4k

(2π)4

1 +
iNc

m

{
χ+

LχL

}
(0)

−(L → R) (19)
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and Z(0, 0) can be written as

Z(0, 0) =
∫

DψDψ+DχDχ+ dω+

2π

dμ+

μ2
+

dω−
2π

dμ−
μ2
−

exp
[
−J0 −

N

2
ln μ+ +

iNμ+

2mV Nc
×

×
∫

ψ+
L ψL(k)a2(k)

d4k

(2π)4
+iω+

(
1

μ+
− 1 − i

mNc

{
χ+

LχL

}
(0)

)
+
(

L → R

(ω)μ+ → (ω)μ−

)]
.

(20)

After integration over ψ, ψ+, χ, χ+ [12,13,16] we have

Z(0, 0) =
∫

dμ+dμ−
g(μ+μ−)
μ2

+μ2
−

exp
[
−N

2
ln μ+ − N

2
ln μ− +

+2V Nc

∫
ln

(
1 +

μ+μ−
m2

(
N

2V Nc

)2
a4(k)
k2

)
d4(k)
(2π)4

]
, (21)

where

g(μ+, μ−) =
∫

dω+

(2π)
dω−
(2π)

(
1 +

ω+ + ω−
4Nc

)−2Nc

exp
[
iω+

(
1

μ+
− 1

)
+ iω−

(
1

μ−
− 1

)]
.

In the thermodynamic limit ln
[
g(μ+, μ−)

μ2
+μ2

−

]
should be neglected in comparison with terms

proportional to V or N . Integration over μ± can be carried out by the saddle-point method,
since �μ± is of the order of 1/

√
Nc. We obtain μ+ = μ− = mε, where ε ≈ (100 MeV)−1

is determined by the self-consistency condition introduced in [5] naturally arising in the
integration over μ±:

1 =
4V Nc

N

∫
M2(p)

p2 + M2(p)
d4p

(2π)4
, M(k) =

Nε

2V Nc
a2(k). (22)

In accordance with the results of [5, 12, 13] at this order of 1/Nc we have obtained a
theory of noninteracting quarks with effective masses M(k):

Z(0, 0) = const
∫

DψDψ+ exp
∫

ψ+[ − k̂ + iM(k))]ψ
d4(k)
(2π)4

. (23)

From Eqs. (19) and (23) it can be seen that the average value 〈
{
χ+

LχL

}
(0)〉 is determined

by the relation [
1 +

i

mNc
〈
{
χ+

LχL

}
(0)〉

]−1

= mε. (24)

We shall now consider the action in the order 1/Nc:

J = J0 − [N+ ln Q] −
[

L → R

N+ → N−

]
,
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where

Q = 1 +
i

mNc

{
χ+

LχL

}
(0) +

(
i

mNc

{
χ+

LχL

}
(0)

)2

+

+
(

i

mV Nc

)∫
ψ+

L ψL(k)a2(k)
d4k

(2π)4

(
1 +

i

mNc

{
χ+

LχL

}
(0)

)
+

+
(

i

mNc

)2 ∫
d4z

V

{
ψ+

L χL

}
(z)

{
χ+

LψL

}
(z). (25)

Substituting the average value (24) for colorless products(
i

mNc

{
χ+

LχL

}
(0)

)2

→
(〈

i

mNc

{
χ+

LχL

}
(0)

〉)2

,

one gets in the chiral limit m → 0, Nc → ∞

J =
∫ (

ψ+[k̂ − iM(k)]ψ + χ+k̂χ
) d4k

(2π)4
+ 2

V

N

∫
(M(k)M(q)M(p)M(l))1/2 ×

× δ4(k + p − q − l)
(
ψ+

L (k)χL(q)
) (

χ+
L(p)ψL(l)

) d4k d4p d4q d4l

(2π)12
+ (L → R) . (26)

Thus, in the case Nf = 1, in contrast with the results of [12,13,20] we obtain the nonlinear
theory with nonlocal interaction. This action has three important advantages: (a) perturbation

theory can be applied since the vertex function is parametrically small

(
− N

2V Nc

1
Nc

)
, (b) the

model is superconvergent, and (c) the potential retains massless ghost ˇelds [16].

2. ACTION FOR LIGHT QUARKS IN INSTANTON VACUUM MODEL FOR Nf = 2

The partition function of QCD in Euclidean space with any number of 	avors has the
form

Z(ηη+) =
∫

DψDψ+DχDχ+ exp
(∫

ψ+fIff ′ i∂̂ψf
′

d4x + χ+fIff ′ i∂̂χf
′

d4x

)
×

×
〈〈

exp
(
Iff ′

i

m

∫
χ+f i∂̂φI

∫
φ+

I i∂̂χf ′
)N+∏

f,f ′

[
Iff ′ − 1

im

∫
ψ+

f i∂̂φId
4x

∫
φ+

I i∂̂ψf ′ Iff ′

]〉〉
,

(27)

where Iff ′ = δff ′ , ψf =

⎛
⎜⎝

ψ1

ψ2

...

⎞
⎟⎠ (f, f ′ = 1, 2). In the case Nf = 2, repeating the steps

which bring us to (10) we obtain in the leading order in 1/Nc

Z = Z∗
1 + Z∗

2 ,
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Z∗
1 =

∫
d4zI(Ī)

∫
dUIDψDψ+DχDχ+ exp

∫ [
ψ+f i∂̂ψf + χ+f i∂̂χf

]
d4x×

× exp
i

m

∫
χ+f i∂̂φI(Ī) d4x

∫
φ+

I(Ī)
i∂̂χfd4y

(
1 − 1

im

∫
ψ+

f i∂̂φI(Ī) d4x

∫
φ+

I(Ī)
i∂̂ψf d4y

)
,

(28)

Z∗
2 =

∫
(−1)2

m2
d4zI(Ī) dUIDψDψ+

(
exp

∫
ψ+

f i∂̂ψf

)
×

×
∫

ψ+
1 i∂̂φI(Ī) d4x1

∫
φ+

I(Ī)
i∂̂ψ1 d4y1

∫
ψ+

2 i∂̂φI(Ī) d4x2

∫
φ+

I(Ī)
i∂̂ψ2 d4y2,

where we omit in (28) the nonleading in 1/Nc terms χ, χ+ in the exponent. Here Z∗
1

coincides with our result (26) in the case Nf = 1 and Z∗
2 is exactly the expression

ˇrst investigated in [12, 13]. Using the zero-mode density matrix (11), relations (13) and

γ5[γα, γβ ] =
i

2
εαβμν [γμ, γν ], and Fierz transformations we obtain

Z∗
2 =

(
2V

mNε

)2 ∫
d4xdetW±(x), (29)

where W±(x) are 2 × 2 	avor matrices

W±(x)fg =
∫

d4kd4l

(2π)8
ei(k−l,x)

√
M(k)M(l)ψ+

f (k)
1 ± γ5

2
ψg(l). (30)

The 4-fermion interaction is reminiscent of the famous 't Hooft interaction [1]. In the instanton
liquid model it becomes nonlocal owing to the diagonalization of the would be zero modes
of individual pseudoparticles in the instanton medium [12, 13]. Strength of interaction (29)
in our model is unambiguously ˇxed by the characteristics of the instanton medium and the
averaging procedure. Collecting (25) and (29) we obtain the effective action

J = J0 − [N+ ln Q∗] −
[

L → R

N+ → N−

]
,

Q∗ = 1 +
i

mNc

{
χ+

fLχfL

}
(0) +

(
i

mNc

{
χ+

fLχfL

}
(0)

)2

+

+
(

i

mV Nc

)∫
ψ+

fLψfL(k)a2(k)
d4k

(2π)4

(
1 +

i

mNc

{
χ+

fLχfL

}
(0)

)
+

+
(

i

mNc

)2 ∫
d4z

V

{
ψ+

fLχfL

}
(z)

{
χ+

fLψfL

}
(z) +

(
2V

mNε

)2 ∫
d4xdetWL(x). (31)

Expanding the ln function, using (24), limPm→0 → 1
(mε)2

P = 1 +
i

mNc

{
χ+

fLχfL

}
(0) +

(
i

mNc

{
χ+

fLχfL

}
(0)

)2
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and deˇnition (22) for M(k), we ˇnally obtain in the case Nf = 2

J =
∫ (

ψ+[k̂ − iM(k)]ψ + χ+k̂χ
) d4k

(2π)4
+ 2

V

N
×

×
∫

(M(k)M(q)M(p)M(l))1/2δ4(k+p−q−l)
d4k d4p d4q d4l

(2π)12

{(
ψ+

L (k)χL(q)
)(

χ+
L(p)ψL(l)

)
+

+
2V

N

[(
ψ+

1L(k)ψ1L(q)
) (

ψ+
2L(p)ψ2L(l)

)
−
(
ψ+

1L(k)ψ2L(q)
) (

ψ+
2L(p)ψ1L(l)

)]}
+ (L → R) .

(32)

Note that the four-quark coupling in our approach differs from the result [12, 13]. Besides
we have signiˇcant contribution from quark interaction with massless bosonic spinor ˇelds.

3. ROLE OF THE INSTANTON VACUUM IN THE VECTOR CHANNEL

Now let us demonstrate that instanton 	uctuations of the QCD vacuum not only make it
possible to describe the mechanism of spontaneous breaking of chiral invariance (SBCI), but
also can play a decisive role in the formation of bound states in the vector channel. It should
be emphasized that the vector channel can be described using a uniˇed approach based on
quark interaction generated by instanton. Using common notation: S for action (32) and J
for the currents, we can deˇne the connected part of the current correlation function as

ΠΓ(p) =
∫

d4k1d
4k2

(2π)4
δ(k1 − k2 + p)JΓ(k1)JΓ(k2) e−S ,

where JΓ(k) = ψ+(k)Γψ(k) with Γ = 1, γ5, γμ, γμγ5, σμν . We will consider two types of
diagrams contributing to the connected part of the correlation function in different channels:
a) Figure 1 presents the connected part of the correlation function in the pseudoscalar channel
(Γ = γ5). The vertex π → qq̄ as ΓΓ

±(p) is deˇned as (all factors Nc and N/V are included
in the correlation function)

Γγ5
± (p) =

∫
d4k

(2π)4
Sp

[
γ5(k̂ + p/2 + iM1)

1 ± γ5

2
(k̂ − p/2 + iM2)

]
×

×
√

M1M2

[(k + p/2)2 + M2
1 ] [(k − p/2)2 + M2

2 ]
� ∓2

∫
d4k

(2π)2
M(k)

k2 + M2
= ±〈ψ̄ψ〉

2Nc
,

where 4-fermion vertex is the second term in (32) and gives major inclusion in Fig. 2, while
the ˇrst term in (32) related to the ghost ˇeld includes the suppression factor (ρ/R) density
of instanton liquid. Results of calculation bring us to value fπ = 142 MeV which coincides

Fig. 1. Connected part of the current correlation function. Solid thin lines correspond to quark ˇelds
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Fig. 2. The vertex π → qq

Fig. 3. Rescattering part of the current correlation function. The crosses correspond to the ˇrst term
in (32), interaction of quarks with massless bosonic spinor ˇelds (thin lines are quarks, thick lines are

bosonic spinor ˇelds)

with the previous result [12, 13]. From symmetry considerations it follows that the vertex
ΓΓ
±(p) vanishes in the vector (Γ = γμ) and tensor (Γ = σμν ) channels as it occurred in the

DiakonovÄPetrov model [12,13].
b) In the vector channel: Fig. 3 shows a type of diagrams that describe the effects of

permanent scattering in continuous media.
If we isolate only one-meson states in the correlation function by imposing the condition

that any structure obtained by cutting an arbitrary diagram contains only two quarks and
that no colorless subsystems are formed by ghost legs (in other words, if we recall the
general rule that only planar diagrams and minimum number of quark loops survive in the
limit Nc → ∞) [21], the entire class of diagrams of the type presented in Fig. 3, c can be
discarded. The coupling part of the correlation function is thus determined by the diagrams
in Fig. 3, a, b which can be summed in the standard way by using the Fredholm equation.
It brings us to the results fρ = 193 MeV, mρ = 797 MeV. Detailed calculations in the
pseudoscalar and vector channels will be represented elsewhere, where we will also consider
test related to axial-anomaly low-energy theorems (LET).

CONCLUSIONS

Thus, our procedure of averaging the total QCD Lagrangian density in statistical ensemble
of pseudoparticles (rather than to average individual correlation functions as in [4, 5, 12, 13])
leads to the action which even in the case Nf = 1 contains the interaction potential of quarks
in an instanton medium and makes it possible to calculate colorless correlation functions.

We want to stress again that the self-consistent quenched approximation is the base of
our approach. It corresponds to neglecting dynamic quark loops containing in the quark
determinant. To compensate the quark determinant we introduce the additional scalar ghost
ˇelds with spin 1/2.
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The physical pattern is as follows: the instanton vacuum medium is treated as a discrete
system of IĪ pairs, and passage to the continuous limit was performed only at the ˇnal stage
of calculations. This approach is correct for a quark propagating in the instanton vacuum
because deceleration effects that are due to medium (and which lead to emergence of the
effective quark mass M(p)) do not depend on the way in which the thermodynamic limit
appears N → ∞, V → ∞, N/V = const. The same approach can be used to describe a
Goldstone mode (pion) for which the quark interaction with vacuum plays a leading role,
while the exchange of momenta between quarks is insigniˇcant. However, for other (non
Goldstone) modes such as vector particles, the continuity of medium plays a decisive role
because quarks exchange momenta only through a continuous medium and can form bound
state. The problem of taking correctly into account both of these effects simultaneously (quark
interactions with instanton 	uctuations of the vacuum and interactions between quarks) can
be solved by the method discussed in this paper. Quark interaction in the instanton medium
is mediated by spin-1/2 boson ˇelds χ and χ+ arising in this approach and corresponding to
the physical degrees of freedom of the continuous medium. This effective (superconvergent)
interaction has far-reaching consequences, including the possibility of describing the vector
particles in the model of instanton liquid. Thus, this approach enables us to construct a model
describing physically observable particles.
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