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CLASSICAL AND QUANTUM SCATTERING
BY A GRAVITATIONAL CENTER
A. L Nikishov'

Tamm Department of Theoretical Physics, Lebedev Physical Institute, Moscow

The corrections to the leading term of the small-angle deflection of a classical particle by the
Schwarzschild field and its linear approximation were found. The corresponding cross sections were
obtained. The comparison with known in Born approximation cross sections for quantum massless
particles of spins 0, 1, and 2 shows that only the leading term in all cases is the same. As the conditions
for classical treatment are well fulfilled, this means that the classical results are much more accurate
than the quantum one in Born approximation. The fact that the photon cross section is always smaller
than that of massless scalar particle (both in Born approximation) suggests that with small probability (at
least of order of the difference of these cross sections) the photon can fly by the Sun without deflection.
The deflection of light, observable at a final distance from the Sun, is also considered and it is shown
that measurements at the distances of several Sun’s radii will decide which coordinate system is the
privileged one.

H iinens! monp BKM K IV BHOMY WiIEHY OTKJIOHEHHMS H M JIbIi Yrosi KJI CCHYECKOW 4 CTULBI B IOJIe
Il pummneg ¥ B Moje JTUHEHHOTO NMpUOIMXKEHHS K HeMy. [loaydeHbl COOTBETCTBYIOIINE CEUCHUS.
Cp BHEHHE C CEUSHHUSIMH P CCESHUS KB HTOBBIX U CTHI] co ciuH My 0, 1, 2, monmy4eHHbIME B GOPHOBCKOM
HIpUOMIKEHNH, TTOK 3bIB €T, YTO TOJIBKO IVT BHBIE WIEHBI COBI J I0T. IIOCKONBKY YCIOBUS NPUMEHHUMO-
CTH KJI CCHYECKOTO MpPUOIMXEHUsS XOPOIIO BBIIOIHEHBI, 3TO O03H 4 €T, YTO KJI CCHYECKHe pPe3ysbT ThI B
P CCM TpUB €MOM CIyd € CYLIECTBEHHO TOYHee GOpPHOBCKOIO MpHOIMXKEHHs KB HTOBOM Teopuu. T K K K
B GOPHOBCKOM TIPHOJIMIKEHHN CeYeHHe P CcesHUs (POTOH BCEIJ MEHbIIe CeYeHUs p ccesHus 6e3M c-
COBOI CK JIIPHOW Y CTHUIIBI, MOXKHO IyM Tb, 9TO C M JIOH BEPOSITHOCTBIO (POTOH MOXKET MpOJIETETh Yepes
none 6e3 OTKJIOHEeHWs1. P cCMOTpeHO T KXKe OTKJIIOHEHHe CBeT H KOHEYHBIX p ccTosgHUAX oT ComHII ,
U IIOK 3 HO, YTO U3MEPEHUS H P CCTOSHUSX MOPSAK HECKONbKUX p AuycoB oT COJNHI[ peml T BONPOC
0 TOM, K K 5 CHCTEM KOOPIHUH T SBJISETCS NIPUBWIETHPOB HHOM.

PACS: 03.50.De, 03.65.Nk, 04.20.Jb

INTRODUCTION

When a photon is deflected by the Sun, we can know with good accuracy its impact
parameter p, its frequency, and the coordinates of place where it is observed. We note that
we always observe it at a finite distance from the Sun and in principle the place of observation
is at our disposal. Classical theory permits one to predict the results of such observations.
The classical approach is applicable when orbital quantum number is large: [ = kp > 1 (p is
impact parameter), i.e., p/A > 1. For light passing the Sun [ ~ 10'°, see Ch.8 in Weinberg
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book [1] or §20 in Schiff’s book [2] for details. For a scattering with the momentum transfer
g, the impact parameter p is of order of /¢ and the formation length of this process is of order
of several hi/q. Beyond this length the particle is unable to obtain the momentum transfer
q. In quantum theory in Born approximation the particle obtains the required momentum
transfer by interacting with only one graviton. In principle the quantum particle can pass
the formation length without interaction or interacting with two or more gravitons in such a
way that no momentum transfer is passed to it. It is very interesting to know the probability
for this process which can be searched in photons passing the Sun. If it is nonzero, then
the concept of curved space-time is of only limited validity. The classical particle cannot fly
through the field without interaction. So the classical cross section should be greater than the
quantum one and the difference should indicate the probability of flying without deflection.
Unfortunately, the quantum cross sections are known only in Born approximation and there
is very little hope to get more accurate expressions. The Born approximation turns out to be
insufficient for comparing with more accurate (in this region of impact parameters) classical
results. So we compare quantum cross sections for photon and massless scalar particle. (We
note that similar effects should take place also in Coulomb scatterings [3].) According to
heuristic approach to gravity [4-6] the curved space-time appears as a result of changing
by the gravitational field of measuring rods and clocks. In principle these changes can be
calculated and in the lowest approximation this was done by Thirring [5]. If Nature itself
exactly calculates these changes, the result should be unique and it will fix the (privileged)
coordinate system. It is expected that for a spherically symmetric body this system should be
isotropic one [6]. In the privileged system the deflection of light at any point is given by the
tangent to the trajectory. So the measurements of light deflection at several Sun’s radii will
decide which coordinate system is the privileged one.

In Sec.1 we obtain the asymptotic expansions for the small-angle classical scattering by
the Schwarzschild field. In Sec.2 the same is done for linear approximation of that field.
(This linear approximation is used in quantum calculations in Born approximation, so it is
useful to compare these classical results with the quantum one.) The difference in exact
and linearized versions indicates the role of nonlinearities in scatterings. We rimind that the
nonlinear effects of general relativity are confirmed only in nonrelativistic region (precession
of Mercury perihelion). In Sec.3 we calculate in the lowest approximation the tangent to the
trajectory in the standard Schwarzschild and isotropic coordinate systems. At the distances
of order p, the tangents in these two systems are different and the experiment should decide
which coordinate system has more chances to be the privileged one.

1. SMALL-ANGLE CLASSICAL SCATTERING
BY THE SCHWARZSCHILD FIELD

1.1. Particle with Mass. The trajectories in the Schwarzschild field were studied in a
number of papers [7-9], see also [10]. If the standard coordinate system

Tg

-1
ds* = (1 - %g) (dz®)? — 72 (sin? O dp? + db?) — (1 - 7) dr? (1)
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is used, the equation governing the scattering trajectory has the simplest form

2GM
dg:i\/f(u), uzB, 5:T—g, rg = ¢ ,

T p 2

)
fu)=1—u?+sud +ud5 = 5(u —uy)(u — ug)(u —uz), »=p0"2—

Here p is impact parameter; (3 is velocity at infinity in units of ¢; the signs «+» and «—»
in front of the square root refer to the first and the second halves of trajectory, respectively.
From (2) the half angle between the asymptotes is

V1o = 72d19 / (3)

This is the contribution from the first half of the trajectory. It is assumed that u; < ug < us.
Similarly, for the second half,

2’!91/2
291 /9 — 0 /cw / du_ _y (4)
1/2 —Vi/2 = = f f 1/2-
V1/2

So the angle between asymptotes is 2¢; /5. The scattering angle is § = 21, /» — 7. Each half
of the trajectory contributes ¥ /5.

Now the expressions for roots w1, us, us as functions of & and » can be obtained by the
method of Newton: if z(9) is the zeroth-order approximation for the root of f (x) = 0, then
f(@)
f(@)

and so on. Thus, for the root uo starting from the zeroth-order

in the first approximation we have z(1) = z(0) — In the second approximation

(1)

L@ — L _ F@)
f1(@)
approximation uéo) = 1, we have for the function f(u) in (2) f(1) = (%4— 1)é. From f'(u) =

—2u+ 55+ 3u?S we get f'(1) = =2+ (3c+3)d ~ —2. So u(l) 1+ 2(1—1—%)5 In the second

5 3 2
approximation f (ug)) = <? + ?% + %) 0. As for f’(uél)), we may in the considered

5  3x
approximation still take f'(1) = —2. So we get ug) =1+ 2(1+%)6+ (23 + = 2 + §> 52
Continuing this process, we find
1 5  3x 3
uy =1+ - (1+%)5+< + 57 +—>62 <1+—+—>53 (5)

Now the root u; can be obtained from here if we note that according to (2) f(u) = f(u,d) =
f(—u,—4d). Hence,

o 1 5 3z 2, 3 2\ 4
u1:u1(5):—u2(—5):—1+ (1+ )(5—(?4' 22 +—>6 ( +7+7)6 +...
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The expansion for ug can be obtained in the same way as for wus:

1 )
u3:5—(1—1—%)5—(24—3%-1—%2)53—1—... (7)
It is easy to check that u; + ug + u3 = § ! as it should be.

From (2) and (3) we have in agreement with [7-9]

1 ' du 2
191 = —= = F k),
2 JSO/ N e Ty S o

1/2 _

Uy — UL / .9 1—u1u31
K=|—— , sin® ¢ = ———+.
uz — Uy 1 —uju,

®)

Here F'(¢, k) is the elliptical integral. Using (5), (6) and (7) we get, retaining terms up to 6,

1
K2 =20(1—0+...), sin2¢=§{1+?”LT%5+0(53)}. (9)
From here
, 1 34+ (34272, 1 3+
=—|1 - =—|1-"F56+...|. (1
sin ¢ 7 + 52 0 5 0* + , COS@ 7 52 0+ (10)

To get ¢ from the expression for sin? ¢ it is worthwhile to make the substitution ¢ = 1 + 1,

1 1
sin? ¢ = 3 + 3 sin 2¢). (This is especially useful when more terms are needed than we retain

here, see the next subsection.) So for ¢ we have
3
sin 2¢) — +T%6+O(63). (11)

Then 2¢ = HT%(S + O(8%). Hence,

T 34+ x

_r _r 3
42574-1-@/}74-1- 52 d 4+ O(67). (12)

As 4 is assumed to be small, x2 is small and we can use the expansion, see Eq.(5) in
Subsec.13.6 in [11]

¢
F(é, k) = So + %Sgﬁ;? + 2—?;54# o, Son = Son(¢) = /(smt)?" dt;  (13)
0

1 1
So=¢, So= E(qb—siruﬁcosqb); Sy = gqb—gsinqbcosqb—zsin3¢cos¢. (14)
From (6) and (7) we have

(5 — )3 = 145 — S (145987 + .. (15)
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Using Eq. (3.6.19) in [12], we obtain from here

1 3
[(us —w)d] 2 =1— 26+ (2 +Z)36%+... (16)
2 8 4
Performing remaining calculation, we get for 9/, in (8)
0 > 15 3
=—4+(14+Z2 Z )2+ 1
91/ 2+(+2)5+ﬂ(32+8)5+ (17)
The scattering angle is 6 = 20/, — 7. So
0 T » 15 3x
7_ __=(1+Z — 4+ )82+ 1
Using Eq. (3.6.25) in [12], we find
0 o+4sx 3m

6= - —
243 (24 x)3 24

From here with the help of (3.6.25) in [12], we find

2 (2\? 5+4sx 37
6= (14 2) () 1o e 20
3 0 i (24 %)% 8 * (20)
This gives the classical integral cross section
2

ca(f) =mp*(0), 62 (21)

I
S

g
If we compare (18) with the corresponding equation (10.14) in [9], we find that only the
leading term is the same. The preceding equation (10.13) in [9] contains errors in powers of
the root of the cubic.
The differential cross section is obtained from (21) by differentiation, multiplying by m
and changing the overall sign in the right-hand side:

2
doer(0) = 27 (14—%%) %{14—%%1]4—...}6[?;, yzg. (21a)
In quantum picture the first Born approximation for scalar particle cross section is given
in Eq. (39) below. It contains only even powers of y in braces as in Coulomb scattering [3].
This should mean that corrections to the first Born approximation must contain classical terms
independent of /. In Coulomb scattering these classical terms in higher approximations may
be expected only at unrealistically high aZ > 1.
1.2. Massless Particle. In this subsection we obtain more terms of the expansions for
the case of massless particle, i.e., for ¢ = 0, see (2). Continuing the process described in
getting (5), we find

1 5 3-7-11 7
=14 -0+ —=02+6 ) LI 22
up = 14 50+ 550" +8° + ="+ 58+ 22)
1
u3=5—5—253—755+..., (23)
B 1 55 5 231, T
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Using these expressions, we find for %2 and sin? o, see (7),

52 3.7 7-281
2 2 3 4
1 3 3-11 32.5.37
2 3 5
$n¢§{1+§5+ 5 0° + 55 5+n”}. (26)
From here

. 1 2, 3-93 3 32-2214 32-39415
sing = \/5{14— 5——5 57 0° — 51T 0% + 513 [ S (27)

The term with §° is needed only if we want to obtain ¢ from (27). But we proceed as in
obtaining (11):

. 3 11 3-5-37
sm2w—§5{1+§52+T54+...}. (28)
From here
3-7 32.167
Np = 5+?53+ 5 F ... (29)
Hence,
oo - 3 7 3 32.167 5
¢>—4+1Z)— 6+ 5 26.56—#... (30)
From (27) we obtain
1 9 3-93 3 32-2214
COS¢_\/§{1——5——5 57 0° — 1T 4.y (31)
In Eq. (16) (with » = 0) we have now more terms:
~1/2 _ 1 9 3y 52.23 , 33'55
[(us —u1)d] 5+—5 ——6 0" — 0%+ ... (32)

27 24

Using expressions for sin ¢ and cos ¢ in (27) and (31), we obtain So,, which are polynomials
in sin ¢ and cos ¢. Then using also (25), we find similarly to (13)

1 9 3 4 O 6 97 s 32.7 10 1
F(o, H):So-i-ESQFL +ﬁ54l€ +?SGI€ +758I€ + 98 Stk +... = Z-i- 23 + B o+
(33)
s 397 43 313w 52 71487 12689
&+ B = 5t 5°
+(26 22> (27 +24'3) +(212 +23~3> + 213 +28'3'5 +
(34)

Using (32), we get from (8) and (34)

2 . 32.5.7-1lw, 23.7 4
0%+ 0

s
191/2 = 3 +0 (35)
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and similarly to (19) we obtain

5 3.57 32.5272 23\ ,  (5.1867w 3%.5i7%\ |
=yl oyt (g~ 5 ) v+ el Fies

29 3 211

23.19 32.52.7.157x% 3*.5%.7qnt 0
+< - o+ ”)y4+... L y=g5=vip-5. G6)

3-5 215 219

As in (20), we find

2
572 = % :y’2{1+01y+02y2+03y‘3+C4y4—|—...}, (37)
g
357 24 32.5272
c1 = s = g
24 3 210
) ] (37a)
5331w 33. 5373 2 32.52.33172  3*.557%
3=~ 910 + 914’ C4= o 5 915 T 920
The approximate values for ¢;, ¢ = 1, 2, 3, 4, are
c1 = 2945, ¢9 =3.165, c3=1.310, c4 = —0.016. (37b)

The differential cross section is obtained from (37) by differentiation
23 0 63 64
dO’(@)Cl_’]TT?]H—S{1+01§—C3?—C4¥+...}d0. (38)

It is interesting to compare this classical cross section with the quantum one. For scalar
particle we have in the first Born approximation [13]

7#\2 cosy 7\2 1 yt 0
dUSC=27Tr3(1+§) Sin?)ydy=27rr§ (1+5) E{l—ﬁ—l—... dy, y=75- (39)

2 is defined in (2); for massless particle s = 0. The substitution y — —y changes the sign of
siny and y. Hence, the expression in braces in (39) can contain only even powers of y. We
note also that —c4 in (38) is positive (—c4 = 0.016) in contrast with the corresponding coef-
ficient —1/15 in (39). So this term is larger in classical cross section than the corresponding
term in the quantum cross section (39). The quantum cross section for photon contains an
additional factor:

do., = dos. cos* y, (40)

see [13] and references therein. The factor dog. in (40) and below is taken at >z = 0, i.e., for
massless particle. From (39) and (40) we get

2 — sin®
dose — doy, = 2mﬂ-‘2’si%zy cosy dy.
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We see that the difference of these two cross sections is always positive and even diverges
for y — 0 albeit only logarithmically:

/2

1 1
/(dO’SC—dJV):Qﬂ'Tg {2111 - ~——}.
siny 2

g—0

This difference suggests that the flying through the field without interaction is easier for photon
than for a massless scalar particle. As mentioned above, it would be interesting to obtain
the differences of classical and quantum cross sections for photon, but Born approximation is
insufficient for this. For graviton [14, 15],

dog = dog. % (1 + 6cos? 0 + cos? 0) = dog.(cos® y + sin®y), (40a)
and
dose —dog = 27T7“§ SCIZSS‘Z {4 sin?y — 6sin? y + 4sin® y — 2sin® y} dy;
/2
/ (dogc — dog) = 2777“3 {4ln sirllgj - g} .
§—0

So for small-angle scattering the cross section is smaller for particle with higher spin. It
seems reasonable to expect from these facts that spin facilitates forward scattering of a
particle described by a wave packet.

2. SMALL-ANGLE CLASSICAL SCATTERING BY THE LINEAR APPROXIMATION
OF THE SCHWARZSCHILD FIELD

To see the effects of the nonlinearity of the Schwarzschild field on scattering, we consider
in this section the linear approximation of the isotropic coordinates. This approximation is
used in the quantum treatment of scattering in [13—15]. Only massless particle is considered
below.

Proceeding in the same way as in [8] and [9], we obtain instead of (2)

du _ [ f(u)
- N1 w

f(u):1—u2—|—(u3+u)5:5(u—u1)(u—uQ)(u—u3). (41)

So we use in this section the same notation as before, but with a somewhat different meaning.
For 4, /o we get a more complicated expression:

1 7 1—ud 1 7 1—ud du
dj2 = NG 0/ \/(m —u)(ug —u)(u — u1)du B \/u_géo/ (1 —uuz') VR(u) (42)

Here R(u) = (uz — u)(u — uy).
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From (41) we find instead of (22)-(24)

u2:1+6+262+353+%6“+1755+..., (43)

u3:§_25_653_3455+..., (44)
34 .5 5-11, 5

uzt = 6{1+ 26 + 105* + 665° +...}. (44a)

For 6 <« 1 we have uz > 1, hence u/us < 1 in the r.h.s. of (42). So to evaluate (42) we
can proceed as follows:

1—ud (1 —ub—2ué® — 10ué®) + 2ué®(1 + 50%)

1—'u,'u,3_1_ 1—u§(1+252+1054...)
2ud3(1 + 56%)

_ _ 3 2 2
=t Ty L T2 ud + (uT 4 5)07 4. . (46)
From here
1—us 2
( 1) =1+ u(6® +56%) + u?6* + u?6® + ... (47)
1 —wuug

Using this in (42) we have

uo
1 . u"du
019 = —={Io + (63 + 56°) I, + 6* I, + 8515 + .. .}, In:/ . 48
1/2 \/u_g,é{ 0 ( ) 1 2 3 } / \/m ( )
Evaluating these integrals, we find
Iy = z—|—3L1"csin u2+u1, I :\/—uQul—i—ul_‘_uQIo,
2 U2 — U1 2
) (49)
3
I, = 3“1 qu v —ujus + { (1 ;-Uz) - u12u2 } Iy, R(0) = —ujua, R(uz)=0.

R(u) is defined below (42). As for I3, we need it only at § = 0. Then its value is 2/3.
Using (43)-(45), we get

s 5 87 T s
Ip=— SR —=0+..., L=1+=06+2%+..., Li=—+25+...
1 9
=146+ 26*+0(5%.
\/U35 2 ( )
Now for (42) we obtain
T ™o 11 4 4 383
= — — — —0° ... 1
V12 2+5+25+36 +37r5+156 (51)
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(We have used this method to check Eq. (35).) From here

T w2 11 37r  b5md
§ = 1— = s - 2 er oy 3
y{ 2y+(2 3)y+(6 8)y+

4 41w Tt 0 s
+(F_T+2—3)y —|—...}, y—§—191/2—§- (52)

As in (20), we obtain §~2 in the form (37) where now

22 x2 dr 73 161 5t
_ _ _ 0 -4+ = qog2_ 53
a=mn @ 3 4’ e 3 4’ “ 15 m 16 (53)

With these ¢; Eq. (38) holds. Here the approximate values of c; are
c1 = 3.1416, ¢ =4.8660, c3=3.5627, c4 = 0.0322. (53a)

Comparing with (37b), we see how the difference between c; there and here increases with
increase of 7.

3. SMALL-ANGLE DEFLECTION BY AN INTERVAL OF GRAVITATIONAL FIELD

This problem is usually avoided because all coordinate systems are equivalent in general
relativity and only the deflection by the whole gravitational field is independent of the coor-
dinate system used. Here we assume that in the privileged system the observed deflection is
given by the tangent to the trajectory. There are some reasons to think that the privileged
system must be isotropic one [6] and we take it from general relativity.

For tangent we have

dr sind + r cos ¥
dy dxr 49 .
tanp = —/— = , x=rcost, y=rsind, (54)
dy” dy Z—gcosﬁ—rsinﬁ
or in terms of u = p/r,
d—usinﬁ—ucosﬁ
tanp = dy . (55)
du
@cosf}—l—usinﬂ

So we have to know u(¢) or ¥(u). For a massless particle in the isotropic system, we

have
6
1
14+ -ud
au + | —2 — 2. (56)

dd 1 2

To get u(¥) from here is a much more difficult job than in the case of the standard Schwarz-
schild system utilized in (2).
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In the following we assume for simplicity that 6 < 1 and 1 — u? is of order of unity.
(The latter assumption is not needed for the final result (60).) Then for the ingoing half of
the trajectory we may write

L (1 +1 w 0(52)> . (57)

ay — 2

From here we get

1
¥ =arcsinu+ A, A= (1 - ﬁ) 0. (58)

So
Sinﬁzu—l—A\/l—uQ:u—i—(\/1—11?—1)5, costd =1 —u?— Au. (59)

Then, using (57) and (59), we find from (55)

1 1
tangazgo:(l—\/l—zﬂ)éz(§u2+§u4+...>6. (60)
This is the contribution from the part of the trajectory beginning at v = 0 and ending at u.
For the second half of the trajectory the signs in front of square roots must be changed to the
opposite ones.
We note here that from (59) we can obtain the trajectory in the form

u=sinf + (1 — cos ), (57a)

which is Eq.(40.6) in §40 in [10]. To that end in the term with § in the second equation
in (59) we replace v/1 — u? by its zeroth-order value cos 6.

As is well known, the leading term of the small-angle classical deflection can be obtained
by simple mechanical considerations, see §39, Problem 2 in [16], or Eq.(4.41) in Ch.2
in [17]. In our case the contribution from the whole trajectory is

T dx
—00

In this approximation the trajectory is taken as a straight line: rsin? = p. The contribution
from the same part of the trajectory as in (60) is (x = rcosd; y = rsind)

T dx Tg zp~!
EE—— R . 62
rgp/ (22 + p2)3/2 p < 14 (zp~1)2 (62)
x
As
x T 1
—==-cos=—v1—u?
pop u

the r.h.s. of (62) is equal to that of (60). Only smallness of ¢ is used in obtaining (62) which
is another form of (60). If u < 1, then § may be of order of unity. If 6 < 1, then u may be
of order of unity.
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On the surface of the Sun 0 < ¢ < d. Zero corresponds to the radial trajectory p = 0,
0 corresponds to the trajectory touching the surface. For u < 1 we have from (62) ¢ =

(rgp)/(2r?).

If we use the standard Schwarzschild coordinate system, see (1) and (2), we get instead
of (59)
2
sind = u + {\/1—%4—%—1} )
and

2 3

instead of (60). (As it should be, for u = 1 both (60) and (63) give tanp = 1,/ = 4.) So
the measurements of ¢ at r ~ p can decide which coordinate system is the privileged one.
Finally, the contribution to ¢ from a finite interval of trajectory from x to Z is

2
tanw%%-<1—\/1—u2<1+u—)>5—§u45+... (63)

x

/ dz’ Tq z x
T g = -
9P (22 + p2)3/2 ~ p VIR+ B P+l

x

(64)

see (61). Expression (64) is useful for evaluating the contribution to deflection angle from
the almost rectilinear tails of the trajectory.

4. DISCUSSION AND CONCLUSION

We have shown that in the considered case the classical cross sections are much more
accurate than the Born approximations in the quantum case. The contribution from nonlinear-
ities of the gravitational field are given by differences in exact treatment of the gravitational
field and its linearized version. It is interesting that the treatment of the linearized version
turns out to be more difficult. (This is connected with the fact that the exact consideration in
the isotropic system is much more difficult than in the standard Schwarzschild system.) So
the new method was used to get the asymptotic expansions for integrals in this case. We note
that the calculation of deflections is rather lengthy and tedious. For this reason we present
some details to show that using some tricks considerably shortens the process. (See, for
example, the symmetry relation (6), the using of ¢ instead of ¢, the preliminary rewritings in
Eq. (46) showing that the terms with & and 62 should not appear and so on.) The deflection of
light, measured at finite distances from the Sun, is considered by two different methods. The
result favors the isotropic coordinate system as the privileged one, thus giving an additional
support to heuristic approach to gravity [4-6].
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