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We have noted that the electron spectrum of muon decay in the leading logarithmic approximation
calculated in two lowest orders of the perturbation theory in the paper of Berman (1958), can be
reproduced by the parton language. This fact permits one to generalize the result to all orders of the
perturbation theory using the structure function method.
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ELECTRON SPECTRUM IN LEADING AND
NEXT-TO-LEADING APPROXIMATIONS

The lowest order radiative corrections (RC) to the muon weak decay width were calculated
about ˇfty years ago [?]. The result for the electron energy spectrum in muon decay including
RC was obtained in the form
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with the spectrum in the Born approximation

dWB(x)
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=
G2M5

96π3
x2(3 − 2x), (2)

here M is the muon mass; m is the electron mass; L is the so-called ®large logarithm¯
(L ≈ 11). The result of the lowest order RC including is presented in expression h(x), or in
functions A(x) and B(x), respectively [?]
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One must remark that the result of the calculations does not suffer from the ultraviolet and
the infrared divergences. Besides it satisˇes KinoshitaÄLeeÄNauenberg (KLN) theorem [?]
about the cancellation of mass singularities, namely the total width is ˇnite in the limit of
zero electron mass

1∫
0

dx
dWB(x)

dx
B(x) = 0. (4)

The mechanism of the realization of KLN theorem can be understood from the positions
of parton interpretation of Quantum Electrodynamics (QED). Really, one can be convinced
in the validity of the relation
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where
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is the kernel of the evolution equation of twist two operators. Using the property
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Considering the process in the Born approximation as a ®hard¯ process and applying Collins
factorization theorem about the contributions of the short and long distances, one can gener-
alize the lowest order result to include all terms of the sort (αL/π)n (leading logarithmical
approximation (LLA)) as well as the terms of the sort α(αL/π)n (next-to-leading approxi-
mation (NLO)) in the form (it is the main result of our paper)
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and
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For the numerical calculations one can use for the structure function D(L, z) from Eq. (??)
the ®smoothed¯ (but equivalent) form [?]
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One can ˇnd useful relation
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CONCLUSION

For the comparison we have given in the Figure the numerical values of the quantity
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(see (??), (??)). One can see that the spectrum contrary to the result of the lowest order of
perturbation theory is well deˇned in the whole region of x including x → 0 and x → 1. The

total width with RC does not contain ®large logarithm¯ due to the property
1∫
0

dzD(L, z) = 1.

In our approach we have obtained
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]
. (11)

Let us note that the terms of order α2 were calculated in [?]. In papers [?,?,?] the one-loop
and two-loop terms for the correction to the electron energy spectrum were calculated. These
terms as well have a singular behavior at x = 1, and only the conversion with structure
function provides the smooth behavior which is seen from the Figure.
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The deviation of the electron spectrum in muon decay from the spectrum in the Born approximation:
for the lowest order Δ(1) (1), for all orders Δ (2) of perturbation theory

The higher βn, n = 2, 3, 4 iterations of the structure functions can be found in [4, 9].
The contribution from emission of electronÄpositron pairs can be obtained from (6) re-

placing D = Dγ → Dγ + De+e−
[4, 9].

The case of a polarized muon can be considered in the same way, not touched here.
First the structure function method was applied to describe the πe2 decay in [?].
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