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LOCAL SPIN MAGNETIZATION AROUND Zn ION
WHICH IS DOPED IN THE CuO2 PLANE
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The local static spin susceptibility at neighbour sites from vacant Cu in the CuO2 plane was obtained.
Calculations were performed using one of the variants of the memory function method. Charge-transfer
and spin-	ip correlation functions were expressed in the framework of the T-matrix formalism in terms
of the corresponding Green functions for the ideal t − J model on the square lattice.
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INTRODUCTION

Recently, much attention has been attracted by investigations of the electronic excitation
spectrum induced by the Zn doped high-temperature superconductive cuprates (Zn:CuO2) [1,
2]. In addition to the unexpected sharp detrimental effect on superconductivity (in the hole
underdoped phase about 20 K per % of Zn substitutions) and strong suppression of the spin
gap in the spin-	uctuation spectrum, the local magnetic moments appear in the close vicinity
of the nonmagnetic impurity which substitutes a Cu atom in the strong electron correlated
CuO2 plane [3].

Recent results of nuclear magnetic resonance experiments on Zn:CuO2 systems can be
explained if one supposes that these magnetic moments and the corresponding site-localized
spin susceptibilities χii on the nearest neighbour (i = n.n.) and on the next to nearest
neighbour (i = n.n.n.) sites to Zn ion are of the opposite sign and on the n.n.n. sites are
about three times smaller than on the n.n. ones [4, 5].

One should like to obtain some additional theoretical support of these prepositions of
impurity induced ordered magnetic moments on the nearly cluster sites. This motivates one
to calculate the local spin susceptibility χ

ii
on the n.n. and n.n.n. sites i, which is occupied

with Cu atom in the host lattice of the CuO2 plane, with respect to the site occupied by
impure Zn atom.
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The corresponding microscopic model for Zn:CuO2 system was derived and considered
in [1], where, in accordance with the T-matrix method [6], the additional symmetrized density
of states in the normal phase is calculated.

To calculate χ
ii
, one can use the method of memory function [7], and especially its

variants, which are developed for the t− J model in the Hubbard operator representation [8].
Application of this method in the present case leads to some integral expression for χii

with charge-transfer 〈Xσ0
i X0σ

j 〉 and spinÄspin 〈S+
i S−

j 〉 correlation functions. To calculate

〈Xσ0
i X0σ

j 〉, one uses the Green function (GF) method [9Ä11] and the T-matrix method [1, 6].

For 〈S+
i S−

j 〉 one also uses the T-matrix method, and the corresponding host lattice GF

〈〈S+
q |S−

−q〉〉0ω can be calculated numerically.
In Sec. 1, one ˇrstly describes the corresponding microscopic model and the calculation

methods. After it, in the Subsec. 1.1 some deˇnition and identity from the memory function
method [8] are given, which are necessary for the present analytical calculations. In the
Subsec. 1.2, one writes some main formulae of the GF method [10]. In the Subsec. 1.3, one
presents main formulae of the T-matrix method applied to the investigated system [1], and in
the last Subsec. 1.4 of the ˇrst chapter, one gives some useful formulae nedeed to calculate
spin susceptibility χ

ii
.

In the Sec. 2, the theoretical expression is derived for the difference between n.n. and
n.n.n. χ

ii
. Then follows the Conclusions.

1. MODEL HAMILTONIAN AND CALCULATION METHODS

To investigate properties of a strongly correlated electron system with impurity such as
Zn:CuO2, one can consider an effective t − J model for the CuO2 plane with vacant Cu site
i = 0:

H = Ht−J + V. (1)

The hamiltonian of the t − J model in the standard notation takes the form

Ht−J =
∑

i�=j,σ

tij(1 − niσ̄)c+
iσcjσ(1 − njσ̄) +

∑
i�=j

Jij

(
SiSj −

1
4
ninj

)
. (2)

To strongly keep the local constraint on doubly occupied sites, one is favourable to use the
advantage of the Hubbard operators, whose algebra leads to that they satisfy the constraint
rigourously.

In the Hubbard operator representation Xαβ
i = |i, α〉〈i, β|, one has X00

i +
∑

σ

Xσσ
i = 1

and

Xσ0
i = c+

iσ(1 − niσ̄), ni =
∑

σ

Xσσ
i , Sz

i =
1
2
σ(niσ − niσ̄) =

1
2

∑
σ

σXσσ
i , Sσ

i = Xσσ̄
i .

(3)
The hamiltonian of the t − J model in the Hubbard operator notation takes the form

Ht−J = ε
∑
iσ

Xσσ
i +

∑
i�=j,σ

tijX
σ0
i X0σ

j +
1
4

∑
i�=j,σ

Jij(Xσσ̄
i X σ̄σ

j − Xσσ
i X σ̄σ̄

j ), (4)
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where tij = t and Jij = J , if i = n.n.(j) and tij = t′ and Jij = 0, if i = n.n.n.(j). The
vacancy contribution is given by

Vvac = −ε
∑

σ

Xσσ
0 − t

∑
Δσ

(Xσ0
0 X0σ

Δ + h.c.) − 1
4
J

∑
Δσ

(Xσσ̄
0 X σ̄σ

Δ − Xσσ
0 X σ̄σ̄

Δ + h.c.) (5)

with ε = εd − μ being on-site electron energy ®measured¯ from the chemical potential level
μ. The summation over nonequal indices i �= j is performed over the nearest neighbor (n.n.)
and the next to them (n.n.n.) Cu-sites of the host square lattice, and the Zn-impurity is at the
i = 0 site with Δ = 1, 2, 3, 4 denoting its n.n. sites, as shown in Fig. 1.

Fig. 1. Schematic presentation of the nearest neighbouring (n.n.) and the next to n.n. sites of the impurity

(or, vacancy) site 0 and of the sites 1 and 1′ which one needs in calculations. Different symbols: ◦ and
�, also point out a different orientation of the localized magnetic moments

1.1. Using the Memory Function Method. To calculate real space static spin suscepti-
bility [8Ä10]

χ+−
ij

(ω = 0) = −〈〈S+
i |S−

j 〉〉ω=0 = (S+
i , S−

j ), (6)

one can use the identity [8]

mij ≡ 〈[iṠ+
i , S−

j ]〉 = (−S̈+
i , S−

j ), (7)

where the saught quantity (S+
i , S−

j ) appears as a factor after developing the corresponding
commutators in the equation of motion for the spin operators.

For the system with impurity (or, vacant) site, one can expect a different value of the on-
site (local) quantity mii for i = n.n. and i = n.n.n. sites, because of a different contribution
of quasiparticle scatterings to the equation of motion for the spin rising operators S+

i due to
the interaction V between the impurity and host lattice.

1.2. Using the Green Function Method. After completing the corresponding algebraic
calculations described in the next section, one obtains local static spin susceptibilities at the
n.n. sites χ11 and the n.n.n. sites χ

1′1′ in terms of the charge transfer 〈Xσ0
0 X0σ

i 〉 and
spin-	uctuation correlation functions 〈S−

0 S+
i 〉.
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To calculate them, one can use the GF method as, for example, the Zubarev general
formulation [9, 10]. One considers two-time temperature GF:

Gijσ(t, t′) = 〈〈A(t); B(t′)〉〉 = −i θ(t − t′)[A(t), B(t′)]η, (8)

where [A(t), B(t′)]η = A(t)B(t′)−ηB(t′)A(t) with η = ±1, respectively, for the commutator
(anticommutator) of the operators A and B in the Heisenberg representation.

Instantaneous correlation functions can be calculated using temporary dependent cor-
relation functions and the relation of their temporary Fourier transformation (F.T.) to the
corresponding F.T. of the GF, respectively:

〈AB〉 ≡ 〈A(t)B(0)〉
∣∣∣

t=0
=

1
2π

+∞∫
−∞

JAB(ω) e−iωt
∣∣∣
t=0

dω =
1
2π

+∞∫
−∞

JAB(ω) dω (9)

with

JBA(ω) =
−2

eβω − η
Im GAB(ω + iε) (10)

and β = 1/(kBT ). To ˇnd the Im part of the GF, one usually uses the identity

1
x ± iε

= PP
1
x
∓ iπδ(x) (11)

and for the GF's real part one has

Re G(ω) = − 1
π

PP

+∞∫
−∞

dω′

ω − ω′ Im G(ω′) (12)

with PP being the Cauchy principal part of the corresponding singular integral. The GF's of the
operators in the direct and opposite order are connected with 〈〈A|B〉〉ω+iε =
η 〈〈B|A〉〉−(ω+iε) [10].

1.3. Using the T-Matrix Method. As the considered system is not translationally invariant
(because of the vacant site i = 0), one should express the corresponding ®scattered GF¯ in
terms of the ®zero-order GF¯, as was presented in [1, 6].

Using the GF equation of motion method for the given system, one obtains the ®Dyson
equation¯ for the GF in the matrix notation as

Ĝ = Ĝ0 + Ĝ0V̂ Ĝ = Ĝ0 + ΔĜ, (13)

where Ĝ0 is the site-index matrix ®zero-order GF¯ and only nonzero elements of the pertur-
bation matrix are, according to the model (5), n.n. sites close to the impurity (or, vacancy).
The scattering addition to ®zero-order GF¯ is ΔĜ ≡ Ĝ0M̂Ĝ0 with the scattering matrix

M̂ = V̂
1

1 − Ĝ0V̂
. (14)

After symmetrization of the scattering, i.e., performing the corresponding unitary trans-
formation in accordance with irreducible group theory representations [6] of the symmetry
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transformations of the considered system, one obtains ®scattering additions to GF¯ ΔĜ for the
nonideal system expressed in terms of the ®zero-order GF¯ Ĝ0 for the ideal system (without
impurity or vacancy)

ΔĜ =
∑

μ

Ĝ0T̂μM̂μT̂ +
μ Ĝ0 =

∑
μ

ΔG(μ), (15)

where summation runs over the possible irreducible representation μ. The corresponding
block-diagonal matrices are

M̂μ = V̂μ

[
1 − Ĝ0

μV̂μ

]−1

(16)

with V̂μ ≡ T̂ +
μ V̂ T̂μ and Ĝ0

μ(ω) ≡ T̂ +
μ Ĝ0(ω)T̂μ, where T̂μ are rectangular matrices, that are

columns of the corresponding unitary matrix that ®block-diagonalizes¯ the perturbation matrix
V̂ . In such a way, one obtains the symmetrized scattering additions to ®zero-order GF¯, as
was written in paper [1] for the present model.

1.4. Useful Formulae and Approximations. Using Eqs. (9), (10) one has for charge-
transfer

〈Xσ0
m X0σ

n 〉 = − 1
π

+∞∫
−∞

dω
Im 〈〈X0σ

n |Xσ0
m 〉〉ω

e βω + 1
≡ − 1

π

+∞∫
−∞

dω
Im Gnm(ω)

e βω + 1
(17)

and for the spin-	uctuation correlation function

〈S−
mS+

n 〉 =
1
π

+∞∫
−∞

dω
Im 〈〈S+

n |S−
m〉〉ω

e−βω − 1
≡ 1

π

+∞∫
−∞

dω
ImSnm(ω)
e−βω − 1

. (18)

Using Eq. (12) one has

(S+
m, S−

n ) ≡ −〈〈S+
m|S−

n 〉〉ω=0 =

+∞∫
−∞

dω′

π

ImSmn (ω′)
ω′ . (19)

To evaluate the multisite correlation functions, one can use mean-ˇeld approximations [8],
where

(Xσ0
i X0σ

j S+
m, S−

n ) � λ〈Xσ0
i X0σ

j 〉(S+
m, S−

n ) (20)

and
(S+

i S−
j S+

m, S−
n ) � α1〈S+

mS−
j 〉(S+

i , S−
n ) + α2〈S+

i S−
j 〉(S+

m, S−
n ), (21)

where one renormalizes the corresponding vertices: λ takes into account the spin-hole interac-
tions; and α1 and α2, spin-	ip processes in the n.n. and n.n.n. lattice sites. In the considered
paramagnetic phase of the CuO2 system, one has the following relations:

〈〈Sz
m|Sz

n〉〉 =
1
2
〈〈S+

m|S−
n 〉〉, 〈S−

mS+
n 〉 = 〈S+

mS−
n 〉 = 2〈Sz

mSz
n〉 (22)

and also

〈X+0
i X0−

j S−
l 〉 � 0, 〈X++

i 〉 � 〈X−−
i 〉 = n/2, 〈X−0

i X0−
j 〉 � 〈X+0

i X0+
j 〉. (23)
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As the considered square lattice with the vacant i = 0 site has the central point (or,
inversion) symmetry under that vacant site, all physical quantities relating to that system are
invariant under the r → −r transformation. As a consequence, one also has

〈Xσ0
0 X0σ

n 〉 = 〈Xσ0
n X0σ

0 〉, 〈S+
0 S−

n 〉 = 〈S+
n S−

0 〉. (24)

2. CALCULATIONS OF THE GENERAL EXPRESSION

Firstly, one should derive the general identity, where static spin suceptibility χ
ij

=
(S+

i S−
j ) appears as a factor.

If one introduces the ®spin-current¯ Jj ≡ iṠ+
j = [S+

j , H ] and the ®spin-force¯ Fj =
−S̈+

j = iJ̇j = [[S+
j , H ], H ] operators [8], one can write Eq. (7) in a shorter form

mij = 〈[Ji, S
−
j ]〉 = (Fi, S

−
j ). (25)

To arrange the calculation procedure of the commutation relations, one can introduce useful
denotation to separate different terms of Hamiltonians (4), (5)

Ht−J = Ht + Hμ + HJ , V = Vt + VJ , (26)

where

Ht =
∑

i�=j,σ

tijX
σ0
i X0σ

j , HJ =
1
4

∑
i�=j,σ

Jij(Xσσ̄
i X σ̄σ

j − Xσσ
i X σ̄σ̄

j ) (27)

and

Vt = −t
∑
Δσ

(Xσ0
0 X0σ

Δ +h.c.), Vμ = −ε
∑

σ

Xσσ
0 , VJ = −J

4

∑
Δσ

(Xσσ̄
0 X σ̄σ

Δ −Xσσ
0 X σ̄σ̄

Δ +h.c.)

(28)
and, as a consequence, one has different terms in the spin-current

Jj = J t
j + δJ t

j + JJ
j + δJJ

j (29)

with
J t

j = [St
j , Ht], δJ t

j = [S+
j , Vt], JJ

j = [S+
j , HJ ], δJJ

j = [S+
j , HJ ] (30)

and the spin-force operators [8]

Fj = F tt
j + δF tt

j + δ2F tt
j + F JJ

j + δF JJ
j + δ2F JJ

j (31)

with
F tt

j = [J t
j , Ht], δF tt

j = [J t
j , Vt], δ2F tt

j = [δJ t
j , Vt], F JJ

j = [JJ
j , HJ ], (32)

and
δF JJ

j = [δJJ
j , HJ ], δ2F J

j = [δJJ
j , VJ ], (33)

respectively. Any of the commutators of S+
j and Jj with Hμ and Vμ are equal to zero.
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In such a way, one has in the new denotation

mj k = 〈[Jj , S
−
k 〉 = 〈[J t

j + JJ
j , S−

k ]〉 + 〈[δJ t
j + δJJ

j , S−
k ]〉 =

= (F tt
j + F JJ

j , S−
k ) + (δF tt

j + δ2F tt
j + δF JJ

j + δ2F JJ
j , S−

k ). (34)

As in the ideal system, one has 〈[J t
j + JJ

j , S−
k ]〉 = (F tt

j + F JJ
j , S−

k ), which leads to the
following relations

〈[δJ t
j + δJJ

j , S−
k ]〉 = (δF tt

j + δ2F tt
j + δF JJ

j + δ2F JJ
j , S−

k ). (35)

Specifying the sites j and k and developing the commutators contained in the spin-force
terms F aa

j with a = (t, J), one obtains self-consistent relation where, the saught static spin

susceptibility χjk = (S+
j , S−

k ) appears as a factor.
2.1. Local Static Spin Susceptibilities. For j = k = 1, Eq. (35) becomes

− 2t〈Xσ0
0 X0σ

1 〉 + 2J〈S+
0 S−

1 〉 = (δF tt
1 + δ2F tt

1 , S−
1 ) + (δF JJ

1 + δ2F JJ
1 , S−

1 ) (36)

with

(δF tt
1 + δ2F tt

1 , S−
1 ) =

{
2λt2[〈Xσ0

0 X0σ
2aX

〉 + 2〈Xσ0
0 X0σ

aX+aY
〉]+

+4λtt′[〈Xσ0
0 X0σ

2aX+aY
〉+〈Xσ0

0 X0σ
aY

〉]+
(

3
2
nλ + 1

)
t2

}
(S+

1 , S−
1 )+

(
nλ

2
+ 1

)
t2(S+

0 , S−
1 )

(37)

and

(δF JJ
1 + δ2F JJ

1 , S−
1 ) = α1J

2{〈S−
0 S+

1 〉[(S+
1+aX

, S−
1 ) + (S1+aY , S−

1 ) + (S1−aY , S−
1 )−

− (S1−aX+aY , S−
1 ) − (S1−aX−aY , S−

1 ) − (S1−2aX , S−
1 )] −

[
〈S−

0 S+
aY

〉 +
1
2
〈S−

0 S+
−aX

〉
]
×

× (S+
1 , S−

1 )} + α2J
2{[〈S−

1−aX+aY
S+

1 〉 + 〈S−
1−aX−aY

S+
1 〉 + 〈S−

1−2aX
S+

1 〉](S+
0 , S−

1 )−

− [〈S−
2aX

S+
0 〉 + 2〈S−

aX+aY
S+

0 〉](S+
1 , S−

1 )} + λJ2(S+
1 , S−

1 ) + λJ2 n

2
(S+

0 , S−
1 ), (38)

where aX = a and aY = a are lattice translation constants along the x- and y-axes.
For j = k = 1′, Eq. (35) becomes

− 2t′〈Xσ0
0 X0σ

1′ 〉 + 2J〈S+
0 S−

1′〉 = (δF tt
1′ + δ2F tt

1′ , S−
1 ), (39)

where in the right-hand side there are no corresponding terms containing F JJ
1′ , as in Eq. (36),

because it gives zero contribution (δF JJ
1′ + δ2F JJ

1′ , S−
1 ) = 0 which is a consequence of the

fact that J ′
01′ = 0 in the considered model (5). For the right-hand side of Eq. (39), one has

(δF tt
1′ + δ2F tt

1′ , S−
1′ ) =

= 2λt′t[〈Xσ0
0 X0σ

2aX+aY
〉+〈Xσ0

0 X0σ
aX+2aY

〉+〈Xσ0
0 X0σ

aY
〉](S+

1′ , S
−
1′)+2λt′2[〈Xσ0

0 X2aX+2aY 〉+

+〈Xσ0
0 X0σ

2aY
〉+〈Xσ0

0 X0σ
2aX

〉](S+
1′ , S

−
1′)+t′2

(
3
2
nλ + 1

)
(S+

1′ , S
−
1′ )+t′2

(
nλ

2
+ 1

)
(S+

0 , S−
1′ ).

(40)
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Using the usual parameter value t � 0.4 eV, J = 0.3t and t = −0.3t [3, 12], one can write
Eqs. (36), (40) in simpler forms and one ˇnally obtains local spin susceptibilities, respectively,
at the n.n.n. and the n.n. sites with respect to the Cu-vacancy (or, Zn impurity ion) in the
CuO2 plane as

χ
1′1′ ≡ (S+

1′ , S
−
1′) =

−t′/t〈Xσ0
0 X0σ

1′ 〉 + J/t〈S−
0 S+

1′〉
λt′[〈Xσ0

0 X0σ
2aX+aY

〉 + 〈Xσ0
0 X0σ

aX+2aY
〉 + 〈Xσ0

0 X0σ
aY

〉] (41)

and

χ11 ≡ (S+
1 , S−

1 ) =

=
−2〈Xσ0

0 X0σ
1 〉 + 2J/t〈S−

0 S+
1 〉 − (1 + nλ/2)t(S+

0 , S−
1 )

2λt[〈Xσ0
0 X0σ

2aX
〉+2〈Xσ0

0 X0σ
aX+aY

〉]+4λt′[〈Xσ0
0 X0σ

2aX+aY
〉+〈Xσ0

0 X0σ
aY

〉]+
(

1+
3nλ

2

)
t

,

(42)

which for λt 	 1 becomes

χ11 ≡ (S+
1 , S−

1 ) =
−(1/λ + n/2)(S+

0 , S−
1 )

2[〈Xσ0
0 X0σ

2aX
〉 + 2〈Xσ0

0 X0σ
aX+aY

〉] + 1/λ + 3n/2
. (43)

As one can see from Eqs. (41), (43), one has to calculate also (S+
0 , S−

1 ) and the correlation
functions 〈S+

0 S−
1 〉 and 〈X0σ

0 Xσ0
m 〉. For them one should use Eqs. (18) and (17), respectively,

and for the GF's, which appear there, one should use equations S0m = S0
0m + ΔSμ

0m and

G0m = G0
0m + ΔG

(μ)
0m. The additions ΔSμ

0m and ΔG
(μ)
0m to the ®zero-order GF's¯ S0

0m and
G0

0m, respectively, have the same symmetrized form in terms of the latter, as given in [1].
Finally, one can use Eq. (19) to calculate (S+

0 , S−
1 ).

CONCLUSIONS

In this paper, the analytical expressions for local spin susceptibilities in the n.n. and n.n.n.
sites to the vacant i = 0 site of the t − J model were derived, as proposed in the model of
Zn doped superconducting cuprates.

A special variant of the memory function technique, developed in [8] was applied. To
obtain complete self-consistent equations, one should use also the results of the symmetry
analysis for the present model, which is performed in [1] and also ®zero-order GF's¯. For
charge-transfer GF and their F.T. G0(q, ω) = 〈〈X0σ

q Xσ0
−q〉〉0(ω) one can use the renormalized

band energy E(q) obtained in [1] or [11]. For zero-order spin-	uctuation GF and their F.T.
S0(q, ω) = 〈〈S+

q |S−
−q〉〉0(ω) one can use some of the well-justiˇed models [11].

Further work will be aimed at obtaining the impurity induced staggered spin susceptibilities
around i = 0 site and the numerical calculations, which will be published elsewhere.

Acknowledgements. The author thanks the Bogoliubov Laboratory for Theoretical Physics,
Dubna, Russia for hospitality and especially Prof. Nikolai M. Plakida for stimulating discus-
sions and useful comments.



Local Spin Magnetization around Zn Ion Which Is Doped in the CuO2 Plane 739

REFERENCES

1. Kova�cevi�c �Z. et al. Electronic Spectrum in a Microscopical Model for the Zn-Doped CuO2 Plane //
Eur. Phys. J. B. 2000. V. 18. P. 377Ä384.

2. Kontani H., Ohno M. Effect of a Nonmagnetic Impurity in a Nearly Antiferromagnetic Fermi Liquid:
Magnetic Correlations and Transport Phenomena // Phys. Rev. B. 2006. V. 74. P. 014406(21).

3. Plakida N.M. Vysokotemperaturnye sverkhprovodniki. Œ., 1994. 288 p. (in Russian); High-
Temperature Superconductors. Experiment and Theory. Berlin, 1995. 227 p.

4. Mahajan A. V. et al. 89Y NMR Probe of Zn Induced Local Magnetism in YBa2(Cu1−yZny)3O6+x //
Eur. Phys. J. B. 2000. V. 13. P. 457Ä475.

5. Julien M.-H. et al. 63Cu NMR Evidence for Enhanced Antiferromagnetic Correlations Around Zn
Impurities in YBa2Cu3O6.7 // Phys. Rev. Lett. 2000. V. 84. P. 3422Ä3425.

6. Izyumov Yu. A., Medvedev M. V. Teoriya magnito-uporyadochennykh kristallov s primesyami. Œ.,
1970. 272 p. (in Russian); Magnetically Ordered Crystals Containing Impurities. N.Y.; London:
Consultant Bureau, 1973.

7. Forster D. Hydrodynamic Flutuations, Broken Symmetry and Correlation Functions. N.Y.: Ben-
jamin, 1975; Gidrodinamicheskie 	uktuatsii, narushennaya simmetriya i korrelyatsionnye funktsii.
Œ., 1980. 288 p. (in Russian).

8. Vladimirov A. A., Ihle D., Plakida N.M. Dinamicheskaya spinovaya vospriimchivost' v t−J-modeli:
metod funktsii pamyati // Teor. Mat. Fiz. 2005. V. 145, No. 2. P. 240Ä255 (in Russian); Dynamical
Spin Susceptibility in the t− J Model: the Memory Function Method // Theor. Math. Phys. 2005.
V. 145, No. 2. P. 1575Ä1588.

9. Zubarev D.N. // Usp. Fiz. Nauk. 1960. V. 71, No. 1. P. 71Ä116 (in Russian); Sov. Phys. Usp. 1960.
V. 3. P. 320.

10. Plakida N.M. Nekotorye voprosy kvantovoi teorii tverdogo tela (Metod dvukhvremennykh funksii
Grina). Œ., 1974. 153 p. (in Russian).

11. Plakida N. M., Oudovenko V. S. // Phys. Rev. B. 1999. V. 59, No. 18. P. 11949Ä11961.

12. Prelov�sek P., Ram�sak A. // Phys. Rev. B. 2005. V. 72. P. 012510(4).

Received on August 21, 2006.


