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CLASSICAL AND QUANTUM SCATTERING
BY A GRAVITATIONAL CENTER

A. I. Nikishov1

Tamm Department of Theoretical Physics, Lebedev Physical Institute, Moscow

The corrections to the leading term of the small-angle de	ection of a classical particle by the
Schwarzschild ˇeld and its linear approximation were found. The corresponding cross sections were
obtained. The comparison with known in Born approximation cross sections for quantum massless
particles of spins 0, 1, and 2 shows that only the leading term in all cases is the same. As the conditions
for classical treatment are well fulˇlled, this means that the classical results are much more accurate
than the quantum one in Born approximation. The fact that the photon cross section is always smaller
than that of massless scalar particle (both in Born approximation) suggests that with small probability (at
least of order of the difference of these cross sections) the photon can 	y by the Sun without de	ection.
The de	ection of light, observable at a ˇnal distance from the Sun, is also considered and it is shown
that measurements at the distances of several Sun's radii will decide which coordinate system is the
privileged one.
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INTRODUCTION

When a photon is de	ected by the Sun, we can know with good accuracy its impact
parameter ρ, its frequency, and the coordinates of place where it is observed. We note that
we always observe it at a ˇnite distance from the Sun and in principle the place of observation
is at our disposal. Classical theory permits one to predict the results of such observations.
The classical approach is applicable when orbital quantum number is large: l = kρ � 1 (ρ is
impact parameter), i.e., ρ/λ � 1. For light passing the Sun l ∼ 1015, see Ch. 8 in Weinberg
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book [1] or § 20 in Schiff's book [2] for details. For a scattering with the momentum transfer
q, the impact parameter ρ is of order of �/q and the formation length of this process is of order
of several �/q. Beyond this length the particle is unable to obtain the momentum transfer
q. In quantum theory in Born approximation the particle obtains the required momentum
transfer by interacting with only one graviton. In principle the quantum particle can pass
the formation length without interaction or interacting with two or more gravitons in such a
way that no momentum transfer is passed to it. It is very interesting to know the probability
for this process which can be searched in photons passing the Sun. If it is nonzero, then
the concept of curved space-time is of only limited validity. The classical particle cannot 	y
through the ˇeld without interaction. So the classical cross section should be greater than the
quantum one and the difference should indicate the probability of 	ying without de	ection.
Unfortunately, the quantum cross sections are known only in Born approximation and there
is very little hope to get more accurate expressions. The Born approximation turns out to be
insufˇcient for comparing with more accurate (in this region of impact parameters) classical
results. So we compare quantum cross sections for photon and massless scalar particle. (We
note that similar effects should take place also in Coulomb scatterings [3].) According to
heuristic approach to gravity [4Ä6] the curved space-time appears as a result of changing
by the gravitational ˇeld of measuring rods and clocks. In principle these changes can be
calculated and in the lowest approximation this was done by Thirring [5]. If Nature itself
exactly calculates these changes, the result should be unique and it will ˇx the (privileged)
coordinate system. It is expected that for a spherically symmetric body this system should be
isotropic one [6]. In the privileged system the de	ection of light at any point is given by the
tangent to the trajectory. So the measurements of light de	ection at several Sun's radii will
decide which coordinate system is the privileged one.

In Sec. 1 we obtain the asymptotic expansions for the small-angle classical scattering by
the Schwarzschild ˇeld. In Sec. 2 the same is done for linear approximation of that ˇeld.
(This linear approximation is used in quantum calculations in Born approximation, so it is
useful to compare these classical results with the quantum one.) The difference in exact
and linearized versions indicates the role of nonlinearities in scatterings. We rimind that the
nonlinear effects of general relativity are conˇrmed only in nonrelativistic region (precession
of Mercury perihelion). In Sec. 3 we calculate in the lowest approximation the tangent to the
trajectory in the standard Schwarzschild and isotropic coordinate systems. At the distances
of order ρ, the tangents in these two systems are different and the experiment should decide
which coordinate system has more chances to be the privileged one.

1. SMALL-ANGLE CLASSICAL SCATTERING
BY THE SCHWARZSCHILD FIELD

1.1. Particle with Mass. The trajectories in the Schwarzschild ˇeld were studied in a
number of papers [7Ä9], see also [10]. If the standard coordinate system

ds2 =
(
1 − rg

r

)
(dx0)2 − r2(sin2 θ dϕ2 + dθ2) −

(
1 − rg

r

)−1

dr2 (1)
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is used, the equation governing the scattering trajectory has the simplest form

du

dϑ
= ±

√
f(u), u =

ρ

r
, δ =

rg

ρ
, rg =

2GM

c2
,

(2)
f(u) = 1 − u2 + κuδ + u3δ = δ(u − u1)(u − u2)(u − u3), κ = β−2 − 1.

Here ρ is impact parameter; β is velocity at inˇnity in units of c; the signs ®+¯ and ®−¯
in front of the square root refer to the ˇrst and the second halves of trajectory, respectively.
From (2) the half angle between the asymptotes is

ϑ1/2 =

ϑ1/2∫
0

dϑ =

u2∫
0

du√
f(u)

. (3)

This is the contribution from the ˇrst half of the trajectory. It is assumed that u1 < u2 < u3.
Similarly, for the second half,

2ϑ1/2 − ϑ1/2 =

2ϑ1/2∫
ϑ1/2

dϑ = −
0∫

u2

du√
f(u)

=

u2∫
0

du√
f(u)

= ϑ1/2. (4)

So the angle between asymptotes is 2ϑ1/2. The scattering angle is θ = 2ϑ1/2 − π. Each half
of the trajectory contributes ϑ1/2.

Now the expressions for roots u1, u2, u3 as functions of δ and κ can be obtained by the
method of Newton: if x(0) is the zeroth-order approximation for the root of f(x) = 0, then

in the ˇrst approximation we have x(1) = x(0) − f(x(0))
f ′(x(0))

. In the second approximation

x(2) = x(1) − f(x(1))
f ′(x(1))

and so on. Thus, for the root u2 starting from the zeroth-order

approximation u
(0)
2 = 1, we have for the function f(u) in (2) f(1) = (κ+1)δ. From f ′(u) =

−2u+κδ+3u2δ we get f ′(1) = −2+(κ+3)δ ≈ −2. So u
(1)
2 = 1+

1
2
(1+κ)δ. In the second

approximation f
(
u

(1)
2

)
=

(
5
22

+
3κ

2
+

κ
2

22

)
δ. As for f ′(u(1)

2 ), we may in the considered

approximation still take f ′(1) = −2. So we get u
(2)
2 = 1+

1
2
(1+κ)δ+

(
5
23

+
3κ

22
+

κ
2

23

)
δ2.

Continuing this process, we ˇnd

u2 = 1 +
1
2
(1 + κ)δ +

(
5
23

+
3κ

22
+

κ
2

23

)
δ2 +

(
1 +

3κ

2
+

κ
2

2

)
δ3 + . . . (5)

Now the root u1 can be obtained from here if we note that according to (2) f(u) ≡ f(u, δ) =
f(−u,−δ). Hence,

u1 ≡ u1(δ) = −u2(−δ) = −1+
1
2
(1+κ)δ−

(
5
23

+
3κ

22
+

κ
2

23

)
δ2+

(
1 +

3κ

2
+

κ
2

2

)
δ3+. . .

(6)
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The expansion for u3 can be obtained in the same way as for u2:

u3 =
1
δ
− (1 + κ)δ − (2 + 3κ + κ

2)δ3 + . . . (7)

It is easy to check that u1 + u2 + u3 = δ−1 as it should be.
From (2) and (3) we have in agreement with [7Ä9]

ϑ1/2 =
1√
δ

u2∫
0

du√
(u − u3)(u − u2)(u − u1)

=
2√

(u3 − u1)δ
F (φ, κ),

(8)

κ =
(

u2 − u1

u3 − u1

)1/2

, sin2 φ =
1 − u1u

−1
3

1 − u1u
−1
2

.

Here F (φ, κ) is the elliptical integral. Using (5), (6) and (7) we get, retaining terms up to δ2,

κ2 = 2δ(1 − δ + . . .), sin2 φ =
1
2

{
1 +

3 + κ

2
δ + O(δ3)

}
. (9)

From here

sin φ =
1√
2

[
1 +

3 + κ

22
δ − (3 + κ)2

25
δ2 + . . .

]
, cosφ =

1√
2

[
1 − 3 + κ

22
δ + . . .

]
. (10)

To get φ from the expression for sin2 φ it is worthwhile to make the substitution φ =
π

4
+ ψ,

sin2 φ =
1
2

+
1
2

sin 2ψ. (This is especially useful when more terms are needed than we retain

here, see the next subsection.) So for ψ we have

sin 2ψ =
3 + κ

2
δ + O(δ3). (11)

Then 2ψ =
3 + κ

2
δ + O(δ3). Hence,

φ =
π

4
+ ψ =

π

4
+

3 + κ

22
δ + O(δ3). (12)

As δ is assumed to be small, κ2 is small and we can use the expansion, see Eq. (5) in
Subsec. 13.6 in [11]

F (φ, κ) = S0 +
1
2
S2κ

2 +
3
23

S4κ
4 + . . . , S2n ≡ S2n(φ) =

φ∫
0

(sin t)2n dt; (13)

S0 = φ, S2 =
1
2
(φ − sinφ cos φ); S4 =

3
8
φ − 3

8
sin φ cosφ − 1

4
sin3 φ cosφ. (14)

From (6) and (7) we have

(u3 − u1)δ = 1 + δ − 3
2
(1 + κ)δ2 + . . . (15)
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Using Eq. (3.6.19) in [12], we obtain from here

[(u3 − u1)δ]−1/2 = 1 − 1
2
δ +

(
3
8

+
κ

4

)
3δ2 + . . . (16)

Performing remaining calculation, we get for ϑ1/2 in (8)

ϑ1/2 =
π

2
+

(
1 +

κ

2

)
δ + π

(
15
32

+
3κ

8

)
δ2 + . . . (17)

The scattering angle is θ = 2ϑ1/2 − π. So

θ

2
= ϑ1/2 −

π

2
=

(
1 +

κ

2

)
δ + π

(
15
32

+
3κ

8

)
δ2 + . . . (18)

Using Eq. (3.6.25) in [12], we ˇnd

δ =
θ

2 + κ
− 5 + 4κ

(2 + κ)3
3π

24
θ2 + . . . (19)

From here with the help of (3.6.25) in [12], we ˇnd

δ−2 =
(
1 +

κ

2

)2
(

2
θ

)2 {
1 +

5 + 4κ

(2 + κ)2
3π

8
θ + . . .

}
. (20)

This gives the classical integral cross section

σcl(θ) = πρ2(θ), δ−2 ≡ ρ2

r2
g

. (21)

If we compare (18) with the corresponding equation (10.14) in [9], we ˇnd that only the
leading term is the same. The preceding equation (10.13) in [9] contains errors in powers of
the root of the cubic.

The differential cross section is obtained from (21) by differentiation, multiplying by π
and changing the overall sign in the right-hand side:

dσcl(θ) = 2πr2
g

(
1 +

1
2

κ

)2 1
y3

{
1 +

5 + 4κ

(2 + κ)2
3π

8
y + . . .

}
dy, y =

θ

2
. (21a)

In quantum picture the ˇrst Born approximation for scalar particle cross section is given
in Eq. (39) below. It contains only even powers of y in braces as in Coulomb scattering [3].
This should mean that corrections to the ˇrst Born approximation must contain classical terms
independent of �. In Coulomb scattering these classical terms in higher approximations may
be expected only at unrealistically high αZ � 1.

1.2. Massless Particle. In this subsection we obtain more terms of the expansions for
the case of massless particle, i.e., for κ = 0, see (2). Continuing the process described in
getting (5), we ˇnd

u2 = 1 +
1
2
δ +

5
23

δ2 + δ3 +
3 · 7 · 11

27
δ4 +

7
2
δ5 + . . . , (22)

u3 =
1
δ
− δ − 2δ3 − 7δ5 + . . . , (23)

u1 ≡ u1(δ) = −u2(−δ) = −1 +
1
2
δ − 5

23
δ2 + δ3 − 231

27
δ4 +

7
2
δ5 + . . . (24)
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Using these expressions, we ˇnd for κ2 and sin2 φ, see (7),

κ2 = 2δ

{
1 − δ +

52

23
δ2 − 3 · 7

22
δ3 − 7 · 281

27
δ4 + . . .

}
, (25)

sin2 φ =
1
2

{
1 +

3
2
δ +

3 · 11
24

δ3 +
32 · 5 · 37

28
δ5 + . . .

}
. (26)

From here

sinφ =
1√
2

{
1 +

3
4
δ − 32

25
δ2 +

3 · 53
27

δ3 − 32 · 221
211

δ4 +
32 · 3941

213
δ5 + . . .

}
. (27)

The term with δ5 is needed only if we want to obtain φ from (27). But we proceed as in
obtaining (11):

sin 2ψ =
3
2
δ

{
1 +

11
23

δ2 +
3 · 5 · 37

27
δ4 + . . .

}
. (28)

From here

2ψ =
3
2
δ +

3 · 7
23

δ3 +
32 · 167
25 · 5 δ5 + . . . (29)

Hence,

φ =
π

4
+ ψ =

π

4
+

3
22

δ +
3 · 7
24

δ3 +
32 · 167
26 · 5 δ5 + . . . (30)

From (27) we obtain

cosφ =
1√
2

{
1 − 3

4
δ − 32

25
δ2 − 3 · 53

27
δ3 − 32 · 221

211
δ4 + . . .

}
. (31)

In Eq. (16) (with κ = 0) we have now more terms:

[(u3 − u1)δ]−1/2 = 1 − 1
2
δ +

32

23
δ2 − 7

22
δ3 +

52 · 23
27

δ4 − 33 · 5
24

δ5 + . . . (32)

Using expressions for sin φ and cosφ in (27) and (31), we obtain S2n which are polynomials
in sin φ and cosφ. Then using also (25), we ˇnd similarly to (13)

F (φ, κ)=S0+
1
2
S2κ

2+
3
23

S4κ
4+

5
24

S6κ
6+

5 · 7
27

S8κ
8+

32 · 7
28

S10κ
10+. . . =

π

4
+

(
π

23
+

1
2

)
δ+

(33)

+
(

π

26
+

1
22

)
δ2+

(
39π

27
+

43
24 · 3

)
δ3+

(
313π

212
+

52

23 · 3

)
δ4+

(
7 · 1487π

213
+

12689
28 · 3 · 5

)
δ5+. . .

(34)
Using (32), we get from (8) and (34)

ϑ1/2 =
π

2
+ δ +

3 · 5π

25
δ2 +

23

3
δ3 +

32 · 5 · 7 · 11π

211
δ4 +

23 · 7
5

δ5 . . . , (35)
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and similarly to (19) we obtain

δ = y

{
1 − 3 · 5π

25
y +

(
32 · 52π2

29
− 23

3

)
y2 +

(
5 · 1867π

211
− 33 · 54π3

215

)
y3+

+
(

23 · 19
3 · 5 − 32 · 52 · 7 · 157π2

215
+

34 · 54 · 7π4

219

)
y4 + . . .

}
, y =

θ

2
= ϑ1/2 −

π

2
. (36)

As in (20), we ˇnd

δ−2 ≡ ρ2

r2
g

= y−2{1 + c1y + c2y
2 + c3y

3 + c4y
4 + . . .}, (37)

c1 =
3 · 5π

24
, c2 =

24

3
− 32 · 52π2

210
,

(37a)

c3 = −5 · 331π

210
+

33 · 53π3

214
, c4 =

24

3 · 5 +
32 · 52 · 331π2

215
− 34 · 55π4

220
.

The approximate values for ci, i = 1, 2, 3, 4, are

c1 = 2.945, c2 = 3.165, c3 = 1.310, c4 = −0.016. (37b)

The differential cross section is obtained from (37) by differentiation

dσ(θ)cl = πr2
g

23

θ3

{
1 + c1

θ

22
− c3

θ3

24
− c4

θ4

24
+ . . .

}
dθ. (38)

It is interesting to compare this classical cross section with the quantum one. For scalar
particle we have in the ˇrst Born approximation [13]

dσsc = 2πr2
g

(
1 +

κ

2

)2 cos y

sin3 y
dy = 2πr2

g

(
1 +

κ

2

)2 1
y3

{
1 − y4

15
+ . . .

}
dy, y =

θ

2
. (39)

κ is deˇned in (2); for massless particle κ = 0. The substitution y → −y changes the sign of
sin y and y. Hence, the expression in braces in (39) can contain only even powers of y. We
note also that −c4 in (38) is positive (−c4 = 0.016) in contrast with the corresponding coef-
ˇcient −1/15 in (39). So this term is larger in classical cross section than the corresponding
term in the quantum cross section (39). The quantum cross section for photon contains an
additional factor:

dσγ = dσsc cos4 y, (40)

see [13] and references therein. The factor dσsc in (40) and below is taken at κ = 0, i.e., for
massless particle. From (39) and (40) we get

dσsc − dσγ = 2πr2
g

2 − sin2 y

sin y
cos y dy.



Classical and Quantum Scattering by a Gravitational Center 711

We see that the difference of these two cross sections is always positive and even diverges
for y → 0 albeit only logarithmically:

π/2∫
ỹ→0

(dσsc − dσγ) = 2πr2
g

{
2 ln

1
sin ỹ

− 1
2

}
.

This difference suggests that the 	ying through the ˇeld without interaction is easier for photon
than for a massless scalar particle. As mentioned above, it would be interesting to obtain
the differences of classical and quantum cross sections for photon, but Born approximation is
insufˇcient for this. For graviton [14, 15],

dσg = dσsc
1
8
(1 + 6 cos2 θ + cos4 θ) = dσsc(cos8 y + sin8 y), (40a)

and
dσsc − dσg = 2πr2

g

cos y

sin3 y

{
4 sin2 y − 6 sin4 y + 4 sin6 y − 2 sin8 y

}
dy;

π/2∫
ỹ→0

(dσsc − dσg) = 2πr2
g

{
4 ln

1
sin ỹ

− 7
3

}
.

So for small-angle scattering the cross section is smaller for particle with higher spin. It
seems reasonable to expect from these facts that spin facilitates forward scattering of a
particle described by a wave packet.

2. SMALL-ANGLE CLASSICAL SCATTERING BY THE LINEAR APPROXIMATION
OF THE SCHWARZSCHILD FIELD

To see the effects of the nonlinearity of the Schwarzschild ˇeld on scattering, we consider
in this section the linear approximation of the isotropic coordinates. This approximation is
used in the quantum treatment of scattering in [13Ä15]. Only massless particle is considered
below.

Proceeding in the same way as in [8] and [9], we obtain instead of (2)

du

dϑ
= ±

√
f(u)

1 − uδ
, f(u) = 1 − u2 + (u3 + u)δ = δ(u − u1)(u − u2)(u − u3). (41)

So we use in this section the same notation as before, but with a somewhat different meaning.
For ϑ1/2 we get a more complicated expression:

ϑ1/2 =
1√
δ

u2∫
0

√
1 − uδ

(u3 − u)(u2 − u)(u − u1)
du =

1√
u3δ

u2∫
0

√
1 − uδ

(1 − uu−1
3 )

du√
R(u)

. (42)

Here R(u) = (u2 − u)(u − u1).
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From (41) we ˇnd instead of (22)Ä(24)

u2 = 1 + δ +
3
2
δ2 + 3δ3 +

5 · 11
23

δ4 + 17δ5 + . . . , (43)

u3 =
1
δ
− 2δ − 6δ3 − 34δ5 + . . . , (44)

u1 ≡ u1(δ) = −u2(−δ) = −1 + δ − 3
2
δ2 + 3δ3 − 5 · 11

23
δ4 + 17δ5 + . . . , (45)

u−1
3 = δ{1 + 2δ2 + 10δ4 + 66δ6 + . . .}. (44a)

For δ � 1 we have u3 � 1, hence u/u3 � 1 in the r.h.s. of (42). So to evaluate (42) we
can proceed as follows:

1 − uδ

1 − uu−1
3

=
(1 − uδ − 2uδ3 − 10uδ5) + 2uδ3(1 + 5δ2)

1 − uδ(1 + 2δ2 + 10δ4 . . .)
=

= 1 +
2uδ3(1 + 5δ2)

1 − uδ − 2uδ3 + . . .
= 1 + 2uδ3[1 + uδ + (u2 + 5)δ2 + . . .]. (46)

From here (
1 − uδ

1 − uu−1
3

)1/2

= 1 + u(δ3 + 5δ5) + u2δ4 + u3δ5 + . . . (47)

Using this in (42) we have

ϑ1/2 =
1√
u3δ

{I0 + (δ3 + 5δ5)I1 + δ4I2 + δ5I3 + . . .}, In =

u2∫
0

undu√
R(u)

. (48)

Evaluating these integrals, we ˇnd

I0 =
π

2
+ arcsin

u2 + u1

u2 − u1
, I1 =

√
−u2u1 +

u1 + u2

2
I0,

(49)

I2 = 3
u1 + u2

4
√
−u1u2 +

{
3(u1 + u2)2

8
− u1u2

2

}
I0, R(0) = −u1u2, R(u2) = 0.

R(u) is deˇned below (42). As for I3, we need it only at δ = 0. Then its value is 2/3.
Using (43)Ä(45), we get

I0 =
π

2
+ δ +

5
3
δ3 +

87
10

δ5 + . . . , I1 = 1 +
π

2
δ + 2δ2 + . . . , I2 =

π

4
+ 2δ + . . . , (50)

1√
u3δ

= 1 + δ2 +
9
2
δ4 + O(δ6).

Now for (42) we obtain

ϑ1/2 =
π

2
+ δ +

π

2
δ2 +

11
3

δ3 + 3πδ4 +
383
15

δ5 . . . (51)
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(We have used this method to check Eq. (35).) From here

δ = y

{
1 − π

2
y +

(
π2

2
− 11

3

)
y2 +

(
37π

6
− 5π3

8

)
y3+

+
(

74
5

− 41π2

4
+

7π4

23

)
y4 + . . .

}
, y =

θ

2
= ϑ1/2 −

π

2
. (52)

As in (20), we obtain δ−2 in the form (37) where now

c1 = π, c2 =
22
3

− π2

4
, c3 = −4π

3
+

π3

4
, c4 =

161
15

+ 2π2 − 5π4

16
. (53)

With these ci Eq. (38) holds. Here the approximate values of ci are

c1 = 3.1416, c2 = 4.8660, c3 = 3.5627, c4 = 0.0322. (53a)

Comparing with (37b), we see how the difference between ci there and here increases with
increase of i.

3. SMALL-ANGLE DEFLECTION BY AN INTERVAL OF GRAVITATIONAL FIELD

This problem is usually avoided because all coordinate systems are equivalent in general
relativity and only the de	ection by the whole gravitational ˇeld is independent of the coor-
dinate system used. Here we assume that in the privileged system the observed de	ection is
given by the tangent to the trajectory. There are some reasons to think that the privileged
system must be isotropic one [6] and we take it from general relativity.

For tangent we have

tan ϕ =
dy

dϑ
/
dx

dϑ
=

dr

dϑ
sinϑ + r cosϑ

dr

dϑ
cosϑ − r sin ϑ

, x = r cosϑ, y = r sin ϑ, (54)

or in terms of u = ρ/r,

tan ϕ =

du

dϑ
sinϑ − u cosϑ

du

dϑ
cosϑ + u sinϑ

. (55)

So we have to know u(ϑ) or ϑ(u). For a massless particle in the isotropic system, we
have

du

dϑ
= ±

√√√√√√√√
(

1 +
1
4
uδ

)6

(
1 − 1

4
uδ

)2 − u2. (56)

To get u(ϑ) from here is a much more difˇcult job than in the case of the standard Schwarz-
schild system utilized in (2).



714 Nikishov A. I.

In the following we assume for simplicity that δ � 1 and 1 − u2 is of order of unity.
(The latter assumption is not needed for the ˇnal result (60).) Then for the ingoing half of
the trajectory we may write

du

dϑ
=

√
1 − u2

(
1 +

uδ

1 − u2
+ O(δ2)

)
. (57)

From here we get

ϑ = arcsinu + Δ, Δ =
(

1 − 1√
1 − u2

)
δ. (58)

So

sin ϑ = u + Δ
√

1 − u2 = u +
(√

1 − u2 − 1
)

δ, cosϑ =
√

1 − u2 − Δu. (59)

Then, using (57) and (59), we ˇnd from (55)

tanϕ ≈ ϕ =
(
1 −

√
1 − u2

)
δ =

(
1
2
u2 +

1
8
u4 + . . .

)
δ. (60)

This is the contribution from the part of the trajectory beginning at u = 0 and ending at u.
For the second half of the trajectory the signs in front of square roots must be changed to the
opposite ones.

We note here that from (59) we can obtain the trajectory in the form

u = sin θ + (1 − cos θ)δ, (57a)

which is Eq. (40.6) in § 40 in [10]. To that end in the term with δ in the second equation
in (59) we replace

√
1 − u2 by its zeroth-order value cos θ.

As is well known, the leading term of the small-angle classical de	ection can be obtained
by simple mechanical considerations, see § 39, Problem 2 in [16], or Eq. (4.41) in Ch. 2
in [17]. In our case the contribution from the whole trajectory is

ϕ = rgρ

∞∫
−∞

dx

(x2 + ρ2)3/2
= 2δ. (61)

In this approximation the trajectory is taken as a straight line: r sin ϑ = ρ. The contribution
from the same part of the trajectory as in (60) is (x = r cosϑ; y = r sinϑ)

rgρ

∞∫
x

dx

(x2 + ρ2)3/2
=

rg

ρ

(
1 − xρ−1√

1 + (xρ−1)2

)
. (62)

As
x

ρ
=

r

ρ
cosϑ =

1
u

√
1 − u2,

the r.h.s. of (62) is equal to that of (60). Only smallness of ϕ is used in obtaining (62) which
is another form of (60). If u � 1, then δ may be of order of unity. If δ � 1, then u may be
of order of unity.
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On the surface of the Sun 0 � ϕ � δ. Zero corresponds to the radial trajectory ρ = 0,
δ corresponds to the trajectory touching the surface. For u � 1 we have from (62) ϕ =
(rgρ)/(2r2).

If we use the standard Schwarzschild coordinate system, see (1) and (2), we get instead
of (59)

sinϑ = u +
[√

1 − u2 +
u2

2
− 1

]
δ

and

tan ϕ ≈ ϕ =
(

1 −
√

1 − u2

(
1 +

u2

2

))
δ =

3
8
u4δ + . . . (63)

instead of (60). (As it should be, for u = 1 both (60) and (63) give tan ϕ = ϑ1/2 = δ.) So
the measurements of ϕ at r ∼ ρ can decide which coordinate system is the privileged one.

Finally, the contribution to ϕ from a ˇnite interval of trajectory from x to x̃ is

rgρ

x̃∫
x

dx′

(x′2 + ρ2)3/2
=

rg

ρ

[
x̃√

ρ2 + x̃2
− x√

ρ2 + x2

]
, (64)

see (61). Expression (64) is useful for evaluating the contribution to de	ection angle from
the almost rectilinear tails of the trajectory.

4. DISCUSSION AND CONCLUSION

We have shown that in the considered case the classical cross sections are much more
accurate than the Born approximations in the quantum case. The contribution from nonlinear-
ities of the gravitational ˇeld are given by differences in exact treatment of the gravitational
ˇeld and its linearized version. It is interesting that the treatment of the linearized version
turns out to be more difˇcult. (This is connected with the fact that the exact consideration in
the isotropic system is much more difˇcult than in the standard Schwarzschild system.) So
the new method was used to get the asymptotic expansions for integrals in this case. We note
that the calculation of de	ections is rather lengthy and tedious. For this reason we present
some details to show that using some tricks considerably shortens the process. (See, for
example, the symmetry relation (6), the using of ψ instead of ϕ, the preliminary rewritings in
Eq. (46) showing that the terms with δ and δ2 should not appear and so on.) The de	ection of
light, measured at ˇnite distances from the Sun, is considered by two different methods. The
result favors the isotropic coordinate system as the privileged one, thus giving an additional
support to heuristic approach to gravity [4Ä6].
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