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STOKESÄANTI-STOKES
ENTANGLEMENT IN STIMULATED

RAMAN SCATTERING

A. V. Chizhov 1

Joint Institute for Nuclear Research, Dubna

A cavity model of Raman scattering from phonons by an undepleted laser ˇeld is considered. The
ˇelds in the interaction are coupled to the boson reservoir that produces the damping mechanism in the
model. An analysis for the origination of quantum entanglement between the Stokes and anti-Stokes
ˇelds, depending on their coupling constants with the reservoir bosons and on the state of the reservoir,
is performed under the assumption of the initial coherent state of phonons.
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INTRODUCTION

Stimulated Raman scattering is a useful method for spectroscopy in condensed matter
physics and in examining fundamental aspects of quantum electrodynamics. Investigation of
the nonclassical behavior of stimulated Raman scattering has been the subject of a number
of papers [1, 2]. Recently, in view of the development of quantum information there has
been arisen some interest in the study of the entanglement phenomenon between the ˇelds in
Raman scattering and estimation of the measure of their entanglement [3, 4].

In this paper, the entanglement initiation between scattered ˇelds in stimulated Raman
scattering with damping is considered with taking into account the dynamics of phonons. It
allows one to study the quantum correlations in the model on conditions that phonons can
initially be in a coherent state rather than in a chaotic one.
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1. MODEL

In this model, we assume an undepleted laser ˇeld of frequency ωL, and phase φL,
which can be treated classically. The ˇelds in the interaction, âj , are the Stokes ˇeld,
subscript S, anti-Stokes ˇeld, subscript A, and vibrational phonon ˇeld, subscript V ; their

respective frequencies are ωS, ωA, and ωV . The boson reservoir with multiple modes, b̂
(j)
l ,

and frequencies ψ
(j)
l , provides a damping mechanism for the single-mode ˇelds through its

interaction with coupling constants κjl. The Hamiltonian of the system is given by [5]

Ĥ = �ωV â†
V âV +�ωS â†

S âS +�ωAâ†
AâA+�

∑
j

∑
l

(ψ(j)
l b̂

(j)†
l b̂

(j)
l +κjlâ

†
j b̂

(j)
l +κ∗

jlâj b̂
(j)†
l )−

− (�gSâ†
S â†

V e−i(ωLt+φL) + �gAâV â†
A e−i(ωLt+φL) + h.c.), j = V, S, A, (1)

where the laserÄStokes and laserÄanti-Stokes coupling constants are gS and gA, respectively.

The operators âj and b̂
(j)
l satisfy the commutation relations

[âj , â
†
k] = δjk, [b̂(j)

l , b̂(k)†
m ] = δlmδjk, j, k = V, S, A. (2)

The frequencies ωL, ωS , ωA, and ωV are assumed to satisfy the resonance condition

ωS = ωL − ωV , ωA = ωL + ωV . (3)

The reservoir frequencies ψ
(j)
l are considered to be strongly coupled only to those radiation

modes for which ψ
(j)
l � ωj .

The Heisenberg equations of motion are given by

dâV

dt
= −iωV âV + igSâ†

S e−i(ωLt−φL) + ig∗AâA ei(ωLt−φL) − i
∑

l

κV lb̂
(V )
l ,

dâS

dt
= −iωSâS + igSâ†

V e−i(ωLt−φL) − i
∑

l

κSlb̂
(S)
l ,

(4)
dâA

dt
= −iωAâA + igAâV e−i(ωLt−φL) − i

∑
l

κAlb̂
(A)
l ,

db̂
(j)
l

dt
= −iψ

(j)
l b̂

(j)
l − iκ∗

V lâj.

In the Markorvian approximation, the equations are simpliˇed by eliminating the b̂
(j)
l opera-

tors. These equations in the interaction picture âj(t) = Âj(t) e−iωj t are reduced into

dÂV

dt
= −1

2
γV ÂV + igS eiψLÂ†

S + ig∗A e−iψLÂA + F̂A,

dÂS

dt
= −1

2
γSÂS + igS e−iψLÂ†

V + F̂S , (5)

dÂA

dt
= −1

2
γAÂA + igA eiψLÂV + F̂A,
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where the Langevin forces due to the boson ˇelds are

F̂V = i
∑

l

κ∗
V lb̂

(V )
l (0) e−i(ψ

(V )
l −ωV )t,

F̂S = i
∑

l

κSlb̂
(S)
l (0) e−i(ψ

(S)
l −ωS)t, (6)

F̂A = i
∑

l

κ∗
Alb̂

(A)
l (0) e−i(ψ

(A)
l −ωA)t,

which satisfy the quantum 	uctuationÄdissipation theorem, and γj = 2π|κj(ωj)|2	(ωj) are
the damping constants, ρ(ωj) is the density function of the damping oscillators.

The equations of motion in Eqs. (5) can be directly solved using the Laplace transform
method and the solutions are given as

ÂV (t) = λV (t)âV + λS(t)â†
S + λA(t)âA +

∑
l

[ΛV l(t)b̂
(V )
l + ΛSl(t)b̂

(S)†
l + ΛAl(t)b̂

(A)
l ],

ÂS(t) = μV (t)â†
V + μS(t)âS + μA(t)â†

A +
∑

l

[MV l(t)b̂
(V )†
l + MSl(t)b̂

(S)
l + MAl(t)b̂(A)†],

ÂA(t) = νV (t)âV + νS(t)â†
S + νA(t)âA +

∑
l

[NV l(t)b̂
(V )
l + NSl(t)b̂

(S)†
l + NAl(t)b̂

(A)
l ],

where the operators on the right-hand side are with respect to the initial state and explicit
forms of the time-dependent functions are written down in [6].

2. THE WIGNER FUNCTION

The dynamics of the ˇelds can be described by means of the Wigner function. Let us
deˇne the symmetric characteristic function for the Stokes, anti-Stokes and phonon ˇelds with
the assumption that they are initially in coherent states |αS〉, |αA〉, and |αV 〉, respectively,
whereas the reservoir is found in a chaotic state with the boson mean number 〈n〉:

χsym(βV , βS , βA; t) = Tr
{

	̂(0) exp
[
βV Â†

V (t) + βSÂ†
S(t) + βAÂ†

A(t) − h.c.
]}

=

= exp
{
− BV (t)|βV |2 − BS(t)|βS |2 − BA(t)|βA|2+

+ [D∗
V S(t)βV βS + D∗

SA(t)βSβA + DV A(t)βV β∗
A + c.c.]+

+ [α∗
V (t)βS + α∗

S(t)βV + α∗
A(t)βA − c.c.]

}
, (7)

where

αV (t) = λV (t)αV + λS(t)α∗
S + λA(t)αA,

αS(t) = μV (t)α∗
V + μS(t)αS + μA(t)α∗

A, (8)

αA(t) = νV (t)αV + νS(t)α∗
S + νA(t)αA,
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and the functions at bilinear variables for γV = γS = γA = γ are

BV (t) = |λS(t)|2 + 〈n〉(1 − e−γt) + (2〈n〉 + 1)
∑

l

|ΛSl(t)|2,

BS(t) = |μV (t)|2 + |μA(t)|2 − (〈n〉 + 1)(1 − e−γt)

+ (2〈n〉 + 1)
∑

l

|MSl(t)|2,

BA(t) = |νS(t)|2 + 〈n〉(1 − e−γt) + (2〈n〉 + 1)
∑

l

|NSl(t)|2, (9)

DV S(t) = λS(t)μS(t) + (2〈n〉 + 1)
∑

l

MSl(t)ΛSl(t),

DSA(t) = μS(t)νS(t) + (2〈n〉 + 1)
∑

l

MSl(t)NSl(t) ,

DV A(t) = −ν∗
S(t)λS(t) + (2〈n〉 + 1)

∑
l

N∗
Sl(t)ΛSl(t).

Then the Wigner function of the ˇelds under consideration reads as

W (ξV , ξS , ξA; t) =
1
π6

∫
d2βV d2βSd2βA exp [(ξV β∗

V − ξ∗V βV )] +

+ (ξSβ∗
S − ξ∗SβS) + (ξAβ∗

A − ξ∗AβA)] χsym(βV , βS , βA; t). (10)

In order to describe the dynamics of the scattered Stokes and anti-Stokes ˇelds, it is necessary
to pass on to the marginal Wigner function as a result of integration of (10) over the phonon
variable

W (ξS , ξA; t) =
∫

d2ξV W (ξV , ξS , ξA; t) =
1

π2N (t)
exp

{
− 1

N (t)

(
BA(t)|ξS − αS(t)|2+

+ BS(t)|ξA − αA(t)|2 − [D∗
SA(t)(ξS − αS(t))(ξA − αS(t)) + c.c.]

)}
(11)

with the normalization
N (t) = BS(t)BA(t) − |DSA(t)|2. (12)

3. STOKESÄANTI-STOKES ENTANGLEMENT

The Wigner function (11) of the Gaussian type can be represented in the form

W (γ; t) =
1

4π2
√

detV(t)
exp

{
−1

2
γTV−1(t)γ

}
(13)

with the help of the covariance matrix

V =
(

X Z
ZT Y

)
=

⎛
⎜⎜⎝

BA 0 Re DSA Im DSA

0 BA Im DSA −ReDSA

Re DSA Im DSA BS 0
Im DSA −ReDSA 0 BS

⎞
⎟⎟⎠ , (14)
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and the vector γT = (qS , pS, qA, pA) is composed by the real elements qi =
√

2Re[ξi −αi(t)]
and pi =

√
2Im[ξi − αi(t)].

The covariance matrix (14) can be used to reveal the presence of entanglement in the
StokesÄanti-Stokes subsystem during its evolution by taking into consideration the measure of
entanglement for Gaussian states suggested in [7]. This measure is completely deˇned by the
symplectic spectrum of the partial transform of the covariance matrix that for the form (14)
leads to the following expression of the logarithmic negativity [4]:

E = −1
2

log2 [4f(V)] , (15)

where

f(V) =
detX + detY

2
− detZ −

√(
detX + detY

2
− detZ

)2

− detV =

=
1
2

[
B2

S + B2
A + 2|DSA|2 − (BS + BA)

√
(BS − BA)2 + 4|DSA|2

]
. (16)

It shows the measure of entanglement for E > 0, and the case of E � 0 indicates the
separability of the subsystem state.

The behavior of the logarithmic negativity (15) depending on the interaction time and the
boson mean number in the reservoir for various damping constants is displayed in Fig. 1 for
the case gS < gA. If the damping constant γ is much less than the ˇeldÄpump constants gS,A,
E shows slightly decaying oscillations with deˇnite regions where it takes on positive values
indicating the entanglement in the subsystem of the Stokes and anti-Stokes ˇelds, Fig. 1, a.
These regions are shrunk when the boson mean number increases that demonstrates the
phenomenon of the entanglement destruction by the reservoir noise. A similar periodicity
in time of the antibunching effect between the Stokes and anti-Stokes modes was observed
in [5]. As the damping constant γ increases, an oscillatory character of E still remains
but the rate of the oscillation damping of the logarithmic negativity turns out to be more
noticeable, Fig. 1, b. In case the damping constant γ becomes comparable with the ˇeldÄ
pump constants gS,A, the logarithmic negativity no longer displays oscillations and keeps
moderate positive values only in a short range of variation of the boson mean number near
to zero, Fig. 1, c.

Fig. 1. Logarithmic negativity E (15) vs. the scaled time Γt and boson mean number 〈n〉 in the

reservoir for gA = 2gS = 2 · 107 s−1 (Γ = (g2
A − g2

S)−1/2 ≈ 0.58 · 10−7 s) and γ = 105 s−1 (a),
γ = 106 s−1 (b), γ = 107 s−1 (c)
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In conclusion, it is worth noting that the peculiar pattern of entanglement between the
Stokes and anti-Stokes ˇelds found out in the paper may have promising applications in
optical communication and quantum information processing.

This work is partly supported by the RFBR Grant No. 08-02-00118.
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