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CONNECTION BETWEEN WAVE FUNCTIONS IN THE
DIRAC AND FOLDYÄWOUTHUYSEN

REPRESENTATIONS
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When the FoldyÄWouthuysen (FW) transformation is exact and the particle energy is positive, upper
spinors in the Dirac and FW representations differ only by a constant factor and lower spinors in the
FW representation are zero. Deducing FW wave eigenfunctions directly from Dirac wave eigenfunctions
allows one to use the FW representation for a calculation of expectation values of needed operators and
a derivation of quantum and semiclassical equations of motion.
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INTRODUCTION

The FoldyÄWouthuysen (FW) representation [1] occupies a special place in the quantum
theory thanks to its unique properties. In this representation, the Hamiltonian and all oper-
ators are block-diagonal (diagonal in two spinors). Relations between operators in the FW
representation are similar to those between the respective classical quantities. For relativistic
particles in external ˇelds, the operators have the same form as in the nonrelativistic quantum
theory. For example, the position operator is r, the momentum one is p = −i∇, the orbital
angular momentum operator is l = r × p, and the spin momentum operator is Σ/2 (Σ is
the Dirac matrix) [1]. Only the FW representation possesses these properties considerably
simplifying the transition to the semiclassical description. In the Dirac representation, all
corresponding operators are deˇned by cumbersome expressions and depend on external ˇeld
parameters [1,2]. As a result, the FW representation provides the best possibility of obtaining
a meaningful classical limit of the relativistic quantum mechanics [3]. In particular, the FW
representation is very useful to derive semiclassical equations of particle and spin motion [2].
The basic advantages of the FW representation are described in [1Ä3].
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The Hamiltonian for relativistic particles in the FW representation contains a square root
of operators (see [1, 2]). Therefore, the Dirac representation is usually more convenient than
the FW one for ˇnding wave eigenfunctions and eigenvalues of the Hamilton operator. Many
exact solutions of relativistic wave equations were found just in the Dirac representation [4].
Nevertheless, a derivation of equations of motion is much more difˇcult in this representation
than in the FW one [2,3].

Therefore, the use of connection between wave functions in the Dirac and FW representa-
tions is very important. One can calculate wave eigenfunctions in the Dirac representation and
then obtain corresponding eigenfunctions in the FW representation. After that, one can deter-
mine expectation values of needed operators and derive quantum and semiclassical equations
of motion.

In the present work, we calculate the explicit connection between wave functions in the
Dirac and FW representations at condition that the FW transformation (transformation to the
FW representation) is exact.

Throughout the work we use the system of units � = c = 1 and generally accepted
designations of Dirac matrices (see [1]).

1. FOLDYÄWOUTHUYSEN TRANSFORMATION FOR RELATIVISTIC PARTICLES
IN EXTERNAL FIELDS

In the general case, the transformation to a new representation described by the wave
function Ψ′ is performed with the unitary operator U :

Ψ′ = UΨ,

where Ψ =
(

φ
χ

)
is the wave function (bispinor) in the Dirac representation. The Hamilton

operator in the new representation takes the form [1,5]

H′ = UHU−1 − iU
∂U−1

∂t
.

The Hamiltonian can be split into operators commuting and noncommuting with the
operator β:

H = βm + E + O, βE = Eβ, βO = −Oβ, (1)

where the operators E and O designate the sums of even and odd operators, respectively, and
m is the particle mass. We suppose that the operator E is multiplied by the unit matrix I
which is everywhere omitted.

The FW transformation has been justiˇed in the best way. In the classical work by
Foldy and Wouthuysen [1], the exact transformation for free relativistic particles and the
approximate transformation for nonrelativistic particles in electromagnetic ˇelds have been
carried out. There exist several other nonrelativistic transformation methods which give the
same results (see [2] and references therein).

The method of the FW transformation for relativistic spin-1/2 particles in external ˇelds
has been elaborated in [2]. In the general case, the FW Hamiltonian has been obtained as a
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power series in external ˇeld potentials and their derivatives. The ˇrst stage of transformation
is performed with the operator [2]

U =
ε + m + βO√

2ε(ε + m)
, U−1 =

ε + m − βO√
2ε(ε + m)

, ε =
√

m2 + O2. (2)

As a result, the following Hamiltonian can be found:

H′ = βε + E ′ + O′, βE ′ = E ′β, βO′ = −O′β. (3)

The odd operator O′ is now comparatively small:

E ′ = i
∂

∂t
+

ε + m√
2ε(ε + m)

(
E − i

∂

∂t

)
ε + m√

2ε(ε + m)
−

− βO√
2ε(ε + m)

(
E − i

∂

∂t

)
βO√

2ε(ε + m)
, (4)

O′ =
βO√

2ε(ε + m)

(
E − i

∂

∂t

)
ε + m√

2ε(ε + m)
− ε + m√

2ε(ε + m)

(
E − i

∂

∂t

)
βO√

2ε(ε + m)
.

The second stage of transformation leads to the approximate equation for the FW Hamil-
tonian:

HFW = βε + E ′ +
1
4
β

{
O′2,

1
ε

}
. (5)

To reach a better precision, additional transformations can be used [2].
When

[E ,O] = 0 (6)

and an external ˇeld is stationary, the considered FW transformation is exact [2]. The
transformation operator is deˇned by Eq. (2). The exact FW Hamiltonian takes the form

HFW = βε + E , (7)

where ε is given by Eq. (2).
Equation (6) is a sufˇcient but not necessary condition of the exact transformation.

2. FOLDYÄWOUTHUYSEN TRANSFORMATION OF SOME OPERATORS

Since the external ˇeld is stationary, the FW transformation of some operators retains them
unchanged. Hereinafter, the index ®FW¯ designates FW-transformed operators: AFW =
UAU−1. It follows from Eqs. (6), (7) that the operators O2, ε, and E commute with the
FW Hamiltonian HFW. Therefore, wave eigenfunctions in the FW representation are also
eigenfunctions of the operators O2, ε, and E .

As appears from Eqs. (2), (6) and the time independence of the external ˇeld, some
operators remain unchanged after the FW transformation:

EFW = E ,

(
i
∂

∂t

)
FW

= i
∂

∂t
, εFW = ε. (8)
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Evidently, the operators E and ε commute with Dirac Hamiltonian (1). Therefore, they
have the eigenvalues, E0 and ε0:

EΨ = E0Ψ, εΨ = ε0Ψ. (9)

The operators EFW and εFW commute with FW Hamiltonian (7) and their eigenvalues are
deˇned by

EFWΨFW = E0ΨFW, εFWΨFW = ε0ΨFW. (10)

Since the quantities E0 and ε0 in Eq. (9) and the corresponding quantities in Eq. (10)
designate the eigenvalues of the same operators, they do not depend on a representation.
Similar relations for the Hamilton operator have the form

i
∂Ψ
∂t

= HΨ = EΨ, i
∂ΨFW

∂t
= HFWΨFW = EΨFW. (11)

The particle energy, E, is also independent of a representation.
Equations (7), (10), (11) deˇne the connection between the considered eigenvalues:

E = ±ε0 + E0. (12)

The particle energy can be positive and negative and ε0 is always positive. Therefore,

ε0 = |E − E0|. (13)

The operator βm +O commutes with the Dirac Hamiltonian and has the eigenvalue ±ε0:

(βm + O)Ψ = (E − E0)Ψ = ±ε0Ψ. (14)

3. CONNECTION BETWEEN WAVE FUNCTIONS

The connection between the initial and ˇnal wave functions has the form

ΨFW = UΨ =
ε + β(βm + O)√

2ε(ε + m)
Ψ. (15)

Formulae (9), (14), (15) lead to the relation

ΨFW =
ε0 ± βε0√
2ε0(ε0 + m)

Ψ. (16)

As appears from Eqs. (12), (13), and (16), the FW wave function is given by

ΨFW =
√

2ε0
ε0 + m

(
φ
0

)
, (17)

when the particle energy E is positive, and

ΨFW =
√

2ε0
ε0 + m

(
0
χ

)
, (18)
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when the particle energy is negative. It can be proved that wave functions (17) and (18) are
normalized to unit.

Since the energy of real particles is positive, we consider only Eq. (17). To avoid a
calculation of ε0, one can use another form of this equation:

ΨFW =
1∫

φ†φdV

(
φ
0

)
. (19)

It follows from Eqs. (17) and (19) that upper spinors in the Dirac and FW representations
differ only by a constant factor and lower spinors in the FW representation are equal to zero.

4. EXAMPLE: PARTICLE IN A UNIFORM MAGNETIC FIELD

The FW transformation is exact for particles with an anomalous magnetic moment (AMM)
moving in the plane orthogonal to a static uniform magnetic ˇeld [2]. The magnetic ˇeld is
supposed to be upward. In this case, the operator pz =−i(∂/∂z) commutes with the Hamilton
operator and has eigenvalues Pz =const. Therefore, the consideration of the particular case
Pz =0 is quite reasonable [2].

The Hamilton operator in the Dirac representation satisˇes Eq. (1), where

E = −μ′Π · H, O = α · π, π = p− eA. (20)

μ′ is the AMM; A is the vector potential, and H is the magnetic ˇeld strength. The matrix
Π is the polarization operator in the FW representation [6]. Since Pz = 0, the operators E
and O commute.

In this case, the Hamilton operator in the FW representation is equal to [7]

HFW = β
√

π 2 + m2 − eΣ ·H− μ′Π ·H, (21)

where πzΨFW = PzΨFW = 0 and

ε =
√

π 2 + m2 − eΣ ·H =
√

π 2
⊥ + m2 − eΣ ·H.

The sign ®⊥¯ designates a component orthogonal to H.
The Dirac wave eigenfunctions of spin-1/2 particles possessing the AMM and interacting

with the uniform magnetic ˇeld were derived in [9].
The eigenvalues of the operators are deˇned by [8,9]

ε0 =
√

m2 + (2n + 1)|e|H − λeH, E0 = −λμ′H,

n = 0, 1, 2, . . . , λ = ±1.
(22)

Therefore, the connection between the wave functions is given by Eq. (19), where φ is the
upper spinor in the Dirac representation and ε0 is deˇned by Eq. (22).

Hamiltonian (21) commutes with the operators π 2
⊥ and Πz. As a result, the wave eigen-

function ΨFW is also an eigenfunction of these operators and can be given by

ΨFW = ψζ,
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where ψ is a coordinate wave function and ζ is an eigenfunction of operator Πz :

Πzζ = λζ, λ = ±1.

Since the lower spinors are zero, ζ+ =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠, when λ = 1, and ζ− =

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠, when

λ = −1.
We should take into account that z-components of the spin and the orbital angular mo-

mentum have deˇnite values. When z-component of the total angular momentum is equal to
M , the wave eigenfunctions take the form

Ψ+
FW =

exp [i(M − 1/2)ϕ]√
2π

R|M−1/2|(ρ)ζ+,

Ψ−
FW =

exp [i(M + 1/2)ϕ]√
2π

R|M+1/2|(ρ)ζ−,

(23)

where R|M±1/2|(ρ) are the well-known radial eigenfunctions of operator π 2
⊥ and the signs

®+¯ and ®−¯ mean positive and negative projections of the spin, respectively. The wave
eigenfunctions of spin-1/2 particles possessing the AMM have been derived in [9].

When the FW transformation is exact, the use of the FW representation makes it possible
to calculate exact expectation values of main operators and derive exact equations of particle
and spin motion. It is very difˇcult to solve these problems in the Dirac representation.

The FW Hamiltonian can be linearized in the spin operator [11]. The linearized Hamil-
tonian has the form

HFW =
β

2
(K+ + K−) − 1

2
(K+ − K−)

Π · H
H

− μ′Π · H,

K+ =
√

π 2
⊥ + m2 + eH, K− =

√
π 2

⊥ + m2 − eH.

(24)

As an example, we can calculate the eigenvalues of the kinetic energy operator T =
β (K+ + K−) /2:

T0 =
1
2

(√
m2 + 2(n + 1)|e|H +

√
m2 + 2n|e|H

)
. (25)

One can also use the FW representation for a description of spin evolution. If an initial
spin state is a superposition of spin-up and spin-down states, the particle polarization depends
on time. We utilize Hamiltonian (24) and the matrix Hamilton equation for a determination
of evolution of the spin wave function:

i
dΨ
dt

= HΨ, Ψ =
(

C1(t)
C2(t)

)
, Hij = 〈i|H|j〉, (26)

where H is a 2 × 2 matrix; Hij are matrix elements of H; Ψ is the two-component spin
wave function (spinor) [12]. The wave function |i〉 is deˇned by Ci = 1 and i, j = 1, 2. The
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upper and lower components of Ψ deˇne the amplitudes of spin-up and spin-down states,
respectively.

When we take into account a possible decay of particles, the matrix Hamiltonian takes the
form

H =

⎛
⎜⎝ E0+A− i

Γ
2

0

0 E0−A− i
Γ
2

⎞
⎟⎠ , (27)

where Γ is the decay constant, E0 is the zero energy level, and

A = −1
2

(K+ − K−) − μ′H. (28)

It can be easily checked that the real part of matrix Hamiltonian (27) coincides with
Hamilton operator (24) expressed in the matrix form. This coincidence results from the fact
that the considered Hamilton operator is independent of coordinates.

The general solution of Eqs. (26)Ä(28) is given by

Ψ = exp
(
−iE0t −

Γt

2

) (
exp (−iAt)C1(0)
exp (iAt)C2(0)

)
. (29)

The spin evolution can also be exhaustively described with the polarization vector P,
which is deˇned by

P = Ψ†σΨ, Px = C1C
∗
2 + C∗

1C2, Py = i(C1C
∗
2 −C∗

1C2), Pz = C1C
∗
1 −C2C

∗
2 . (30)

In the case considered

Px(t) = [Px(0) cos (2At) − Py(0) sin (2At)] exp (−Γt),
Py(t) = [Px(0) sin (2At) + Py(0) cos (2At)] exp (−Γt), (31)

Pz(t) = Pz(0) exp (−Γt).

In agreement with [7], Eqs. (30), (31) describe the spin rotation in the horizontal plane
with the angular frequency

Ω = 2A = − (K+ − K−) − 2μ′H. (32)

This expression for Ω is exact.

5. DISCUSSION AND SUMMARY

When the FW transformation is exact, the connection between wave functions in the Dirac
and FW representations is very simple. When the particle energy is positive, upper spinors in
two representations differ only by the constant factor given by Eq. (17) and lower spinors in
the FW representation are zero. The result obtained makes it possible to deduce the FW wave
eigenfunctions directly from the Dirac wave eigenfunctions. In principle, one can solve the
inverse problem and derive the Dirac wave eigenfunctions from the FW wave eigenfunctions.
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It is possible because the lower Dirac spinor can be expressed in terms of the upper one.
However, this possibility is much less important because the exact solutions of relativistic
wave equations can be easier obtained just in the Dirac representation.

The FW representation is very useful to determine the expectation values of needed
operators and derive the operator equations of motion of particles and their spins. Solutions
of these equations deˇne the quantum evolution of main operators. Semiclassical evolution
of classical quantities corresponding to these operators can be obtained by averaging the
operators in the solutions. An example of such an evolution is time dependence of average
energy and momentum in a two-level system. Another example is the above-discussed spin
dynamics in external ˇelds.

Thus, one can use wave eigenfunctions previously calculated in the Dirac representation
and then obtain corresponding eigenfunctions in the FW representation. After that, the quan-
tum and semiclassical evolution of main operators can be found in the latter representation.
The determination of their evolution directly in the Dirac representation is confronted by some
difˇculties (see [2] and references therein).

The equations derived can also be used in the more general case [10] when the particle
mass m is replaced with the even operator M and the initial Hamiltonian takes the form

H = βM + E + O, βM = Mβ, βE = Eβ, βO = −Oβ. (33)

Equations (17) and (18) remain valid on condition that the operator M substituted for m
commutes with the operators E and O.
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