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A NOTE ABOUT THE T'HOOFT ANSATZ
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The t'Hooft ansatz which reduces the classical YangÄMills theory to the λφ4 one is under consider-
ation. It is shown that in the framework of this ansatz the real-time classical solutions for the arbitrary
SU(N) gauge group are obtained by embedding SU(2) × SU(2) into SU(N). It is argued that this
group structure is the only possibility in the framework of the considered ansatz. New explicit solutions
for SU(3) and SU(5) gauge groups are shown.

� ¸¸³ É·¨¢ ¥É¸Ö  ´§ Í É'•μËÉ , ¶¥·¥¢μ¤ÖÐ¨° ±² ¸¸¨Î¥¸±ÊÕ É¥μ·¨Õ Ÿ´£ ÄŒ¨²¸  ¢ É¥μ·¨Õ λφ4.
�μ± § ´μ ¤²Ö ¶·μ¨§¢μ²Ó´μ° SU(N)-± ²¨¡·μ¢μÎ´μ° £·Ê¶¶Ò, ÎÉμ ¢ · ³± Ì ÔÉμ£μ  ´§ Í  ±² ¸¸¨Î¥-
¸±¨¥ ·¥Ï¥´¨Ö ¢ ·¥ ²Ó´μ³ ¢·¥³¥´¨ ¶μ²ÊÎ ÕÉ¸Ö ¢²μ¦¥´¨¥³ SU(2) × SU(2) ¢ SU(N). �μ± § ´μ,
ÎÉμ ÔÉμ ¥¤¨´¸É¢¥´´ Ö ¢μ§³μ¦´μ¸ÉÓ ¢ · ³± Ì ¤ ´´μ£μ  ´§ Í . �·¨¢¥¤¥´ Ö¢´Ò° ¢¨¤ ¶μ¸É·μ¥´´μ£μ
·¥Ï¥´¨Ö ¤²Ö SU(3)- ¨ SU(5)-± ²¨¡·μ¢μÎ´ÒÌ £·Ê¶¶.

INTRODUCTION

In order to simplify the problem of solving a YangÄMills equation for the vector ˇeld,
t'Hooft et al. offered the ansatz for the Euclidean space [1]. It reduces the YangÄMills
equation to the equation for a single scalar ˇeld φ. The SU(2) classical solutions discovered
by means of this ansatz are well known [2] and were used to generate SU(N) solutions by
simply embedding SU(2) into SU(N) [3].

One of them allows the coordinate transformation to the Minkowski space so that it
becomes nonsingular, real and possesses a ˇnite action and energy [2,4].

The SU(2) gauge group was assumed for both the Euclidean and the Minkowski space
(see also [5]), while the experimental analysis shows that QCD is the SU(3) gauge theory [6].
So, the knowledge of the real-time classical solution for QCD is important since it allows one
to analyze the nonperturbative corrections [7] to the observables.

In this article we will try to ˇnd a SU(N) solution by means of the t'Hooft ansatz. The
only condition we assume for the ansatz is the following: it must reduce the YangÄMills
equation to the real scalar λφ4 theory. We will solve this condition and will show that the
only solution of the classical YangÄMills equation in the framework of the t'Hooft ansatz is
embedding SU(2) × SU(2) into SU(N).
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1. DEFINITION OF ANSATZ

Let us start from the YangÄMills equation in the matrix form

∂μFμν + ig[Aμ, Fμν ] = 0, (1)

where
Aμ = taAaμ,

Fμν = ∂μAν − ∂νAμ + ig[Aμ, Aν ],

ta are generators of the gauge group.
Let us consider the t'Hooft ansatz without any assumptions about gauge group

Aμ(x) =
1
g
ημν ∂ν ln φ(x),

where ημν are some matrices. We will consider that Aμ(x) satisˇes the Lorentz gauge
condition: ∂μAμ = 0 and so ημν are antisymmetric over μ and ν matrices. It is assumed that
ημν are constant in this gauge.

It is necessary to take the equality

−i[ημσ, ηνρ] = ημνgρσ − ημρgσν + ησρgμν − ησνgμρ (2)

in order to reduce the YangÄMills equation to the equation for the single scalar ˇeld. As the
result of substitution of ansatz with the property (2) into the YangÄMills equation (1), we
have

�φ + λφ3 = 0, (3)

where λ is an arbitrary integration constant. Emphasize that Eq. (3) is the result of (2), this
reduction is valid for any gauge group.

Therefore, the problem (1) was divided into two parts: the searching of ημν from the
algebraic equality (2) and the solving of equation (3) for φ(x).

Particular solutions of equation (3) are known (see [2, 4, 8, 9]) and we will not consider
this question.

The matrices ημν can be written in a convenient form

ημν = −ε0μνκXκ + ig0μYν − ig0νYμ, κ = 1, 2, 3, (4)

since they are antisymmetric, where ε0123 = 1; the unknown Xi and Yi are matrices in the
group space, X0 = 0, Y0 = 0, Xi = −X i, Yi = −Y i.

Let us insert (4) into (2). Then we obtain algebraic equations for Xi and Yi. Because of
antisymmetry of ημν , it is convenient to examine only three cases:

1. μ = 0, σ = i, ν = 0, ρ = j, where i, j = 1, 2, 3. Then we have

[Yi, Yj ] = iεijkXk; (5)

2. μ = 0, σ = i, ν = j, ρ = k, where i, j, k = 1, 2, 3. It is easy to obtain

εjks[Yi, Xs] = iYjgik − iYkgij .
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So, we have

[Yi, Xj] = iεijkYk; (6)

after changing the indices
3. μ = i, σ = j, ν = k, ρ = s, where i, j, k, s = 1, 2, 3. This case gives

−i[(−εijpXp), (−εkslXl)] = (−εikpXp)gsj −(−εispXp)gjk +(−εjspXp)gik−(−εjkpXp)gis.

After simpliˇcation and changing of the indices we have

[Xi, Xj] = iεijkXk. (7)

The other cases can be easily reduced to these three ones.
It follows from (5)Ä(7) that

[Ji,Jj ] = iεijkJk, [Ki,Kj ] = iεijkKk, (8)

[Ji,Kj ] = 0,

where

Ji =
Xi + Yi

2
, Ki =

Xi − Yi

2
.

It follows from (8) that N ×N matrices Ji and Ki are elements of the SU(2)×SU(2) group.
Then the ansatz can be written as follows:

ημν = (−ε0μνκJκ + ig0μJν − ig0νJμ) + (−ε0μνκKκ − ig0μKν + ig0νKμ) ,
(9)

κ = 1, 2, 3.

This is the general solution of (2) and, therefore, it is unique. There always exists a
nonzero t'Hooft ansatz for any N � 2 since the representation of the SU(2) × SU(2) group
by N × N matrices always exists. The meaning of such a representation is embedding
SU(2) × SU(2) into SU(N).

This ansatz gives complex potentials Aμ for real φ; however, one can check that it leads
to a real Lagrangian density. Therefore, one can expect that there exists some complex gauge
transformation which makes it real as it was done for SU(2) [4].

Let us consider the solutions for SU(2), SU(3) and SU(5) groups.

1.1. SU(2). For the SU(2) gauge group the only solution is (either Ji or Ki is equal to
zero)

Xi = ±Yi =
σi

2
.

Then we obtain the well-known solution [1,2] which can be written in a component form

ηaμν = −ε0aμν ∓ ig0μgaν ± ig0νgaμ.
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1.2. SU(3). For the SU(3) gauge group also either Ji or Ki is equal to zero, so we have

Xi = ±Yi.

There exist both reducible and irreducible representations of the SU(2) group in terms of
3 × 3 matrices.

Reducible Representation. The SU(3) group contains three independent SU(2) subgroups
which do not form direct product. So there exist three independent solutions:

(I): X
(I)
1 = t1, X

(I)
2 = t2, X

(I)
3 = t3.

In the component form we obtain

η1 μν =

⎛
⎜⎜⎝

0 ±i 0 0
∓i 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠

μν

, η2 μν =

⎛
⎜⎜⎝

0 0 ±i 0
0 0 0 1
∓i 0 0 0
0 −1 0 0

⎞
⎟⎟⎠

μν

,

η3 μν =

⎛
⎜⎜⎝

0 0 0 ±i
0 0 −1 0
0 1 0 0
∓i 0 0 0

⎞
⎟⎟⎠

μν

, ηa μν = 0, a = 4, . . . , 8;

(II): X
(II)
1 = t4, X

(II)
2 = t5, X

(II)
3 =

1
2
(
√

3 t8 + t3);

(III): X
(III)
1 = t6, X

(III)
2 = t7, X

(III)
3 =

1
2
(
√

3 t8 − t3).
The cases (II) and (III) are similar to the (I) with the difference in gauge indices.
Irreducible Representation. There also exists an irreducible representation of the SU(2)

group by 3 × 3 matrices,

X1 =
1√
2

⎛
⎝ 0 1 0

1 0 1
0 1 0

⎞
⎠ , X2 =

1√
2

⎛
⎝ 0 −i 0

i 0 −i
0 i 0

⎞
⎠ , X3 =

⎛
⎝ 1 0 0

0 0 0
0 0 −1

⎞
⎠ .

Then in the component form we obtain

η1 μν =
√

2

⎛
⎜⎜⎝

0 ±i 0 0
∓i 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠

μν

, η2 μν =
√

2

⎛
⎜⎜⎝

0 0 ±i 0
0 0 0 1
∓i 0 0 0
0 −1 0 0

⎞
⎟⎟⎠

μν

,

η3 μν =

⎛
⎜⎜⎝

0 0 0 ±i
0 0 −1 0
0 1 0 0
∓i 0 0 0

⎞
⎟⎟⎠

μν

,

η4 μν = η5 μν = 0, η6 μν = η1 μν , η7 μν = η2 μν , η8 μν =
√

3 η3 μν .

1.3. SU(5). Considering the SU(5) group it is interesting to examine the solution with
both nonzero SU(2) groups. If Ji or Ki is equal to zero, then the solution will be given by
reducible or irreducible representation of the group in a way like SU(3).
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For the Ji one can take irreducible group presentation for the 3×3 matrices, for example,
in the upper left corner and for the Ki one can take 2 × 2 group presentation for the lower
right corner, and vice versa. It can be written in the obvious form

⎛
⎜⎜⎜⎜⎝

J
SU(2)
3 × 3

0 0
0 0
0 0

0 0 0
0 0 0

K
SU(2) 2 × 2

⎞
⎟⎟⎟⎟⎠ .

Then the ansatz in component form is as follows:

η1 μν =
√

2

⎛
⎜⎜⎝

0 ±i 0 0
∓i 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠

μν

, η2 μν =
√

2

⎛
⎜⎜⎝

0 0 ±i 0
0 0 0 1
∓i 0 0 0
0 −1 0 0

⎞
⎟⎟⎠

μν

,

η3 μν =

⎛
⎜⎜⎝

0 0 0 ±i
0 0 −1 0
0 1 0 0
∓i 0 0 0

⎞
⎟⎟⎠

μν

,

η4 μν = η5 μν = 0, η6 μν = η1 μν , η7 μν = η2 μν , η8 μν =
√

3 η3 μν , η9,...,20 μν = 0,

η21 μν =

⎛
⎜⎜⎝

0 ∓i 0 0
±i 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠

μν

, η22 μν =

⎛
⎜⎜⎝

0 0 ∓i 0
0 0 0 1
±i 0 0 0
0 −1 0 0

⎞
⎟⎟⎠

μν

,

η23 μν =

⎛
⎜⎜⎝

0 0 0 ∓i
0 0 −1 0
0 1 0 0
±i 0 0 0

⎞
⎟⎟⎠

μν

, η24 μν = 0.

If one believes that the SU(5) theory is uniˇcation of electroweak and strong interactions,
then indices a = 1, . . . , 8 correspond to the strong and a = 21, . . . , 23 to the electroweak
interactions. But one can see that this solution cannot be used for this purpose.

CONCLUSIONS

In the framework of the ansatz the SU(N) classical solutions always exist and each one
is given by embedding SU(2) × SU(2) into SU(N).

Let us assume that φ is invariant under O(4)×O(2) coordinate transformations [4,9]. In
the framework of this prescription, we obtain the real solution of the YangÄMills equation

A0 = ±x0xa

gy2
Ja ∓ x0xa

gy2
Ka,
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Ai =
1

gy2

[
−εainxn ± δai

1
2
(1 + x2) ± xaxi

]
Ja+

+
1

gy2

[
−εainxn ∓ δai

1
2
(1 + x2) ∓ xaxi

]
Ka,

where

y2 =
1
4
(1 − x2)2 + x2

0, ε123 = 1, n = 1, . . . , 3,

and Ja, Ka are corresponding representations of SU(2)× SU(2) group by N × N matrices.
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