MULTILAYER EVOLUTION SCHEMES FOR THE FINITE-DIMENSIONAL QUANTUM SYSTEMS IN EXTERNAL FIELDS

O. Chuluunbaatar ${ }^{a}$, V. P. Gerdt ${ }^{a}$, A. A. Gusev ${ }^{a}$, M. S. Kaschiev ${ }^{\text {b }}$, V.A. Rostovtsev ${ }^{a}$, Y. Uwano ${ }^{c}$, S. I. Vinitsky ${ }^{a}$
${ }^{a}$ Joint Institute for Nuclear Research, Dubna
${ }^{b}$ Institute of Mathematics and Informatics, BAS, Sofia, Bulgaria
${ }^{c}$ Future University-Hakodate, Hakodate, Japan

Abstract

The operator-difference multilayer (ODML) schemes for solving the time-dependent Schrödinger equation (TDSE) till six order accuracy by a time step are presented. The reduced schemes for solving a set of the coupled TDSEs are devised by using a set of appropriate basis angular functions and a finite element method with respect to a hyperradial variable. Convergence by a number of the basis functions and efficiency of the numerical schemes are demonstrated in the case of an exactly solvable model of the two-dimensional oscillator in time-dependent electric fields.

Представлены операторно-разностные многослойные схемы для решения нестационарного уравнения Шредингера до шестого порядка точности по временной переменной. Выведены редуцированные схемы для решения набора связанных нестационарных уравнений Шредингера с помощью набора соответствующих угловых базисных функций и метода конечных элементов относительно гиперрадиальной переменной. Сходимость по числу базисных функций и эффективность численных схем демонстрируются в случае точно решаемой модели двухмерного осциллятора во внешних переменных электрических полях.

PACS: 03.67.Ac, 01.30.Cc, 03.67.-a

INTRODUCTION

Solving the TDSE with a required accuracy is needed for the control problems of quantum systems [1], the decay problem in nuclear physics [2], the ionization problems of atomic and molecular physics in pulse fields or impact collisions beyond a dipole approximation [3]. For solving the TDSE in a finite-dimensional region with respect to spacial variables one conventionally seeks a required wave-packet solution in a form of expansion over appropriate angular basis functions and further discretization of hyperradial equations, for example, the finite-difference [4], finite-element [5], spline [6] methods, etc.

Usually a rate convergence by a number of angular basis functions is controlled by solving corresponded stationary Schrödinger equation [7]. However, in some special cases of longrange effective potentials acting in asymptotic regions, like confinement potentials, a key problem consists in additional study [8]. So, using exact solvable models of the TDSE, one can have an additional experience in the field.

In this paper, a new computational method is applied to solve the TDSE, in which the unitary splitting algorithm with uniform time grids [9] is combined with an application of the Kantorovich or Galerkin reductions to a set of the TDSE by a hyperradial variable [5] and the finite-element method (FEM) [10] and an interpolation method in nonuniform spatial grids [5]. The efficiency, convergence and accuracy of the elaborated numerical schemes are confirmed by benchmark calculations of an exactly solvable model of the two-dimensional oscillator in time-dependent external fields [1].

1. ODML EVOLUTION SCHEME

Let us consider the d-dimensional TDSE with a self-adjoint Hamiltonian $H(\mathbf{r}, t)$ and a governing function $f(\mathbf{r}, t)$ on the time interval $t \in\left[t_{0}, T\right]$:

$$
\begin{gather*}
\imath \frac{\partial \Psi(\mathbf{r}, t)}{\partial t}=H(\mathbf{r}, t) \Psi(\mathbf{r}, t), \quad \Psi\left(\mathbf{r}, t_{0}\right)=\Psi_{0}(\mathbf{r}), \quad\|\Psi\|^{2}=\int|\Psi(\mathbf{r}, t)|^{2} d \mathbf{r}=1 \tag{1}\\
H(\mathbf{r}, t)=H_{0}(\mathbf{r})+f(\mathbf{r}, t), \quad H_{0}(\mathbf{r})=-\frac{1}{2} \nabla_{\mathbf{r}}^{2}+U(\mathbf{r}), \quad f\left(\mathbf{r}, t_{0}\right) \equiv 0 \tag{2}
\end{gather*}
$$

We also require continuity of derivatives of the control function $f(\mathbf{r}, t)$ and continuity of solutions $\Psi(\mathbf{r}, t) \in \mathbf{W}_{2}^{1}\left(\mathbf{R}^{d} \otimes\left[t_{0}, T\right]\right)$ and $\Psi_{0}(\mathbf{r}) \in \mathbf{W}_{2}^{1}\left(\mathbf{R}^{d}\right)$. We solve the above Cauchy problem (1), (2) in the uniform grid $\Omega_{\tau}\left[t_{0}, T\right]=\left\{t_{0}, t_{k+1}=t_{k}+\tau, t_{K}=T\right\}$ with time step, τ, in the time interval $\left[t_{0}, T\right]$ by means of the ODML calculation scheme [9] rewritten after factorization of a gauge transformation, with operator S, in the following symmetric form:

$$
\begin{align*}
& \psi_{k}^{0}=\Psi\left(t_{k}\right), \\
& \left(I-\frac{\bar{\alpha}_{\eta}^{(L)} S_{k}^{(M)}}{2 L}\right) \psi_{k}^{\eta / L}=\left(I-\frac{\alpha_{\eta}^{(L)} S_{k}^{(M)}}{2 L}\right) \psi_{k}^{(\eta-1) / L}, \quad \eta=1, \ldots, L, \\
& \tilde{\psi}_{k}^{0}=\psi_{k}^{1}, \\
& \left(I+\frac{\tau \bar{\alpha}_{\zeta}^{(M)} \tilde{A}_{k}^{(M)}}{2 M}\right) \tilde{\psi}_{k}^{\xi / M}=\left(I+\frac{\tau \alpha_{\zeta}^{(M)} \tilde{A}_{k}^{(M)}}{2 M}\right) \tilde{\psi}_{k}^{(\xi-1) / M}, \quad \zeta=1, \ldots, M, \tag{3}\\
& \psi_{k}^{0}=\tilde{\psi}_{k}^{1}, \\
& \left(I+\frac{\bar{\alpha}_{\eta}^{(L)} S_{k}^{(M)}}{2 L}\right) \psi_{k}^{\eta / L}=\left(I+\frac{\alpha_{\eta}^{(L)} S_{k}^{(M)}}{2 L}\right) \psi_{k}^{(\eta-1) / L}, \quad \eta=1, \ldots, L, \\
& \Psi\left(t_{k+1}\right)=\psi_{k}^{1} .
\end{align*}
$$

The coefficients, $\alpha_{\zeta}^{(M)}(\zeta=1, \ldots, M, M \geqslant 1)$, stand for the roots of the polynomial equation, ${ }_{1} F_{1}(-M,-2 M, 2 M \imath / \alpha)=0$, where ${ }_{1} F_{1}$ is the confluent hypergeometric function. This scheme has the accuracy of order $O\left(\tau^{2 M}\right)$ with respect to time step τ, if we choose $L=[M / 2]$. Below we consider the scheme with $M \leqslant 3$, that is sufficient for
a practical utilization. For the Hamiltonian given in (2) the operators $\tilde{A}_{k}^{(M)}$ and $S_{k}^{(M)}$ read as

$$
\begin{align*}
\tilde{A}_{k}^{(1)} & =H, \quad S_{k}^{(1)}=0, \\
\tilde{A}_{k}^{(2)} & =\tilde{A}_{k}^{(1)}+G^{(2)}, \quad S_{k}^{(2)}=S_{k}^{(1)}+Z^{(2)}, \tag{4}\\
\tilde{A}_{k}^{(3)} & =\tilde{A}_{k}^{(2)}+G^{(3)}-\frac{\tau^{4}}{720} \nabla_{\mathbf{r}}\left(\nabla_{\mathbf{r}}^{2} \ddot{f}\right) \nabla_{\mathbf{r}}, \quad S_{k}^{(3)}=S_{k}^{(2)}+Z^{(3)}+\frac{\tau^{4}}{720} \nabla_{\mathbf{r}}\left(\nabla_{\mathbf{r}}^{2} \dot{f}\right) \nabla_{\mathbf{r}}, \\
G^{(2)} & =\frac{\tau^{2}}{24} \ddot{f}, \quad Z^{(2)}=\frac{\tau^{2}}{12} \dot{f}, \\
G^{(3)} & =\frac{\tau^{4}}{1920} \dddot{f}+\frac{\tau^{4}}{1440}\left(\nabla_{\mathbf{r}} \dot{f}\right)^{2}-\frac{\tau^{4}}{720}\left(\nabla_{\mathbf{r}} \dddot{f}\right)\left(\nabla_{\mathbf{r}}(U+f)\right)-\frac{\tau^{4}}{2880}\left(\nabla_{\mathbf{r}}^{4} \dddot{f}\right), \tag{5}\\
Z^{(3)} & =\frac{\tau^{4}}{480} \dddot{f}+\frac{\tau^{4}}{720}\left(\nabla_{\mathbf{r}} \dot{f}\right)\left(\nabla_{\mathbf{r}}(U+f)\right)+\frac{\tau^{4}}{2880}\left(\nabla_{\mathbf{r}}^{4} \dot{f}\right),
\end{align*}
$$

where $f \equiv f\left(\mathbf{r}, t_{c}\right),\left.\dot{f} \equiv \partial_{t} f(\mathbf{r}, t)\right|_{t=t_{c}}, \ldots, U \equiv U(\mathbf{r})$ and $t_{c}=t_{k}+\tau / 2$.

2. REDUCED ODML SCHEME

In the framework of a coupled-channel hyperspherical adiabatic approach [5], known in mathematics as the Kantorovich method [4], the partial wave function $\Psi(\mathbf{r}, t)$ is expanded over the one-parametric basis functions $\left\{B_{j}(\Omega ; r)\right\}_{j=1}^{N}$

$$
\begin{equation*}
\Psi(\mathbf{r}, t)=\sum_{j=1}^{N} B_{j}(\Omega ; r) \chi_{j}(r, t) \tag{6}
\end{equation*}
$$

In Eq. (6), the vector-function $\chi(r, t)=\left(\chi_{1}(r, t), \ldots, \chi_{N}(r, t)\right)^{T}$ is unknown, and the surface function $\mathbf{B}(\Omega ; r)=\left(B_{1}(\Omega ; r), \ldots, B_{N}(\Omega ; r)\right)^{T}$ is an orthonormal basis with respect to the set of angular coordinates Ω for each value of hyperradius r which is treated here as a given parameter. The functions $B_{j}(\Omega ; r)$ are determined as solutions of the following parametric eigenvalue problem [7,11]:

$$
\begin{equation*}
\left(-\frac{1}{2 r^{2}} \hat{\Lambda}_{\Omega}^{2}+U(\mathbf{r})\right) B_{j}(\Omega ; r)=E_{j}(r) B_{j}(\Omega ; r) \tag{7}
\end{equation*}
$$

where the generalized self-adjoint angular momentum operator $\hat{\Lambda}_{\Omega}^{2}$ corresponds to the d-dimensional Laplace operator $\nabla_{\mathbf{r}}^{2}$. The eigenfunctions of this problem satisfy the same boundary conditions in angular variable Ω for $\Psi(\mathbf{r}, t)$ and are normalized as follows:

$$
\begin{equation*}
\left\langle B_{i}(\Omega ; r) \mid B_{j}(\Omega ; r)\right\rangle_{\Omega}=\int \bar{B}_{i}(\Omega ; r) B_{j}(\Omega ; r) d \Omega=\delta_{i j} \tag{8}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker symbol.

After minimizing the Rayleigh-Ritz variational functional (see [11]), and using expansion (6), Eq. (1) is reduced to a finite set of N ordinary second-order differential equations

$$
\begin{gather*}
\imath \mathbf{I} \frac{\partial \boldsymbol{\chi}(r, t)}{\partial t}=\mathbf{H}(r, t) \boldsymbol{\chi}(r, t), \quad \boldsymbol{\chi}\left(r, t_{0}\right)=\chi_{0}(r) \\
\mathbf{H}(r, t)=-\frac{1}{2 r^{d-1}} \mathbf{I} \frac{\partial}{\partial r} r^{d-1} \frac{\partial}{\partial r}+\mathbf{V}(r, t)+\mathbf{Q}(r) \frac{\partial}{\partial r}+\frac{1}{r^{d-1}} \frac{\partial r^{d-1} \mathbf{Q}(r)}{\partial r} \tag{9}
\end{gather*}
$$

Here $\mathbf{V}(r, t), \mathbf{I}$ and $\mathbf{Q}(r)$ are matrices of dimension $N \times N$, whose elements are given by the relation

$$
\begin{gather*}
V_{i j}(r, t)=\frac{E_{i}(r)+E_{j}(r)}{2} \delta_{i j}+\frac{1}{2}\left\langle\left.\frac{\partial B_{i}(\Omega ; r)}{\partial r} \right\rvert\, \frac{\partial B_{j}(\Omega ; r)}{\partial r}\right\rangle_{\Omega}+ \\
+\left\langle B_{i}(\Omega ; r)\right| f(\mathbf{r}, t)\left|B_{j}(\Omega ; r)\right\rangle_{\Omega} \\
I_{i j}=\delta_{i j}, \quad Q_{i j}(r)=-\frac{1}{2}\left\langle B_{i}(\Omega ; r) \left\lvert\, \frac{\partial B_{j}(\Omega ; r)}{\partial r}\right.\right\rangle_{\Omega} \tag{10}
\end{gather*}
$$

The boundary conditions and normalization condition have the form

$$
\begin{gather*}
\chi(0, t)=0, \quad \text { if } \quad \min _{1 \leqslant j \leqslant N} \lim _{r \rightarrow 0} r^{d-1}\left|V_{j j}(r, t)\right|=\infty \\
\lim _{r \rightarrow 0} r^{d-1}\left(\mathbf{I} \frac{\partial}{\partial r}-\mathbf{Q}(r)\right) \chi(r, t)=0, \quad \text { if } \min _{1 \leqslant j \leqslant N} \lim _{r \rightarrow 0} r^{d-1}\left|V_{j j}(r, t)\right|<\infty \tag{11}\\
\lim _{r \rightarrow \infty} \chi(r, t)=0 \\
\int_{0}^{\infty}(\bar{\chi}(r, t))^{T} \chi(r, t) r^{d-1} d r=1 \tag{12}
\end{gather*}
$$

In this case we obtain the finite $N \times N$ matrix operator-difference scheme for unknown vector-functions $\boldsymbol{\chi}(r, t)$, analogous to (3)

$$
\begin{equation*}
I \mapsto \mathbf{I}, \quad \tilde{A}_{k}^{(M)} \mapsto \tilde{\mathbf{A}}_{k}^{(M)}, \quad S_{k}^{(M)} \mapsto \tilde{\mathbf{S}}_{k}^{(M)} \tag{13}
\end{equation*}
$$

where $\tilde{\mathbf{A}}_{k}^{(M)}$ and $\tilde{\mathbf{S}}_{k}^{(M)}$ are matrix operators of dimension $N \times N$ given by the relation

$$
\begin{array}{rlrl}
\tilde{\mathbf{A}}_{k}^{(1)} & =\mathbf{H}\left(r, t_{c}\right), & \tilde{\mathbf{S}}_{k}^{(1)}=\mathbf{0} \\
\tilde{\mathbf{A}}_{k}^{(2)} & =\tilde{\mathbf{A}}_{k}^{(1)}+\tilde{\mathbf{G}}^{(2)}, & \tilde{\mathbf{S}}_{k}^{(2)}=\tilde{\mathbf{S}}_{k}^{(1)}+\tilde{\mathbf{Z}}^{(2)} \\
\tilde{\mathbf{A}}_{k}^{(3)} & =\tilde{\mathbf{A}}_{k}^{(2)}+\tilde{\mathbf{G}}^{(3)}+\dot{\mathbf{C}}_{k}^{(3)}, & \tilde{\mathbf{S}}_{k}^{(3)}=\tilde{\mathbf{S}}_{k}^{(2)}+\tilde{\mathbf{Z}}^{(3)}-\mathbf{C}_{k}^{(3)} \\
\tilde{G}_{i j}^{(M)} & =\left\langle B_{i}(\Omega ; r)\right| G^{(M)}\left|B_{j}(\Omega ; r)\right\rangle_{\Omega} & & \\
\tilde{Z}_{i j}^{(M)} & =\left\langle B_{i}(\Omega ; r)\right| Z^{(M)}\left|B_{j}(\Omega ; r)\right\rangle_{\Omega} & & \tag{14}
\end{array}
$$

The operator $\mathbf{C}_{k}^{(3)}$ is equal to zero for $\left(\nabla_{\mathbf{r}}^{2} f\right)=0$ and in other case has the form

$$
\begin{equation*}
\mathbf{C}_{k}^{(3)}=\frac{\tau^{4}}{720}\left(-\frac{1}{r^{d-1}} \frac{\partial}{\partial r} r^{d-1} \tilde{\mathbf{D}}(r) \frac{\partial}{\partial r}+\tilde{\mathbf{V}}(r)-\tilde{\mathbf{Q}}^{T}(r) \frac{\partial}{\partial r}+\frac{1}{r^{d-1}} \frac{\partial r^{d-1} \tilde{\mathbf{Q}}(r)}{\partial r}\right) \tag{15}
\end{equation*}
$$

where $\tilde{\mathbf{D}}(r), \tilde{\mathbf{V}}(r)$ and $\tilde{\mathbf{Q}}(r)$ are matrices of dimension $N \times N$, whose elements are given by the relations

$$
\begin{align*}
\tilde{D}_{i j}(r)= & \left\langle B_{i}(\Omega ; r)\right|\left(\nabla_{\mathbf{r}}^{2} \dot{f}\right)\left|B_{j}(\Omega ; r)\right\rangle_{\Omega} \\
\tilde{V}_{i j}(r)= & \left\langle\frac{\partial B_{i}(\Omega ; r)}{\partial r}\right|\left(\nabla_{\mathbf{r}}^{2} \dot{f}\right)\left|\frac{\partial B_{j}(\Omega ; r)}{\partial r}\right\rangle_{\Omega}+ \\
& \quad+\frac{1}{r^{2}}\left\langle\hat{\boldsymbol{\Lambda}}_{\Omega} B_{i}(\Omega ; r)\right|\left(\nabla_{\mathbf{r}}^{2} \dot{f}\right)\left|\hat{\boldsymbol{\Lambda}}_{\Omega} B_{j}(\Omega ; r)\right\rangle_{\Omega} \tag{16}\\
\tilde{Q}_{i j}(r)= & -\left\langle B_{i}(\Omega ; r)\right|\left(\nabla_{\mathbf{r}}^{2} \dot{f}\right)\left|\frac{\partial B_{j}(\Omega ; r)}{\partial r}\right\rangle_{\Omega}
\end{align*}
$$

3. THE EXACTLY SOLVABLE TWO-DIMENSIONAL MODEL

The TDSE for a two-dimensional oscillator (or a charged particle in a constant uniform magnetic field) in the external governing electric field with components $E_{1}(t)$ and $E_{2}(t)$ nonequal to zero in the finite time interval $t \in[0, T]$ in the dipole approximation and atomic units has the form [1]

$$
\left.\begin{array}{rl}
\imath \frac{\partial}{\partial t} \phi\left(x_{1}, y_{1}, t\right)=- & \frac{1}{2}(
\end{array} \frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial y_{1}^{2}}\right) \phi\left(x_{1}, y_{1}, t\right)+\frac{\imath \omega}{2}\left(x_{1} \frac{\partial}{\partial y_{1}}-y_{1} \frac{\partial}{\partial x_{1}}\right) \phi\left(x_{1}, y_{1}, t\right)+.
$$

The transformation to a rotated coordinate system with frequency $\omega / 2, x_{1}=x \cos (\omega t / 2)+$ $y \sin (\omega t / 2), y_{1}=y \cos (\omega t / 2)-x \sin (\omega t / 2)$, and polar coordinates $x=r \cos (\theta), y=$ $r \sin (\theta)$, leads to the following equation:

$$
\begin{align*}
\imath \frac{\partial}{\partial t} \phi(r, \theta, t)=\left[-\frac{1}{2} \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial}{\partial r}-\frac{1}{2} \frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}\right. & +\frac{\omega^{2} r^{2}}{8}+ \\
& \left.+r\left(f_{1}(t) \cos (\theta)+f_{2}(t) \sin (\theta)\right)\right] \phi(r, \theta, t) \tag{18}
\end{align*}
$$

where $f_{1}(t)=-E_{1}(t) \cos (\omega t / 2)+E_{2}(t) \sin (\omega t / 2), f_{2}(t)=-E_{1}(t) \sin (\omega t / 2)-E_{2}(t) \times$ $\times \cos (\omega t / 2)$. Using the Galerkin projection of solutions by means of the angular basis

Fig. 1. The absolute values of the difference $\left|\phi_{\text {ext }}(x, y, t)-\phi(x, y, t)\right|$ at $t=2(a)$ and the test results of the discrepancy functions $\operatorname{Er}(t, j), j=1,2,3$ (dash-dotted, dashed and solid curves) for the approximations of order $M=1,2,3$ with the time step $\tau=0.00625$ (b)
functions $B_{j}(\theta)$

$$
\begin{align*}
\phi(r, \theta, t) & =\sum_{j=1}^{N} B_{j}(\theta) \chi_{j}(r, t), \quad B_{1}(\theta)=\frac{1}{\sqrt{2 \pi}} \tag{19}\\
B_{2 j}(\theta) & =\frac{\sin (j \theta)}{\sqrt{\pi}}, \quad B_{2 j+1}(\theta)=\frac{\cos (j \theta)}{\sqrt{\pi}}
\end{align*}
$$

we arrive at the matrix equation (9) with $\mathbf{Q}(r) \equiv 0$ for unknown coefficients $\left\{\chi_{j}(r, t)\right\}_{j=1}^{N}$ in the interval $t \in[0, T]$. The initial functions $\chi_{j}(r, t)$ at $t=0$ are chosen in the form

$$
\begin{equation*}
\chi_{1}(r, 0)=\sqrt{\omega} \exp \left(-\frac{1}{4} \omega r^{2}\right), \quad \chi_{j}(r, 0) \equiv 0, \quad j \geqslant 2 \tag{20}
\end{equation*}
$$

Note that Eq. (17) has an exact solution $\phi_{\text {ext }}(x, y, t)$ for a partial choice of the field $E_{j}(t)=$ $=a_{j} \sin \left(\omega_{j} t\right)$ which provides a good test example to examine efficiency of numerical algorithms and a rate of convergence of the projection by a number N of radial equations and by time T. We choose $\omega=4 \pi, \omega_{1}=3 \pi, \omega_{2}=5 \pi, a_{1}=24$ and $a_{2}=9$. For these parameters the absolute value of the solution $\phi(r, \theta, t)$ should be periodical with period $T=2$.

To approximate the solution $\chi_{j}(r, t)$ in the variable r, we used the finite-element grid $\hat{\Omega}_{r}\left[r_{\text {min }}, r_{\max }\right]=\left\{r_{\min }=0,(120), 1.5,(60), r_{\max }=4\right\}$ and time step $\tau=0.0125$, where the number in the brackets denotes the number of finite-element in the intervals. Between each two nodes we apply the Lagrange interpolation polynomials to the $p=8$ order. To analyze the convergence on a sequence of three double-crowding time grids, we define the auxiliary time-dependent discrepancy functions $\operatorname{Er}(t, j), j=1,2,3$, and the Runge coefficient $\beta(t)$

$$
\begin{align*}
\operatorname{Er}^{2}(t, j) & =\sum_{\nu=1}^{N} \int_{0}^{r_{\max }}\left|\chi_{\nu}(r, t)-\chi_{\nu}^{\tau_{j}}(r, t)\right|^{2} r d r \tag{21}\\
\beta(t) & =\log _{2}\left|\frac{\operatorname{Er}(t, 1)-\operatorname{Er}(t, 2)}{\operatorname{Er}(t, 2)-\operatorname{Er}(t, 3)}\right|
\end{align*}
$$

where $\chi_{\nu}^{\tau_{j}}(r, t)$ are the numerical solutions with the time step $\tau_{j}=\tau / 2^{j-1}$. For the function $\chi_{\nu}(r, t)$ one can use the numerical solution with the time step $\tau_{4}=\tau / 8$. Hence, we obtain the numerical estimates for the convergence order of the numerical scheme (13), that strongly correspond to theoretical ones $\beta(t) \equiv \beta_{M}(t) \approx 2 M$. Figure 1 displays absolute values of the difference $\left|\phi_{\text {ext }}(x, y, t)-\phi(x, y, t)\right|$ shown at $t=2$ and behavior of the discrepancy functions $\operatorname{Er}(t ; j), j=1,2,3$, and the convergence rates $\beta_{M}(t), M=1,2,3$, at some time values t for $N=30$, respectively. The figures show that one can solve a key problem: a control of needed number N of angular basis functions should be done by solving not only stationary Schrödinger equation [7], but also by solving the exact solvable TDSE. Such benchmark calculations give an opportunity to control distribution of moving region by space variables which are covered by time-dependent wave packet expanded by the angular basis.

CONCLUSION

The developed schemes provide a useful tool for calculations of threshold phenomena in the formation and ionization of (anti)hydrogen-like atoms and ions in magnetic traps [3], quantum dots in magnetic field [12], channelling processes [13,14], potential scattering with confinement potentials [8] and control problems for finite-dimensional quantum systems [1].

Acknowledgements. This work was partly supported by Grant I-1402/2004-2007 of the Bulgarian Foundation for Scientific Investigations, theme 09-6-1060-2005/2009 «Mathematical Support of Experimental and Theoretical Studies Conducted by JINR» and Scientific Center for Applied Research of JINR.

REFERENCES

1. Butkovskiy A. G., Samoilenko Yu. I. Control of Quantum-Mechanical Processes and Systems. Dordrecht Hardbound: Kluwer Acad. Publ., 1990.
2. Misicu S., Rizea M., Greiner W. // J. Phys. G. 2001. V.27. P.993-1003.
3. Serov V. V. et al. // Proc. of SPIE. 2007. V.6537. P. 65370Q-1-65370Q-7.
4. Puzynin I. V. et al. // Part. Nucl. 2007. V.38. P. 144-232.
5. Chuluunbaatar O. et al. // Comp. Phys. Commun. 2007. V. 177. P. 649-675.
6. Pupyshev V. V. // Part. Nucl. 2004. V. 35. P. 256-347.
7. Chuluunbaatar O. et al. // Comp. Phys. Commun. 2007; doi:10.1016/j.cpc.2007.09.005.
8. Melezhik V. S., Kim J. I., Schmelcher P. // Phys. Rev. A. 2007. V.76. P. 053611-1-053611-15.
9. Gusev A. et al. // Part. Nucl., Lett. 2007. V.4. P. 253-259.
10. Bathe K.J. Finite-Element Procedures in Engineering Analysis. Prentice Hall; N. Y., Englewood Cliffs, 1982.
11. Abrashkevich A. G., Kaschiev M. S., Vinitsky S. I. // J. Comp. Phys. 2000. V. 163. P. 328-348.
12. Sarkisyan H. A. // Mod. Phys. Lett. B. 2002. V.16. P. 835-841.
13. Demkov Yu. N., Meyer J. D. // Eur. Phys. J. B. 2004. V.42. P. 361-365.
14. Kalandarov Sh. A. et al. // Phys. Rev. E. 2007. V.75. P.031115-1-031115-16.
