УДК 539.142.2 + 539.143.24

О СТАБИЛЬНОСТИ ЯДЕР С БОЛЬШИМ ИЗБЫТКОМ НЕЙТРОНОВ

К. А. Гриднев^{*a*}, Д. К. Гриднев^{*a*}, В. Г. Картавенко^{*b*}, В. Е. Митрошин^{*b*}, В. Н. Тарасов^{*г*,*д*,1}, Д. В. Тарасов^{*г*}, В. Грайнер^{*e*}

^{*а*}Институт физики им. В. А. Фока Санкт-Петербургского государственного университета, Россия ^{*б*}Объединенный институт ядерных исследований, Дубна

^в Харьковский национальный университет им. В. Н. Каразина, Украина

^г ННЦ Харьковский физико-технический институт, Украина

^д Академия гражданской защиты МЧС Украины, Украина

^e Frankfurt Institute for Advanced Studies, J. W. Goethe University, Frankfurt am Main, Germany

В приближении Хартри–Фока с эффективными силами Скирма SLy4 и Ska изучен вопрос о границах стабильности к испусканию одного и двух нейтронов у изотопов $^{4-12}$ He, $^{14-44}$ O, $^{38-80}$ Ca. Обнаружен «остров стабильности» 40 O.

Within the Hartree–Fock approximation with the effective Skyrme-like forces SLy4 and Ska we have investigated the question about the nuclear drip-line with respect to ejection of one or two neutrons from isotopes $^{4-12}$ He, $^{14-44}$ O, $^{38-80}$ Ca. We have found «the island of stability» — 40 O.

1. Для изучения свойств атомных ядер широко используется метод Хартри–Фока (ХФ) с эффективным взаимодействием Скирма [1, 2]. Этим методом удается хорошо описать такие ядерные характеристики, как энергии связи, средние квадраты зарядовых радиусов (СКЗР), электромагнитные мультипольные моменты ядер и др. Достаточно полная библиография результатов расчетов свойств ядер методом ХФ представлена в [3, 4]. Важная особенность рассматриваемого подхода состоит в том, что для расчетов характеристик отдельных атомных ядер или их больших групп используется один и тот же набор параметров эффективного взаимодействия без их подгонки для каждой отдельной области N и Z. При этом описание свойств ядер методом ХФ дает хорошие результаты не только для β -стабильных четно-четных сферических и деформированных ядер [1, 3–6], но и для нейтронодефицитных и нейтроноизбыточных ядер, близких к границе нуклонной стабильности [7, 8], а в ряде случаев удается вполне удовлетворительно описать и реально наблюдаемые спектры возбужденных состояний [9].

В настоящей работе представлены первые итоги наших исследований методом ХФ по поиску стабильных сильно нейтроноизбыточных ядер, лежащих далеко за пределами границы нуклонной стабильности. Интерес к изучению этого вопроса обусловлен прогрессом в области получения пучков радиоактивных ионов и появлением новых экспериментальных данных для сильно нейтроноизбыточных ядер.

¹E-mail: vtarasov@kipt.kharkov.ua

2. Методы расчетов структуры атомных ядер в приближении ХФ с эффективным взаимодействием Скирма подробно изложены в [1, 3, 4, 10] для сферических ядер (СХФ) и в [4, 11, 12] для деформированных ядер, обладающих аксиальной симметрией (ДХФ). Поэтому отметим только некоторые детали расчетов в ДХФ.

Прежде всего, приведем явное выражение для обычно используемых двухнуклонных эффективных зависящих от плотности сил Скирма [1–3, 13, 14]:

$$\begin{aligned} V_{ij} &= t_0 (1 + x_0 P_{\sigma}) \delta(\mathbf{r}) + \frac{1}{2} t_1 (1 + x_1 P_{\sigma}) [\mathbf{k}'^2 \delta(\mathbf{r}) + \delta(\mathbf{r}) \mathbf{k}^2] + t_2 (1 + x_2 P_{\sigma}) \mathbf{k}' \delta(\mathbf{r}) \mathbf{k} + \\ &+ \frac{1}{6} t_3 (1 + x_3 P_{\sigma}) \rho^{\alpha}(\mathbf{R}) \delta(\mathbf{r}) + \mathrm{i} W_0 [\mathbf{k}' \times (\mathbf{r}) \mathbf{k}] (\boldsymbol{\sigma}_i + \boldsymbol{\sigma}_j) \delta, \end{aligned}$$

где $\mathbf{r} = \mathbf{r}_i - \mathbf{r}_j$, $\mathbf{R} = \frac{1}{2}(\mathbf{r}_i + \mathbf{r}_j)$, $\mathbf{k} = \frac{-\mathrm{i}}{2}(\nabla_i - \nabla_j)$, $\mathbf{k}' = \frac{\mathrm{i}}{2}(\nabla_i - \nabla_j)$, $P_{\sigma} = \frac{1}{2}(1 + \sigma_i \sigma_j)$, а t_n , $x_n(n = 0, 1, 2, 3)$, α , W_0 — параметры, численные значения которых определяются из вполне определенных физических соображений [1, 3, 13–16].

Силы	<i>t</i> ₀ , МэВ∙фм ³	<i>t</i> ₁ , МэВ∙фм ⁵	<i>t</i> ₂ , МэВ∙фм ⁵	$t_3,$ Мэ $\mathbf{B}\cdot$ фм $^{3+3lpha}$	x_0	x_1	x_2	x_3	<i>W</i> 0, МэВ∙фм ⁵	α
SLy4	-2488,91	486,82	-546,39	13777,0	0,834	-0,344	$-1,000 \\ 0,0$	1,354	123,0	1/6
Ska	-1602,78	570,88	-67,70	8000,0	-0,020	0,0		-0,286	125,0	1/3

Значения параметров используемых сил Скирма

Среди используемых вариантов сил Скирма в последние годы наиболее широко обсуждаемыми являются SLy4 [16]. Однако в нашей работе [9] еще 1985 г. было показано, что наиболее удовлетворительное описание наблюдаемых спектров деформированных ядер 25 Mg и изотопов 29,31 Si получается с силами Ska [17]. По этой причине для изучения интересующего нас явления мы остановили свой выбор на этих двух типах взаимодействия, параметризация которых представлена в таблице.

Учет эффектов спаривания проводился в приближении Бардина-Купера-Шриффера (БКШ) [3], с константой спаривания G = 19/A как для протонов, так и для нейтронов, и только в пространстве связанных одночастичных состояний. Основания для этого такие. Во-первых, с этой параметризацией получается приемлемое описание четно-нечетной разности масс ядер с развитым спариванием в долине стабильности. Во-вторых, для рассматриваемых нами ядер, лежащих вблизи границы нуклонной стабильности, в принятом нами грубом приближении учета только связанных одночастичных состояний учет спаривания не влияет на результаты расчетов границ нуклонной стабильности. Но, как известно [18, 19], учет непрерывного спектра усиливает эффекты спаривания вблизи границы стабильности. Однако вопрос о корректном учете непрерывного спектра, на наш взгляд, нельзя считать окончательно решенным. Дело в том, что как в приближении константного спаривания, так и в приближении δ -сил учет непрерывного спектра ведет к логарифмической расходимости значения спаривательной щели от значения энергии Е_{тах}, при которой обрезают непрерывный спектр. Для иллюстрации роли спаривательных сил на рис. 1, *а*, δ представлены вычисленные нами энергии отделения двух нейтронов S_{2n} , с учетом и без учета сил спаривания для двух рассматриваемых типов эффективных сил в

42 Гриднев К.А. и др.

сравнении с данными эксперимента [20]. Как видно, для изучаемых нейтроноизбыточных изотопов кислорода влияние учета спаривательных сил на величины S_{2n} незначительно, так как вычисленные S_{2n} с учетом и без учета спаривания слабо отличаются друг от друга. Учет спаривания в используемом нами подходе в основном проявляется только в подавлении деформации ядер.

Рис. 1. Рассчитанные значения энергии отделения двух нейтронов S_{2n} изотопов ^{14–44}O с различными вариантами сил Скирма с учетом спаривания (+БКШ) и без него в сравнении с экспериментальными данными

Члены, описывающие прямое и обменное кулоновские взаимодействия, и кулоновская энергия рассчитывались с точечным распределением заряда протонов.

Нами использовался итерационный метод решения системы уравнений ДХФ, подробно изложенный в [11, 12]. В этом методе искомые одночастичные волновые функции ДХФ раскладываются в ряд по полному набору собственных волновых функций аксиально деформированного гармонического осциллятора

$$V(r,z) = m\omega_r^2 r^2 / 2 + m\omega_z^2 z^2 / 2$$

В практических расчетах всегда приходится ограничивать размерность базиса. Поэтому возникает зависимость энергии связи и всех вычисляемых величин от параметров базиса, характеризуемых двумя величинами: $q = \omega_r/\omega_z$ и $\beta = [m(\omega_r^2\omega_z)^{1/3}/\hbar]^{1/2}$, которые выбираются из условия минимальности полной энергии $E(q,\beta)$. Вопросу выбора оптимальных параметров базиса уделялось особое внимание: строилась сетка значений $E(q,\beta)$ по параметрам q,β размерностью 10×10 и после нахождения минимума энергии процедура повторялась с уменьшенным в 10 раз шагом по параметрам q,β . Этого оказывалось достаточно, для того чтобы с высокой точностью определить оптимальные параметры базиса на каждой итерации. Именно оптимизация базиса по параметрам q,β позволяет использовать его относительно малые размерности (см. ниже). Максимальная размерность базиса, используемого в настоящих расчетах, $N_0 = 10$ (286 базисных функций), где N_0 — максимальное главное осцилляторное квантовое число базиса. Результаты расчетов в приближении $N_0 = 8$ показали, что они практически не отличаются от приближения $N_0 = 10$. Это дает уверенность в том, что дальнейшее расширение пространства состояний не является необходимым.

Для поиска «островов стабильности» в настоящей работе нами исследовались изотопы ^{4–12}He, ^{14–44}O, ^{38–80}Ca.

3. При поиске «островов стабильности» нами изучался и вопрос о том, насколько сильно различаются результаты расчетов основных характеристик исследуемых ядер для двух выбранных нами типов сил Скирма.

3.1. Изотопы $^{4-12}$ Не. Для указанных изотопов не было получено результатов, скольлибо отличающихся от ранее известных [21], и потому мы здесь их не приводим. Но отмечаем этот момент для того, чтобы подчеркнуть согласованность различных методов решения уравнений ХФ.

3.2. Изотопы ^{14–44}О. На рис. 2, *а*, *б* представлены результаты расчетов протонного и нейтронного среднеквадратичных радиусов для Ska и SLy4 без учета спаривательного взаимодействия и с учетом последнего (на нейтронных среднеквадратичных радиусах учет спаривания практически никак не проявляется). Как видно из рисунка, результаты для двух используемых типов взаимодействия очень близки, а существенные отличия наступают лишь при A = 30 (первые нестабильные изотопы). Это обусловлено более «бедной» структурой одночастичного спектра вблизи ферми-поверхности для сил SLy4 по сравнению с тем, что дают силы Ska.

Рис. 2. Рассчитанные значения протонного r_p (*a*) и нейтронного r_n (*б*) среднеквадратичных радиусов изотопов ^{14–44}O с различными вариантами сил Скирма с учетом спаривания (+БКШ) и без него

На рис. 3, *а-в* представлены результаты расчетов энергий отделения одного и двух нуклонов (протонов и нейтронов соответственно) в зависимости от массового числа в сравнении с известными экспериментальными данными.

Вычисление энергии отделения одного нуклона проводилось в приближении, когда спаривание отсутствует, т. е. на рисунках приведены рассчитанные значения энергии \bar{e}_j последнего заполняемого уровня. Основания для этого такие. Когда абсолютная величина \bar{e}_j велика (см. рис. 3, a — для протонов), то энергия квазичастицы практически совпадает с энергией частицы. При приближении к границе нуклонной стабильности ядер, когда $\bar{e}_j \rightarrow 0$, спаривательная щель Δ быстро стремится к нулю, особенно в том случае, если учитывать эффект блокировки. Это и дает все основания сравнивать с энергией отделения нуклона S_{τ} именно величину «минус» \bar{e}_j .

Из сопоставления с экспериментом (рис. 3, a, δ) видно, что как Ska, так и SLy4 вполне удовлетворительно и примерно с одинаковым качеством описывают известные экспери-

Рис. 3. Рассчитанные значения энергии отделения одного протона $S_p(a)$, одного нейтрона $S_n(\delta)$ и двух нейтронов $S_{2n}(s)$ изотопов ^{14–44}О с различными вариантами сил Скирма с учетом спаривания (+БКШ) и без него в сравнении с экспериментальными данными

ментальные данные. Что же касается энергий отделения двух нейтронов (рис. 3, s), то при общем удовлетворительном описании данных эксперимента силы Ska несколько лучше отражают наблюдаемую в области $A = 18 \div 24$ экспериментальную тенденцию. Как и в работе [21], последним нуклоностабильным изотопом является A = 28. Экспериментально пока установлено существование изотопа ²⁴O; но большая энергия отделения как одного, так и двух нейтронов для этого изотопа (рис. 3, δ , s) не отрицает, а скорее, указывает на существование более тяжелых стабильных к испусканию нейтронов изотопов кислорода.

В представленных расчетах с силами Ska нами был обнаружен стабильный к испусканию как двух, так и одного нейтрона изотоп ⁴⁰O. Соответствующие этому изотопу данные расчета СКЗР, S_p , S_n изображены на рис. 2 и 3, *a*, *б* звездочкой или стрелкой. Подчеркнем, что, хотя изотоп ⁴⁰O безусловно стабилен к испусканию двух нейтронов, соседние изотопы нестабильны, именно из-за этого вычислить точное значение S_{2n} невозможно; поэтому мы его и не приводим. Возрастание нуклонной стабильности в районе ⁴⁰O, на наш взгляд, обусловлено эволюцией самосогласованного среднего поля с ростом числа нейтронов, хотя природа этого явления пока не совсем ясна и нами изучается.

Карта распределения протонной и нейтронной плотностей в координатах r, z (с учетом симметрии рассматриваемой задачи) для ⁴⁰О представлена на рис. 4, *a*, *б*. Для сравнения на рис. 4, *в*, *г* показана аналогичная карта для ²⁰О. Отметим, что изотоп ⁴⁰О в

Рис. 4. Карта распределения протонной $\rho_p(a, s)$ и нейтронной $\rho_n(\delta, r)$ плотностей (в единицах 10^3 фм^{-3}) для ⁴⁰O (*a*, *b*) и ²⁰O (*s*, *r*) соответственно

наших расчетах обладает сферически-симметричным распределением плотности протонов и нейтронов. Мы видим, что протонное «облако», хотя и слабо, но расширяется; однако оно остается полностью окруженным нейтронным «гало» толщиной примерно в 2 фм. Здесь мы сталкиваемся с совершенно другой, чем это принято [22], картиной формирования «нейтронного гало» — в нашем случае оно возникает из-за огромной энергии связи протонов. Это отчетливо видно из рис. 3, *a*, где представлены результаты наших расчетов S_p в сравнении с данными эксперимента.

Однако с силами SLy4 изотоп ⁴⁰О оказывается нестабильным к испусканию одного нейтрона, хотя последний заполняемый уровень находится очень близко к нулю и можно говорить о «квазистабильности». Эта ситуация повторяется от ядра к ядру: если с силами Ska изотоп получается «квазистабильным», то он получается «квазистабильным» и с силами SLy4. Поясним термин «квазистабильность». Во всех изученных нами случаях последний заполняемый уровень для ядер вблизи границы нуклонной стабильности имел отрицательную четность. Это означает, что этот нуклон гарантированно имеет ненуле-

46 Гриднев К.А. и др.

вой орбитальный момент и центробежный потенциал препятствует вылету нейтрона при малых его энергиях.

3.3. Изотопы ³⁸⁻⁸⁰Са. Мы не будем повторяться и приводить многочисленные данные результатов расчетов — они во многом аналогичны результатам, представленным для изотопов кислорода, а заострим внимание на некоторых принципиальных отличиях.

На рис. 5, *а*, *б* представлены энергии отделения одного и двух нейтронов, вычисленные с силами Ska и SLy4, в зависимости от массового числа. Прежде всего, отметим, что результаты наших расчетов практически совпадают с результатами, приведенными в [23], с силами SLy4 для изотопа ⁶⁸Ca (для других изотопов численных данных в этой работе не приведено). Обращает на себя внимание тот факт, что изотопы кальция становятся нестабильными к испусканию двух нейтронов ранее, чем к испусканию одного нейтрона (аналогичная ситуация наблюдалась и для изотопов гелия). Подобные явления наблюдались нами и ранее [7, 8] для других цепочек изотопов. В изотопах кислорода однонуклонная и двухнуклонная границы стабильности совпадают. Стоит еще раз подчеркнуть, что учет спаривания практически никак не влияет на величины S_n , S_{2n} вблизи границы стабильности.

Рис. 5. Рассчитанные значения энергии отделения одного S_n (*a*) и двух нейтронов S_{2n} (*б*) для изотопов ⁴⁰⁻⁸⁰Са с различными вариантами сил Скирма с учетом спаривания (+БКШ) и без него в сравнении с экспериментальными данными

Обнаружить «острова стабильности» для изотопов кальция пока не удалось — чтобы гарантировать себя от ошибочных утверждений для изотопов с A > 80, нам представляется необходимым расширить пространство состояний до $N_0 = 20$. Это и будет предметом отдельной работы, так как данная задача главным образом требует определенных технических ухищрений.

СПИСОК ЛИТЕРАТУРЫ

- 1. Vautherin D., Brink D. M. // Phys. Rev. C. 1972. V. 5. P. 626.
- 2. Skyrme T. H. R. // Phyl. Mag. 1956. V. 1. P. 1043.
- 3. Барц Б. И. и др. Метод Хартри-Фока в теории ядра. Киев: Наук. думка, 1982.

- 4. Bender M. et al. // Rev. Mod. Phys. 2003. V. 75. P. 121.
- 5. Куприков В. И. и др. // Укр. физ. журн. 1987. Т. 32, № 9. С. 1297.
- 6. Гончар В. Ю. и др. // ЯФ. 1979. Т. 30, вып. 5. С. 1231.
- 7. Кириченко Ю.В. и др. Препринт ХФТИ 85-34. М.: ЦНИИатоминформ, 1985.
- 8. Кириченко Ю. В. и др. // Укр. физ. журн. 1986. Т. 31, № 11. С. 1619.
- 9. Гончар В. Ю. и др. // ЯФ. 1985. Т. 41. С. 590.
- 10. Куприков В. И. и др. Препринт ХФТИ 8-11. Харьков, 1980.
- 11. Vautherin D. // Phys. Rev. C. 1973. V. 7. P. 296.
- 12. Тарасов В. Н. и др. Препринт ХФТИ 85-32. М.: ЦНИИатоминформ, 1985.
- 13. Bartel J. et al. // Nucl. Phys. A. 1982. V. 386. P. 79.
- 14. Beiner M. et al. // Nucl. Phys. A. 1975. V. 238. P. 29.
- 15. Reinhard P.-G. et al. // Nucl. Phys. A. 1995. V. 584. P. 467.
- 16. Chabanat E. et al. // Nucl. Phys. A. 1998. V.635. P.231; V.643. P.441.
- 17. Kohler H. S. // Nucl. Phys. A. 1976. V. 258. P. 301.
- 18. Dobaczewski J. et al. // Phys. Rev. Lett. 1994. V. 72. P. 981.
- 19. Fayans S.A. et al. // Nucl. Phys. A. 2000. V. 676. P. 49.
- 20. Audi G. et al. // Nucl. Phys. A. 2003. V. 729. P. 337.
- 21. Stoitsov M. V. et al. // Phys. Rev. C. 2000. V. 61. P. 034311.
- 22. Jonson B. // Phys. Rep. 2004. V. 389. P. 1.
- 23. Stoitsov M. V. et al. // Phys. Rev. C. 2003. V. 68. P. 054312.

Получено 21 февраля 2005 г.