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PSEUDOSCALAR MESONS WITH FINITE WIDTH
IN DENSE MATTER

V. L. Yudichev1

Joint Institute for Nuclear Research, Dubna

The temperature dependence of the widths of pions in the hadronic phase and of open charm
(D and D∗) mesons in the deconˇned phase is investigated at zero chemical potential within the
framework of a NambuÄJona-Lasinio type chiral quark model.
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INTRODUCTION

The in-medium modiˇcation of hadron properties under extreme conditions (i.e., at high
temperature and density) may signiˇcantly affect the observable yield of the particles produced
in heavy-ion collision experiments and therefore should be taken into account when analyzing
related experimental data. To study their effects one needs ˇrst to model the behavior of
hadron properties (e.g., the mass and width) at ˇnite temperature and chemical potential.
An investigation of two particular aspects of this rather complicated problem is presented
below: i) the temperature dependence of the pion width at zero baryonic chemical potential
in a nonequilibrium pion gas within a simple effective model for the pion-to-pion interaction
derived from the NambuÄJona-Lasinio (NJL) model for the nonperturbative strong interaction
of quarks; ii) the widths of the charmed D and D∗ mesons are estimated above the critical
temperature of the deconˇnement phase transition. The results are used to explain an excess of
dileptons in the invariant mass range ∼ 200÷400 MeV in Pb + Au (158 GeV/u) collisions [1]
over simple on-shell pion annihilation on the one hand, and a mechanism for the anomalous
J/ψ suppression in nucleusÄnucleus collisions on the other.

1. PIONS IN HOT MATTER

In Ref. [2], the simultaneous mass reduction and broadening of the ρ-meson resonance has
been found to be necessary for a realistic explanation of the mass and transverse momentum
spectra of dileptons produced in Pb + Au (158 GeV/u) collisions [1]. Moreover, it has also
been shown in [2] that the introduction of the ˇnite pion width improves the agreement of the
ˇt with experimental data for the dilepton masses between ∼ 200 and ∼ 400 MeV. As one
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can see from Fig. 2 in [2], the ˇnite pion width of the order 50÷100 MeV has a quite visible
effect on the dilepton spectra. One can recall that the width of the pion in the vacuum is
negligibly small, compared to these numbers, because in normal conditions the width of the
pion is determined by its electroweak decays. On the contrary, in a very dense nonequilibrium
pion gas, in-medium collisions of a pion with its comovers signiˇcantly shorten the average
lifetime of a pion with certain quantum numbers and thus increase its width.

The description of the resonance's properties modiˇcation in hot and dense media has
been systematically done by Kadanoff and Baym in a nonrelativistic approach [3], which,
however, can be extended to the case of relativistic mesons. Following [3], the temperature
dependence of the pion width at zero chemical potential has been investigated in [4], using a
simple meson Lagrangian derived from the NJL (see, e.g., [5Ä8]) model for strong interaction
of quarks in the mean-ˇeld approximation.

The pion broadening to a large extent depends on the mass of the resonance: the lighter
the particle, the stronger effect. This is the reason why the pion is in focus. Moreover, due to
the same cause, the pion dominates in a hot meson gas and pion annihilation is the dominant
contribution to the yield of dileptons and photons.

Following the prescription given by Kadanoff and Baym [3], one needs an estimate for
the contribution to the imaginary part of the hadron self-energy (i.e., the decay width) from
collision integrals. Such contributions have a straightforward interpretation: they correspond
to the inverse of the average lifetimes. To obtain them one needs to know cross sections for
different collision processes averaged over the density of particles with the Bose ampliˇcation
and Pauli suppression taken into account.

If the particle has a nonzero width, all the cross sections to which it contributes should be
averaged using its spectral function, which can be chosen in the BreitÄWigner form

A(s) =
MΓ

(s − M2)2 + M2Γ2
, (1)

where M is the mass of the resonance, and Γ is its width. In this approximation both
quantities have a temperature and density dependence.

In general, the width is a function of energy and momentum, and one would ˇnally come
to a set of functional equations, difˇcult to solve. In Ref. [4] the pion width is approximated
by a constant, thus leading to much more simple equation to be solved by iterations. Yet, the
width is supposed to depend on the temperature and density.

According to [3], the pion damping width is deˇned as follows:

Γ(p) = Σ>(p) − Σ<(p), (2)

where

Σ<(p) =
∫
p1

∫
p3

∫
p4

(2π)4δp1,p; p3,p4 |T |2G>(p1)G<(p3)G<(p4), (3)

Σ>(p) =
∫
p1

∫
p3

∫
p4

(2π)4δp1,p; p3,p4 |T |2G<(p1)G>(p3)G>(p4). (4)

Here, T is the process amplitude; G>
i (p) = [1 + ni(p, si, T )]Ai(p2); G<

i (p) =
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ni(p, s, T )Ai(p2), with ni being the boson occupation numbers

ni(p, si, T ) =
[
exp

(√
p2 + si

/
T

)
− 1

]−1

, (5)

and Ai(p2) Å the spectral function of the ith state; here the notation

∫
p

=
∫

d4p

(2π)4
,

where δp1,p2; p3,p4 = δ(p1 + p2 − p3 − p4), is used. The integration is performed in the
four-dimensional momentum space over the momenta p1, p2, p3, p4, with the indices 1 and 2
corresponding to the initial states, and 3 and 4 to the ˇnal ones.

Then, for the pion width one obtains

Γ =
∫

d3p
(2π)3

∫
ds1vrelAπ(s1)[nπ(p1, s1, T )σdir∗(s; s1, s2)−

− (1 + nπ(p1, s1, T ))σinv∗(s; s1, s2)], (6)

where vrel is the relative velocity of particles 1 and 2, and σ∗(s; s1, s2) is the averaged cross
section with the spectral functions of ˇnal states taken into account:

σ∗(s; s1, s2) =
∫

ds3

∫
ds4Aπ(s3)Aπ(s4)σ(s; s1, s2, s3, s4). (7)

In Ref. [4], the processes π0π0 → π0π0, π0π0 → π+π−, π0π± → π0π± were considered
as giving the main contribution to the pion damping width. Other possible processes, like
ππ → σσ, πσ → πσ, ππ → σ, and ππ → q̄q were estimated to give a negligible contribution
to the pion width and were omitted during calculations for simplicity. The lightest scalar
isoscalar resonance, the σ meson, was allowed as an intermediate state (ππ → σ → ππ)
because of its importance shown in various investigations of the pionÄpion interaction [5,9Ä
11]. Using the SU(2)F × SUF (2) NJL model [5, 6], one gets the Lagrangian for pions and
σ mesons in the form

Lint = 2mgσσ3 + 2mgπ

√
Zσ(2π+π− + (π0)2) − g2

πσ2π2−

− g2
πZ

2
(4π+π−π+π− + 4π+π−(π0)2 + (π0)4) − g2

σ

2
σ4, (8)

where m is the constituent quark mass (m = gπfπ; fπ ≈ 93 MeV is the pion weak decay
constant in the vacuum). The constants gπ and gσ describe the interaction of the pion and σ
meson with quarks in the NJL model. In the vacuum one has: m = 242 MeV, gπ = 2.61, and
gσ = 2.18 (see [8]). Using their temperature dependence obtained in [8] for zero chemical
potential, one can calculate the pion width at temperature from 0 to 180 MeV1. The resulting
curves for a neutral pion rested in the heat-bath frame are shown in Fig. 1.

1The upper limit corresponds to approximate condition for the deconˇnement of quarks, above which the effective
meson Lagrangian cannot be used.
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Fig. 1. Pion damping width as a function of

temperature at zero chemical potential

As one can see from the ˇgure, the pion
state broadens noticeably already at T ≈
60 MeV. At T = 160 MeV, the pionÄpion scat-
tering accounts for about 80 MeV in the total
width; this is the maximum value. Then the
curve in Fig. 1 turns down; this behavior of the
damping width is caused by a noticeable de-
crease of the constant gπ after T = 160 MeV.
The cross section is proportional to g4

π whose
value reduces by half at T = 180 MeV, com-
pared to T = 160 MeV. For the temperatures
from 160 to 180 MeV, this weakening of the
pionÄpion interaction overcompensates the ex-
pected increase in collision integrals.

A self-consistent approach for the calcula-
tion of the pion width via a functional integral
for the meson propagator has been suggested

by van Hees and Knoll in [12]. However, the authors have chosen the pion damping width
by hand to estimate the strength of the interaction rather than to predict it.

2. D AND D∗ RESONANCES AND DECONFINEMENT

The modiˇcation of c-quark interaction in the quarkÄgluon plasma (QGP) suggested by
Matsui and Satz [13] seems to be an explanation for the ®abnormal¯ suppression of J/ψ
production in PbÄPb collisions found by the NA50 collaboration [14] at the CERN SPS.
However, it is much likely that bound c̄c states disappear at temperatures higher than those
reached at SPS. Therefore, one should examine other possible mechanisms contributing to the
J/ψ suppression.

Recently, a new approach [15] based on the quark substructure of hadrons has been
suggested which resulted in a characteristic energy dependence of the J/ψ breakup cross
section by light hadron impact at the chiral/deconˇnement phase transition. There were
studied processes like J/ψ + π → D∗ + D̄ and J/ψ + ρ → D∗ + D̄∗, and it was found that
the Mott effect for D mesons effectively reduces the threshold for a charmonium breakup
leading to a strong enhancement in the J/ψ breakup rate. Therefore, it is of importance to
know the in-medium behavior of the charmed mesons spectral functions which are input data
for calculations of the J/ψ breakup rate.

Partially, D-meson properties (the D-meson mass) at ˇnite temperature have already been
studied within the standard NJL model (see, e.g., [16]). To study the spectral function in the
mean ˇeld approximation, one has to allow a breakup of a D meson to free quarkÄantiquark
pairs in the deconˇned phase and forbid the free quark production at low temperatures, which
is impossible to do within the usual NJL.

Recently, an approach has been suggested [8] where unphysical quarkÄantiquark thresholds
in the domain of conˇnement were eliminated by means of a 3D infrared (IR) cutoff in quark-
loop integrals over the relative quark momentum. The critical temperature, Tc = 186 MeV [8],
was deˇned as corresponding to the Mott effect for the pion (2mu(Tc) = Mπ(Tc)). Below
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Tc, spectral functions of all mesons are δ functions, and only above Tc, i.e., in the deconˇned
phase, meson spectral functions are smooth functions of energy and can be approximately
described with the BreitÄWigner Ansatz.

Below, the temperature dependence of the D-meson spectral function in a matter with
zero baryonic chemical potential from the NJL model with the IR cutoff is discussed. Only
mesons with open charm are considered, and, for simplicity, terms like the 't Hooft term,
which is necessary for the description of the singlet-octet mixing in the standard NJL, are
omitted.

One might argue that an inclusion of the charm quantum number would require an SUF (4)
extension of the NJL model. But, following Ref. [16] and projecting on a subgroup, which
is SUF (3), only u, d, and c are kept instead of constructing a full SUF (4) version of NJL.
The treatment of open-charmed mesons thus is the same as of the strange mesons. In the
pseudoscalar channel, the SUF (3) symmetry is assumed and possible effects of the explicit
SUF (4) breaking in QCD for the effective quark interaction are disregarded, while in the
vector channel a modiˇcation of the quark interaction constant is admitted to reproduce the
experimental D∗-meson mass. The Lagrangian is

Lq = q̄(i∂̂ − m̂0)q +
G1

2

7∑
a=1

[
(q̄λaq)2 + (q̄iγ5λ

aq)2
]
−

− G2

2

3∑
a=1

[
(q̄γµλaq)2 + (q̄γ5γµλaq)2

]
− G∗

2

2

7∑
a=4

[
(q̄γµλaq)2 + (q̄γ5γµλaq)2

]
, (9)

where q and q̄ are u, d, and c quarks, respectively; the constant G1 describes the quark
interaction in the scalar and pseudoscalar channels, while G2 and G∗

2 do the same in the
vector and axial-vector channels1, and λa are the Gell-Mann lambda matrices acting in �avor
space. The chiral symmetry is explicitly broken in (9) by current quark masses entering
into the diagonal matrix m̂0 = diag (m0

u, m0
d, m

0
c), where the isotopic symmetry is assumed

(m0
u = m0

d).
At zero temperature and chemical potential, chiral symmetry is spontaneously broken and

quarks acquire constituent masses determined by gap equations of the type2

m0
q = mq[1 − 8G1I

Λ
1 (mq)] (q = u, d, c). (10)

Here, IΛ
1 (mq) is the tadpole integral regularized by a 3D ultraviolet (UV) cutoff Λ:

IΛ
1 (mq) = −i

Nc

(2π)4

∫
θ(Λ2 − |k|2)d4k

m2
q − k2 − iε

. (11)

Here, Nc = 3 is the number of colors; the 3D momentum k refers to the heat-bath frame.

1In the case of strange mesons one just put G2 = G∗
2 , while for the charmed mesons one should choose G∗

2
different from G2 in order to ˇt the model D∗-meson mass to its experimental value.

2In general, one has a system of gap equations. Only if the 't Hooft term is excluded, the equations decouple
and can be solved separately.
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In the NJL model the masses of pseudoscalar mesons are determined by the equation

1 − G1Πps(P 2) = 0, (12)

where Πps(P 2) is the pseudoscalar polarization operator depending on meson's 4-momentum
squared, P 2. Further, all calculations are done for the mesons resting in the heat-bath frame.
For ΠD one obtains

ΠD(P 2) = 4IΛ
1 (mu) + 4IΛ

1 (mc) + 4
(
P 2 − (mu − mc)

2
)

I
(λP ,Λ)
2 (P 2, mu, mc), (13)

where

I
(λP ,Λ)
2 (P, m1, m2) = −i

Nc

(2π)4

∫
θ(Λ2 − |k|2)θ(|k|2 − λ2

P )d4k

(m2
1 − k2 − iε)(m2

2 − (k − P )2 − iε)
, (14)

with P = (M, 0, 0, 0) for a meson at rest.

In the integrals I
(λP ,Λ)
2 (P 2, m1, m2) a 3D infrared (IR) cutoff λP is implemented such

that unphysical imaginary parts are removed from the integrals. One can check that an IR
cutoff in the form

λP =

[
θ(mq1 + mq2 − mcr

q1 − mcr
q2) +

mq1 + mq2

mcr
q1 + mcr

q2

θ(mcr
q1 + mcr

q2 − mq1 − mq2)

]
×

×

√
(P 2 − (mcr

q1 + mcr
q2)2)(P 2 − (mcr

q1 − mcr
q2)2)

4P 2
(15)

ensures the absence of unphysical imaginary parts in the integrals I2 with different quark
masses1. Critical values for the quark masses mcr are deˇned as mcr

q = mq(Tc).
In the vector-meson sector, the polarization is

Πµν(P 2) =
(

PµPν

P 2
− gµν

)
ΠT

vec(P
2) +

PµPν

P 2
ΠL

vec(P
2), (16)

with ΠT
vec and ΠL

vec being the transversal and longitudinal parts, respectively. For the D∗

meson one has

ΠT
D∗(P 2) =

8
3

(
P 2 − 3

2
(mu − mc)2

)
I
(λP ,Λ)
2 (P 2, mu, mc), (17)

ΠL
D∗(P 2) = −4(mu − mc)2I

(λP ,Λ)
2 (P 2, mu, mc). (18)

Masses can be found by solving equations of the type

1 − G2ΠT
vec(P

2) = 0. (19)

1In Ref. [8] the quark mass was unique and here the deˇnition of the IR cutoff has been adapted for a bound
state of quarks with different masses.
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For each pseudoscalar meson, the quark-meson and the weak-decay coupling constants can
be calculated using the formulas

gD =
(
Π′

D(M2
D)

)−1/2
, FD =

mu + mc

2gD
. (20)

Using the parameter ˇxing procedure described in [8], one obtains: Λ = 1.094 GeV, G1 =
2.978 GeV−2, G2 = 11.842 GeV−2, G∗

2 = 22.334 GeV−2, m0
u = 2.1 MeV, m0

c = 1017 MeV,
mu = 242 MeV, mc = 1728 MeV. The model predicts the quark-meson coupling and weak-
decay constants: gD = 3.58 and FD = 275 MeV. In the NJL model without IR cutoff
one should choose the following model parameters: Λ = 1.034 GeV, G1 = 3.443 GeV−2,
G2 = 15.9 GeV−2, G∗

2 = 20.6 GeV−2, m0
u = 2.1 MeV, ms = 50.3 MeV, m0

c = 780 MeV,
and obtain the constituent quark masses: mu = 281 MeV, mc = 1459 MeV, the constants:
gD = 5.17 and FD = 168 MeV. Note that mu + mc < MD in the model without the IR
cutoff, and the D meson is therefore unstable in the vacuum1.

The extension to the case of ˇnite temperature consists in introducing the temperature
dependence into the loop integrals I1 and I2, using, e.g., the Matsubara formalism (see [8]
for details). Solving the gap and mass equations at arbitrary temperature, one then obtains the
temperature dependence of the masses. The results are shown in Figs. 2 and 3. In Ref. [17]
strange quarks and kaon were considered for comparison, their masses are also plotted in
Figs. 2 and 3.

Fig. 2. The u(d), s, and c quark masses as
functions of temperature

Fig. 3. The D, D∗, and kaon masses (solid
curves) and widths (dashed curves) at various

temperatures

At the critical temperature Tc ≈ 186 MeV, the Mott effect for the pion takes place and
all mesons are allowed to decay into free quarks if they exceed breakup thresholds. Equating
the meson propagator to the BreitÄWigner Ansatz near the pole

M2 − P 2 − iMΓ = (Re Π′(M2))−1

(
1
G

− Re Π(P 2) − i ImΠ(P 2)
)

, (21)

1The D meson is stable in the vacuum for the parametrization used in [7].
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one obtains the width

Γq̄q =
Im Π(M2)

M Re Π′(M2)
. (22)

Using Eq. (22) at temperatures above Tc, one can draw a curve on the ΓÄT plane, also
depicted in Fig. 3. Using this correspondence between the temperature and the width, one
can, in particular, estimate the contribution to the ®abnormal¯ J/ψ suppression due to an
in-medium impact by a comover (J/ψ + π → D + D̄∗) (see [17]). It has been shown in [17]
that due to the Mott effect for D mesons at the QGP phase transition a reduction of the
threshold for charmonium breakup occurs, which leads to a steplike behavior of the J/ψ
breakup rate corresponding to a drop in the J/ψ lifetime.
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