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RECONSTRUCTION OF QUANTUM WELL POTENTIALS

A. A. Suzko a,1, I. Tralle b, E. P. Velicheva a

aJoint Institute for Nuclear Research, Dubna; JIPENP, National Academy of Sciences of Belarus,
Minsk

bInstitute of Physics, Mathematics and Natural Sciences, Department University of Rzesz
ow, Poland

The intertwining operator technique is applied to the generalized Schréodinger equation with a
position-dependent effective mass. It is shown on concrete examples how to construct the quantum
well potential with a desired spectrum for the Schréodinger equation with a non-Hermitian kinetic energy
operator.
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INTRODUCTION

One of the most important issues of quantum engineering is the construction of multi-
quantum well structures possessing desirable properties. This problem appears in different
contexts, ranging from the construction of quantum wells and superlattices to multilevel
computer logic [1, 2]. The progress in this ˇeld became possible due to the development
of technologies and techniques, such as crystal-growth techniques (e.g., molecular-beam-
epitaxy) for the production of a nonuniform semiconductors. The Schréodinger equation
with a space-variable-dependent effective mass is extensively used for investigation of the
electronic properties of semiconductor heterostructures [3Ä5].

DARBOUX TRANSFORMATIONS FOR SCHRéODINGER EQUATION
WITH A POSITION-DEPENDENT MASS

Quantum well potentials determine the main properties of these structures. Therefore, the
problem of reconstruction of quantum well potentials with predetermined energy spectrum is
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very important. In [6] an intertwining operator technique has been developed for quantum
systems described by the generalized Schréodinger equation in the form

Hφ(x) = Eφ(x), H = − 1
m∗(x)

d2

dx2
+ V (x), (1)

where m∗(x) is a position-dependent ®effective mass¯ and �
2/2 = 1.

The aim of this paper is to construct concrete exactly solvable potentials V (x) with
given position-dependent ®masses¯ on the base of the Darboux transformation and Liouville
transformation technique for the Schréodinger equation with the Hamiltonian in the form (1).
Suppose that the solution of the eigenvalue problem to Eq. (1) with the given potential V (x)
and position-dependent m∗(x) is known and we would like to solve a similar problem for
another Hamiltonian H̃ containing a new potential Ṽ (x) and a spectrum which differs from
the spectrum of the Hamiltonian (1) by a single quantum state:

H̃φ̃(x) = Eφ̃(x), H̃ = − 1
m∗(x)

d2

dx2
+ Ṽ (x). (2)

We start with standard intertwining relations

LH = H̃L, φ̃(x) = Lφ(x), (3)

where the operator L intertwines the Hamiltonians H and H̃.
As was shown in [6], the intertwining operator L, the transformed potential Ṽ and the

solutions φ̃ are given by

L =
1√
m∗

(
d

dx
+ K

)
, K = − d

dx
lnU , (4)

Ṽ = V +
1√
m∗

[
d2

dx2

1√
m∗ + 2

d

dx

(
1√
m∗K

)]
, (5)

φ̃ = Lφ =
1√
m∗

[
d

dx
− (ln U)

′
]

φ. (6)

Here U(x) is some ˇxed solution of (1) with E = −κ2. As in the case of the Schréodinger

equation, the potentials V and Ṽ , the corresponding functions φ(k, x) and φ̃(k, x), k2 = E ,
are related through the transformation operator L. The difference is that in our case L includes
a position-dependent mass (4). As a consequence, the new potential Ṽ and solutions φ̃ depend
on the effective mass m∗(x) (see (5), (6)). In order to reconstruct the quantum well potential
with the predetermined spectrum by using these formula, it is necessary to know the exact
solutions of Eq. (1) with the given m∗(x) and V (x). To obtain these solutions, we will use
the Liouville transformation. Let us start with the SturmÄLiouville equation (1) in a more
simple form with the potential V = 0 given on the interval [0, X ]

− 1
m∗(x)

d2

dx2
φ(x) = Eφ(x). (7)
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Introducing a new variable ξ = ξ(x) and a new function ψ(ξ)

m∗ = p2, p =
dξ

dx
, ξ =

1
C

x∫
p(x′) dx′,

C =
1
π

X∫
p(x′) dx′, φ(x) = |p|−1/2(ξ)ψ(ξ),

(8)

Eq. (7) can be reduced to the standard Schréodinger equation:

−ψ
′′
(ξ) + V (ξ)ψ(ξ) = Eψ(ξ), (9)

where the potential V (ξ) has the form:

V (ξ) =
1
2

[
p

′′

ξ

p
− 1

2

(
p

′

ξ

p

)2]
. (10)

The potential V (ξ) can be also represented as

V (ξ) =
N ′′(ξ)
N(ξ)

, N(ξ) = p1/2(ξ).

To construct exactly solvable models for the generalized Schréodinger equation (1), we can
do the following: ˇrst, we solve the Schréodinger equation with the given potential; second,
by using the inverse Liouville transformation, we ˇnd solutions to Eq. (7); at last, by using
the Darboux transformations (5), (6), we construct new potentials Ṽ (x) and solutions φ̃(x)
on the base of the obtained solutions to Eq. (7). In a particular case, when an effective
mass does not depend on a space variable, m∗(x) = m ≡ const, the derived generalized
Darboux transformations turn into the corresponding Darboux transformations for potentials
and solutions for the standard Schréodinger equation with a position-independent mass.

As an example, we choose the effective mass in the form

m∗(x) =
α2

(αx + β)4
. (11)

By using (8) and (10), we immediately ˇnd

p(x) =
α

(αx + β)2
, ξ(x) =

1
(αx + β)C

, V (ξ) = 0. (12)

In the ξ variable, therefore, we have the case of free moving V (ξ) = 0. The solutions with

zero boundary conditions at x = 0, ψ(ξ = 0) = 0, are ψ(ξ) =
sinkξ

k
, where k2 = E . In

accordance with (8), we get the solution to Eq. (7)

φ(k, x) =
C(αx + β)

k
√

α
sin

(
k

αx + β

)
. (13)
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Having found the exact solutions to Eq. (7), we can generate new potentials Ṽ with cor-
responding solutions to the generalized Schréodinger equation (2) on the base of Darboux
transformations (4)Ä(6).

Let us take the energy of transformation k2 = −κ2. It means k = iκ and κ is real and
positive. The corresponding solution is

U(x) =
C(αx + β)

κ
√

α
sinh

(
κ

αx + β

)
. (14)

According to (5) and (6) the transformed potential and solutions are determined as

Ṽ (x) =
2κ2

cosh2(κ/(αx + β)) − 1
, (15)

φ̃(k, x) =

=
C(αx + β)

[
−k cos

(
k

αx + β

)
sinh

(
κ

αx + β

)
+ κ sin

(
k

αx + β

)
cosh

(
κ

αx + β

)]
k
√

α sinh
(

κ

αx + β

) .

(16)

The built potential Ṽ (x) has a singularity at the point x in which cosh(κ/(αx+β)) = 1, i.e.,
at κ/(αx + β) = 0. To avoid the singularity at x � 0, one can take α > 0 and β > 0. The
solution to Eq. (2) at the energy of transformation can be obtained by using second linear
independent solution Ū to (7) (for details see [6])

η(x) = LÛ(x) =
1√

m∗(x)
1

U(x)
. (17)

Substitution of (14) and (11) into (17) gives us

η(x) =
κ(αx + β)

C
√

α sinh
(

κ

αx + β

) . (18)

One can get also second solution of (2) at the energy of transformation λ. By using Liouville's
formula, one gets

η̂(x) = η(x)

x∫
dx′|η2|−1 =

1√
m∗(x)U(x)

x∫
dx′ U(x′)m∗(x′)U(x′). (19)

We can consider the Schréodinger equation on a ˇnite interval ξ ∈ [0, d] with Dirichlet
boundary conditions at both ends ψ(ξ = 0) = 0 and ψ(ξ = d) = 0. In this case, we have the
same coupling between variables x and ξ as in (12) and d = 1/(αX + β), C = d/π. The
solution of the Schréodinger equation (9) with V (x) = 0 is

ψ(ξ) =
sin knξ

kn
, kn =

nπ

d
, n = 1, 2, . . .
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All given formulae for the solution to the generalized Schréodinger equation are valid with
the evident changing k → kn. The above procedure can be repeated as many times as it is
needed to construct a new potential and corresponding exact solutions.

Now let us consider a second-order Darboux transformation. The potential and corre-
sponding solutions can be presented as

V2(x) = V (x) +
2√

m∗(x)
d

dx
[
√

m∗(x) η2(x)U(x)], (20)

φ2(x) = φ(x) + η2(x)

x∫
dx′ U(x′)m∗(x′)φ(x′), (21)

where η2(x) is the solution at the energy of transformation k2 = −κ2

η2(x) = − C1U(x)

1 + C1

x∫
dx′ m∗(x′)U2(x′)

. (22)

Substitution of (14) into (22) gives us

η2(x) =
C1κ

2(αx + β) sinh
(

κ

αx + β

)
√

α

(
κ3 + C1

(
1
4
sinh

(
2κ

αx + β

)
− κ

2(αx + β)

)
+ C2

) , (23)

where C2 =
1
4
sinh

(
2κ

β

)
− κ

2β
and C1 can play the role of a normalization constant of the

bound state at E = −κ2. Clearly, using these η2(x), m∗(x) and U(x) in (20) and (21) we
construct new potential and pertinent solutions in a closed analytical form. For the potential
we get

V2(x) =
2(αx + β)2

α

d

dx

⎡⎢⎢⎣ C1 sinh2

(
κ

αx + β

)
(

κ3 + C1

(
1
4
sinh

(
2κ

αx + β

)
− κ

2(αx + β)

)
+ C2

)
⎤⎥⎥⎦ . (24)

The expression for the solution is more cumbersome, but it is evident how it is expressed in
terms of the effective mass m∗(x) and the obtained solutions U(x), φ(x) and η2(x).

One can take U in the form

U(x) =
αx + β

κ
cosh

(
κ

αx + β

)
. (25)

It corresponds to φ(ξ) = cosh (κξ)/κ that is the solution of the free Schréodinger equa-
tion. With using (5) and (6) we obtain a transformed potential and corresponding solutions
in the form

Ṽ (x) = − 2κ2

cosh2 (κ/(αx + β))
, (26)
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φ̃(k, x) =

=
C(αx + β)

[
−k cos

(
k

αx + β

)
cosh

(
κ

αx + β

)
+ κ sin

(
k

αx + β

)
sinh

(
κ

αx + β

)]
k
√

α cosh
(

κ

αx + β

) .

(27)

The solution to the transformed equation (2) can be obtained from (17) with U(x)
from (25)

η(x) =
κ(αx + β)

C
√

α cosh
(

κ

αx + β

) . (28)

It is clear how one gets the potential and solutions within the second-order Darboux transfor-
mations.

CONCLUSION

In this paper we have focused one's attention on concrete examples how to apply the
Darboux transformation technique for quantum systems with a position-dependent effective
mass, in order to generate potentials whose wave functions can be determined algebraically.
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