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The description of quantum ˇeld systems with meta-stable vacuum is motivated by studies of many
physical problems (η-meson sector of the WittenÄDi VecchiaÄVeneziano model, disoriented chiral
condensate, false vacuum decay in in�ation cosmological models, etc.). A nonperturbative approach
based on the kinetic description within the framework of the quasiparticle representation is proposed.
We restrict ourselves to scalar ˇeld theory with self-interaction potential having a nontrivial set of
vacuum states. If the vacuum state is not uniquely deˇned, the quasiparticle deˇnition is introduced
by some physical reason. As a result, we obtain the self-consistent system of the kinetic equation for
quasiparticle distribution function and the equation of motion for the background ˇeld. Two examples Å
the quantum ˇeld system with φ4 and double-well type potential Å are considered.
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INTRODUCTION

Separating of the classical background ˇeld is a standard procedure of different nonpertur-
bative approaches in QFT [1Ä3]. In the framework of this procedure the quantum �uctuations
can be described by perturbation theory.

There is a class of problems, in which the strong background ˇeld produces particles, that
in turn in�uence the background ˇeld (the back-reaction problem). It is worthy to mention
such problems as decay of disoriented chiral condensate [4], the resonant decay of CP -odd
metastable states [5, 6], QGP pre-equilibrium evolution [7], phase transition in systems with
broken symmetry [8], etc.

The construction of general kinetic theory for various potential types is shown in Sec. 1.
We will derive the closed system of equations for the self-consistent description of back-
reaction (BR) problem, including the kinetic equation (KE) with nonperturbative source term
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describing particle creation in the quasi-classical background ˇeld and equation of motion
for this background ˇeld. We use the oscillator representation (OR) to derive the KE. The
efˇciency of this method was demonstrated in the framework of scalar QED [9]. As illustrative
examples, in Sec. 2 one-component scalar theory with φ4 and double-well potential, are
considered. In these examples, we study some features of proposed approach. In particular,
the problem of stable vacuum state deˇnition and possibility of emerging tachyonic regimes
are discussed. The similar analysis was done for some other models of such kind (e.g.,
[5, 6, 10,11]). Finally, Sec. 3 summarizes the article.

We use the metric gµν = diag (1,−1,−1,−1) and assume that � = c = 1.

1. THE SYSTEM OF BASIC EQUATION

Let us consider the scalar particle Lagrangian with a self-interaction potential V [Φ]:

L[Φ] =
1
2
∂µΦ∂µΦ − 1

2
m2

0Φ
2 − V [Φ], (1)

where m0 is the bare mass. In general case, the potential V [Φ] is an arbitrary continuous
nonmonotonous function with at least one minimum (this is necessary for correct deˇnition of
the vacuum state). It is assumed that the ˇeld Φ can be decomposed into the quasi-classical
space homogeneous background ˇeld φ0(t) and �uctuations φ(x)

Φ(x) = φ0(t) + φ(x). (2)

In accordance with deˇnition of �uctuations, we have 〈φ〉 = 0 and 〈Φ〉 = φ0, where symbol
〈. . .〉 denotes some averaging procedure. The background ˇeld φ0(t) can be treated as quasi-
classical one at the condition [14]:

|φ̇0| �
√

�c

(c∆t)2
, (3)

where ∆t is the characteristic time of the ˇeld averaging.
We consider the case of rather small �uctuations in the neighborhood of the background

ˇeld. Therefore, the potential energy expansion in powers of φ(x) can be performed

V [Φ] = V [φ0] + R1φ +
1
2
R2φ

2 + Vr[φ0, φ], (4)

where

R1 = R1[φ0] =
dV [φ0]

dφ0
, R2 = R2[φ0] =

d2V [φ0]
dφ2

0

(5)

and Vr[φ0, φ] is a residual term containing the high orders to be neglected in current article
(nondissipative approximation). The decomposition (4) can be ˇnite (for polynomial theories)
or inˇnite. After ˇeld decomposition (2) the equation of motion

∂µ∂µΦ + m2
0Φ +

dV [Φ]
dΦ

= 0 (6)
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can be rewritten in the following form:

(−∂µ∂µ − m2)φ = Q[φ0, φ], (7)

where
m2(t) = m2[φ0] = m2

0 + R2[φ0] (8)

is the time-dependent in-medium mass and

Q[φ0, φ] = φ̈0 + m2
0φ0 + R1[φ0] + Q2[φ0, φ], (9)

Q2[φ0, φ] =
1
2

dR2[φ0]
dφ0

φ2. (10)

Here and throughout the article a dot denotes the derivative with respect to time.
As a result of averaging Eq. (7), the equation of motion for background ˇeld is obtained

φ̈0 + m2
0φ0 + R1[φ0] + 〈Q2[φ0, φ]〉 = 0. (11)

The time independence of the averaging procedure is taken into account.
The assumption about space-homogeneity means that the function 〈Q2[φ0, φ]〉 in Eq. (11)

can only depend on time. As follows from Eqs. (10) and (11), the source term in the right
side of Eq. (7) is exclusively deˇned by the �uctuations,

Q[φ0, φ] = Q2[φ0, φ] − 〈Q2[φ0, φ]〉. (12)

On the other hand, the ˇeld function φ(x) in nonstationary situation allows the decompo-
sition:

φ(x) =
∫

[dk]{φ(+)(k, t)e−ıkx̄ + φ(−)(k, t)eıkx̄}, (13)

[dk] = (2π)(−3/2)d3k, φ(±)(k, t) are the positive and negative frequency solutions of the
equation of motion

φ̈(±)(k, t) + ω2(k, t)φ(±)(k, t) = −Q[φ0, φ| ± k], (14)

where
ω2(k, t) = m2(t) + k2 (15)

and Q[φ0, φ|k] is the Fourier image of the function Q[φ0, φ],

Q[φ0, φ] =
∫

[dk]Q[φ0, φ|k]e−ıkx̄. (16)

The function Q[φ0, φ|k] contains nonlinear contribution to Eq. (14). We suppose a ˇnite

limit lim
t→−∞

φ(±)(k, t) = φ
(±)
− (k) in the inˇnite past, and assume that the solutions φ(±)(k, t)

become asymptotically free φ(±)(k, t) → e±iω−t, where ω− = lim
t→−∞

ω(k, t). The existence

of the last limit is based on adiabatic hypothesis about switching off of self-interaction in
Eq. (8).
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After the decompositions (2) and (4) the Hamiltonian density is

H [Φ] = H [φ0] + H1[φ0, φ] + H2[φ0, φ] + Vr[φ0, φ], (17)

where H0[φ0] is the background ˇeld Hamiltonian and H1 and H2 are the Hamiltonian
functions of the ˇrst and second order with respect to the �uctuation ˇeld,

H [φ0] = H0[φ0] + V [φ0] =
1
2
φ̇2

0 +
1
2
m2

0φ
2
0 + V [φ0], (18)

H1[φ0, φ] = φ̇0φ̇ + (m2
0φ

2
0 + R1[φ0])φ, (19)

H2[φ0, φ] =
1
2
φ̇2 +

1
2
(∇φ)2 +

1
2
m2φ2. (20)

One can built the Hilbert space on the system of basic functions φ(±)(k, t) deˇned by
Eq. (14) and proceed to the Fock representation. After the decomposition (4), H2 (20) has
a nondiagonal form with respect to creation and annihilation operators and hence does not
allow quasiparticle interpretation [1]. In order to diagonalize Hamiltonian it is necessary to
apply either the Bogoliubov transformation [1] or OR [9].

Following the idea of OR, let us write the free ˇeld decomposition of φ(x) and φ̇(x) in
the absence of background ˇeld φ0 with the substitution of the free particle energy ω(k) =
(m2

0 + k2)1/2 into the time-dependent one (15)

φ(x) =
∫

[dk]√
2ω(k, t)

{
a(+)(k, t)e−ıkx̄ + a(−)(k, t)eıkx̄

}
, (21)

π(x) = ı

∫
[dk]

√
2ω(k, t)

2

{
a(+)(k, t)e−ıkx̄ − a(−)(k, t)eıkx̄

}
, (22)

where π(x) plays a role of the canonical momentum. The remarkable feature of the decom-
positions (21) and (22) is the fulˇllment of the standard commutative relations

[π(x), φ(x)]|t=t′ = −ıδ(x̄ − x̄′), (23)

self-considered with the commutative relations for time-dependent creation and annihilation
operators

[a(−)(k, t), a(+)(k, t)] = δ(k − k′) (24)

(the rest commutators are equal to zero). It is not less important that the Hamiltonian (20)
after the replacement φ̇ → π has the diagonal form,

H2[φ0, φ] =
∫

d3k ω(k, t)a(+)(k, t)a(−)(k, t) (25)

and hence OR is the quasiparticle representation [9].
In order to obtain the equations of motion for the operators a(±)(k, t), let us write the

corresponding action with the Hamiltonian (18)Ä(20)

S[φ] =
∫

d4x {πφ̇ − H1 − H2 − Vr}. (26)
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After substitution of decompositions (21) and (22), we get

S[φ] =
∫

dt d3k
{ ı

2
[a(+)(k, t)ȧ(−)(k, t) − a(−)(k, t)ȧ(+)(k, t)]−

− ω̇(k, t)
2ω(k, t)

[a(+)(k, t)a(+)(−k, t) − a(−)(−k, t)a(+)(k, t)]−

− 1
2
ω(k, t)[a(+)(k, t)a(−)(k, t) + a(−)(k, t)a(+)(k, t)] − Vrk[φ0, φ]

}
+ S1[φ], (27)

where S1[φ] is the part of the action corresponding to the Hamiltonian (19) and vk[φ0, φ]
is the Fourier image of the residual potential term. Variation with respect to a(±)(k, t) and
subsequent transition to the occupation number representation lead to the Heisenberg-type
equations of motion (k �= 0)

ȧ(±)(k, t) = W (k, t)a(∓)(k, t) + ı[H2 + Vr, a
(±)(k, t)], (28)

where

W (k, t) =
ω̇(k, t)
2ω(k, t)

=
Ṙ2[φ0]
4ω2

(29)

is the vacuum transition amplitude of a particle production. In Eq. (28), the condensate
contribution generated by the action part S1[φ] is omitted because it corresponds to k = 0
(the connection mechanism of the condensate state with k = 0 and excitations is absent in
the present model).

For the ˇrst time, equations of the type (28) were obtained in [12] in QED in the framework
of the Bogoliubov transformations. They are the basis for nonperturbative derivation of
KE [7]. We will use now this procedure in the present statement of the problem. Let
us introduce the distribution function of quasiparticles (it is convenient to do in discrete
momentum representation and subsequent transition to inˇnite volume of the system in the
resulting KE, L3 → ∞)

L3f(k, t) = 〈in | a(+)(k, t)a(−)(k, t) | in〉, (30)

where the averaging procedure is carried out over the in-vacuum state. We will consider
nondissipative approximation Vr[φ0, φ] → 0. Using the method of works [7] and basic
Eq. (28), it is not difˇcult to get the KE

df(k, t)
dt

= 2W (k, t)
∫ t

−∞
dt′W (k, t′)[1 + 2f(k, t)]s

[
2

∫ t

t′
dτω(k, τ)

]
(31)

where ω(k, t) is deˇned by Eq. (15). KE (31) can be transformed to a system of ordinary
differential equations, which is convenient for numerical analysis [7]

ḟ = Wv, v̇ = 2W (1 + 2f) − 2ωz, ż = 2ωv. (32)

To rewrite Eq. (11) for background ˇeld in nondissipative approximation, one has to
calculate the averaging value 〈in | φ2(x) | in〉. Using Eq. (21) and the relations (in the limit
L3 → ∞)

〈in | a(+)(k, t)a(−)(k′, t) | in〉 = (2π)3f(k, t)δ(k − k′), (33)
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in the space homogeneous case one can obtain

〈in | φ2(x) | in〉 =
1
2

∫
d3k

ω(k, t)
[1 + 2f(k, t) + v(k, t)]. (34)

Then Eq. (11) is

φ̈0 + m2
0φ0 + R1[φ0] +

1
2

dR2

dφ0

∫
d3k

ω(k, t)

[
f(k, t) +

1
2
v(k, t)

]
= 0 (35)

(the vacuum unit is omitted in the integral).
KE (31) (or the equivalent system of equations (32)) and Eq. (35) form the closed system

of nonlinear equations describing the back-reaction problem. In the case of v[Φ0, Φ] = 0,
this system of equations is a direct nonperturbative consequence of the dynamics and the
assumption (2). For the description of particle production we will use the particle density

n(t) =
∫

d3p

(2π)3
f(p, t) (36)

as well as background ˇeld energy Ecl and energy of produced particles Equ

Ecl =
1
2
φ̇2

0 +
1
2
m2

0φ
2
0 + V (φ0), (37)

Equ =
∫

d3p

(2π)3
ω(k, t)f(p, t). (38)

The conservation of the full energy of the system can be shown analytically. The proof is
based on the differentiation of the total energy Ecl +Equ with respect to time and taking into
account Eq. (35) and relations (5), (8) and (29).

The constructed formalism allows the consideration of the following initial problems at
the time t = t0: some initial excitation of the background ˇeld φ0(t0) is given with the
additional condition either f(p, t0) = 0 or f(p, t0) �= 0, where f(p, t0) is some initial
plasma distribution.

2. EXAMPLES: SOME POLYNOMIAL POTENTIALS

2.1. Φ4 Potential. The separation of background ˇeld (2) in the potential

V [Φ] =
1
4
λΦ4, λ > 0 (39)

leads to the following decomposition coefˇcients

R1[φ0] = λφ3
0, R2[φ0] = 3λφ2

0, (40)

background ˇeld potential

V [φ0] =
1
4
λφ4

0, (41)
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Fig. 1. Time evolution for the symmetric Φ4 potential. Parameters are: m0 = 1, φ0(0) = 1.2,

λ = 1. a) Evolution of the mean ˇeld; b) evolution of the particle density; c) evolution of the energy;

d) momentum spectrum of particles at time t = 40 and t = 50

and residual potential
Vr [φ0, φ] = λ(φ0 + φ/4)φ3. (42)

Thus, the time-dependent quasiparticle mass of �uctuating ˇeld (8) is equal to

m2(t) = m2
0 + 3λφ2

0. (43)

If λ < 0 and the excitation level is large enough, it is possible that the tachyonic mode will
arise, that corresponds to unstable state [13]. The mass (43) determines the vacuum transition
amplitude (29)

W (k, t) = λ
2φ0φ̇0

ω2(k, t)
. (44)

KE (31) with this amplitude is correct in the nondissipative approximation, which corresponds
to the neglecting of the residual potential (42).
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Let us write also the equation of motion for the background ˇeld (35) in the same
approximation:

φ̈0 + M2(t)φ0 + λφ3
0 = 0 (45)

with the corresponding mass equal to

M2(t) = m2
0 + 3λ

∫
d3k

ω(k, t)

[
f(k, t) +

1
2
v(k)

]
. (46)

In numerical calculations we apply zero initial conditions for the distribution function and
nonzero one for the background ˇeld φ0(t0) = 1.2. The choice of parameters (λ = 1 and
m0 = 1) as well as initial conditions here and in Subsec. 2.2 is motivated by the desire
to make a qualitative comparison between our work and [8], where the authors offered the
alternative method for description of quantum systems under strong background ˇeld action
(the so-called CornwallÄJackiwÄTomboulis (CJT) method [15]).

As can be seen in Fig. 1, at the early evolution stage all the energy is mainly concentrated
in the ˇeld oscillation. For t < 50 we have a slow growing of the number density. However
it drastically increases at t ∼ 50, and after this time the quantum energy dominates over
classical one.

The case λ < 0 (absolutely unstable potential) is associated with tachyonic regime, that
is realized for enough high excitation level, when the initial amplitude φ0(t0) satisˇes the
condition m2

0 + 3λφ2
0(t0) � 0. The low excitation level m2

0 + 3λφ2
0(t0) > 0 corresponds to

pretachyonic regime. The vacuum particle production in the pretachyonic region is character-
ized by developing instability, i.e., by unrestricted growth at a tendency of φ0(t) to reach the

critical value φ
(c)
0 = m0(3|λ|)−1/2.

2.2. Double-Well Potential

V [Φ] =
1
4
λΦ4 − 1

2
µ2Φ2, λ > 0 (47)

leads to the same Eq. (45) for the background ˇeld with new mass (we set here m0 = 0 and
µ2 > 0)

M2(t) = −µ2 + 3λ

∫
d3k

ω(t)

[
f(k, t) +

1
2
v(k, t)

]
. (48)

The vacuum transition amplitude (29) is equal here to

W (k, t) = λ
3φ0φ̇0

2ω2(k, t)
, (49)

where now the quasiparticle frequency (15) contains the mass

m2(t) = −µ2 + 3λφ2
0. (50)

The neighborhood of the central point φ0(t) = 0 is the instability region. In this region
the group velocity vg = dω(k)/dk = k/ω(k) is either superluminous (vg > 1 and Im ω = 0
for k > kc, where kc is the root of the equation ω(k, t) = 0) or indeˇnite (Re ω(k) = 0 for
k < kc). Thus, it is tachyonic region.
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Fig. 2. Time evolution for the bistable Φ4 potential (47). Parameters are: µ2 = 1, λ = 1, φ0(0) =

0.58. a) Evolution of the mean ˇeld; b) evolution of the particle density; c) evolution of the energy;

d) momentum spectrum of particles at time t = 10 and t = 40

Let us mark the minimum points of the potential (47) as ψ± = ±µ/
√

λ = ±Ψ0 and put
new origin of frame of reference in one of these points, Φ = Ψ± + Ψ. We separate now
background component φ0 from the ˇeld Ψ, i.e., Ψ = φ0 +φ. Using Eq. (6) and the methods
of Sec. 2, it is easy to obtain the following system of equations of motion:

φ̈0 + 2µ2φ0 + 3λΨ±φ2
0 + λφ3

0 + 3λ(Ψ± + φ0)〈φ2〉 + λ〈φ3〉 = 0, (51)

−[∂µ∂µ + m2
±(t)]φ + 3λ(Ψ± + φ0)[〈φ2〉 − φ2] + λ[〈φ3〉 − φ3] = 0, (52)

where
m2

±(t) = 2µ2 + 3λφ0(φ0 + 2Ψ±). (53)
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In the accepted nondissipative approximation, we must keep in Eq. (52) the linear terms only.
That leads to KE (31) with the amplitude deˇned by time-dependent mass (53)

W±(k, t) =
ω̇(k, t)
2ω(k, t)

=
3λφ̇0(2φ0 + Ψ±)

2ω2(k, t)
. (54)

The mean values 〈φ2〉 and 〈φ3〉 are calculated either in minimal order of perturbative
theory (for λ 
 1) or in RPA.

We obtain the result (34) for 〈φ2〉 and 〈φ3〉 = 0. Thus, we have

φ̈0 + λφ0

[
(2 + 3φ0)Ψ± + φ2

0

]
+ 3λ(Ψ± + φ0)

∫
d3k

2 ω(k, t)
[2f(k, t) + v(k, t)] = 0. (55)

Figure 2 presents the numerical results for parameters set m = 1, λ = 6, φ0(0) = 0.58,
near the border of a tachyonic mode. The stationary regime is achieved faster, than in the
case of symmetric potential.

Other formalism for the description of the strong ˇeld problem for the quantum ˇeld
system with the potential (47) is developed by J. Baacke et al. ([8], and works cited therein).

3. SUMMARY

The general kinetic approach for the description of arbitrarily strong excited nonequilib-
rium states in the scalar QFT with the self-interaction admitting the existence of unstable
vacuum states was developed in the present work. We restrict ourselves by the collisionless
(nondissipative) approximation. However, the attempts to go beyond this aproximation were
done [16]. As the concrete example, φ4 and double-well potentials were investigated.
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