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GEOMETRIZATION OF QUANTUM PHYSICS

O. A. Ol'khov1

N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow

It is shown that the Dirac equation for free particle can be considered as a description of speciˇc dis-
tortion of the space Euclidean geometry (space topological defect). This approach is based on possibility
of interpretation of the wave function as vector realizing representation of the fundamental group of the
closed topological spaceÄtime 4-manifold. Mass and spin appear to be topological invariants. Such a
concept explains all so-called ®strange¯ properties of quantum formalism: probabilities, wave-particle
duality, nonlocal instantaneous correlation between noninteracting particles (EPR-paradox) and so on.
Acceptance of suggested geometrical concept means rejection of atomistic concept where all matter
is considered as consisting of more and more small elementary particles. There are no any particles
a priori, before measurement: the notions of particles appear as a result of classical interpretation of the
contact of the region of the curved space with a device.

�μ± § ´μ, ÎÉμ Ê· ¢´¥´¨¥ „¨· ±  ¤²Ö ¸¢μ¡μ¤´μ° Î ¸É¨ÍÒ ³μ¦¥É ¡ÒÉÓ · ¸¸³μÉ·¥´μ ± ± μ¶¨¸ -
´¨¥ ¸¶¥Í¨Ë¨Î¥¸±μ£μ ¨¸± ¦¥´¨Ö Ô¢±²¨¤μ¢μ° £¥μ³¥É·¨¨ Ë¨§¨Î¥¸±μ£μ ¶·μ¸É· ´¸É¢  (¶·μ¸É· ´¸É¢¥´-
´μ£μ Éμ¶μ²μ£¨Î¥¸±μ£μ ¤¥Ë¥±É ). �·¥¤² £ ¥³Ò° ¶μ¤Ìμ¤ μ¸´μ¢ ´ ´  ¢μ§³μ¦´μ¸É¨ ¨´É¥·¶·¥É Í¨¨
¢μ²´μ¢μ° ËÊ´±Í¨¨ ± ± ¢¥±Éμ· , ·¥ ²¨§ÊÕÐ¥£μ ¶·¥¤¸É ¢²¥´¨¥ ËÊ´¤ ³¥´É ²Ó´μ° £·Ê¶¶Ò § ³±´Ê-
Éμ£μ ¶·μ¸É· ´¸É¢¥´´μ-¢·¥³¥´´μ£μ Éμ¶μ²μ£¨Î¥¸±μ£μ ³´μ£μμ¡· §¨Ö. Œ ¸¸  ¨ ¸¶¨´ Ö¢²ÖÕÉ¸Ö Éμ-
¶μ²μ£¨Î¥¸±¨³¨ ¨´¢ ·¨ ´É ³¨. ’ ±μ° ¶μ¤Ìμ¤ μ¡ÑÖ¸´Ö¥É ¢¸¥ ¨·· Í¨μ´ ²Ó´Ò¥ ¸¢μ°¸É¢  ±¢ ´Éμ¢μ£μ
Ëμ·³ ²¨§³ : ¢¥·μÖÉ´μ¸É¨, ±μ·¶Ê¸±Ê²Ö·´μ-¢μ²´μ¢μ° ¤Ê ²¨§³, ´¥²μ± ²Ó´ÊÕ ³£´μ¢¥´´ÊÕ ±μ··¥²ÖÍ¨Õ
´¥¢§ ¨³μ¤¥°¸É¢ÊÕÐ¨Ì Î ¸É¨Í (���-¶ · ¤μ±¸) ¨ É. ¤. �·¨´ÖÉ¨¥ ¶·¥¤² £ ¥³μ° £¥μ³¥É·¨Î¥¸±μ° ±μ´-
Í¥¶Í¨¨ μ§´ Î ¥É μÉ± § μÉ  Éμ³¨§³  Å Ë¨§¨Î¥¸±μ° ¶ · ¤¨£³Ò, ¸μ£² ¸´μ ±μÉμ·μ° ³ É¥·¨Ö ¸μ¸Éμ¨É
¨§ ¢¸¥ ¡μ²¥¥ ¨ ¡μ²¥¥ ³¥²±¨Ì Ô²¥³¥´É ·´ÒÌ Î ¸É¨Í. ‚ · ³± Ì ´μ¢μ° ¶ · ¤¨£³Ò Î ¸É¨ÍÒ a priori, ¤μ
¨§³¥·¥´¨Ö, ´¥ ¸ÊÐ¥¸É¢ÊÕÉ: ¶·¥¤¸É ¢²¥´¨¥ μ ´¨Ì ¢μ§´¨± ¥É ± ± ·¥§Ê²ÓÉ É ¨´É¥·¶·¥É Í¨¨ ¢ · ³± Ì
±² ¸¸¨Î¥¸±¨Ì ¶μ´ÖÉ¨° ±μ´É ±É  ¨¸±·¨¢²¥´´μ° μ¡² ¸É¨ ¶·μ¸É· ´¸É¢  ¸ ¨§³¥·¨É¥²Ó´Ò³ ¶·¨¡μ·μ³.
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1. TOPOLOGICAL INTERPRETATION
OF THE DIRAC EQUATION

This equation has the following symbolic form (see, e.g., [1]):

iγμ∂μψ = mψ, (1)

where ∂μ = ∂/∂xμ, μ = 1, 2, 3, 4, ψ(x) is the four-component Dirac bispinor, x1 = t, x2 =
x, x3 = y, x4 = z, and γμ are four-row Dirac matrices. The summation in Eq. (1) goes over
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the repeating indices with a signature (1,−1,−1,−1). Here, � = c = 1. For deˇnite values
of 4-momentum pμ, the solution to Eq. (1) has the form of the plane wave

ψ = u(pμ) exp (−ipμxμ), (2)

where u(pμ) is a normalized bispinor. Substitution of (2) in Eq. (1) gives

p2
1 − p2

2 − p2
3 − p2

4 = m2. (3)

Let us consider transformation properties of the Dirac bispinor. It is known that there may
be established correspondence between every kind of tensors and some class of geometrical
objects in the sense that these tensors deˇne invariant properties of the above objects. For
example, usual vectors correspond to simplest geometrical objects Å to points [2], and this
is the reason why Newtonian mechanics uses vectors within its formalism. From this point of
view, spinors correspond to nonorientable geometrical object (see, e.g., [3]). Therefore, we
suppose that spinors are used in Eq. (1), because this equation describes some nonorientable
geometrical object and ®spin = 1/2¯ is a formal expression of the nonorientable property of
the object.

To deˇne properties of the proposed geometrical object more exactly we consider more
precisely the symmetry properties of the solution of Eq. (1). We rewrite function (2) and
relation (3) in the form

ψ = u(pμ) exp (−2πixμλ−1
μ ), (4)

λ−2
1 − λ−2

2 − λ−2
3 − λ−2

4 = λ−2
m , λμ = 2πp−1

μ , λm = 2πm−1. (5)

Function (4) is an invariant with respect to coordinates transformations

x′
μ = xμ + nμλμ, nμ = 0,±1,±2, . . . (6)

Transformations (6) can be considered as elements of the discrete group of translations
operating in the 4-space where wave function (4) is deˇned. Then function (4) can be
considered as a vector realizing this group representation.

As a bispinor, function (4) realizes representation of one more group of symmetry trans-
formations of 4-space. Being a four-component spinor, ψ(x) is related to the matrices γμ by
the equation (see, e.g., [4])

ψ′(x′) = γμψ(x),

where x ≡ (x1, x2, x3, x4), and x′ ≡ (x1,−x2,−x3,−x4) for μ = 1, x′ ≡ (−x1, x2,
−x3,−x4) for μ = 2, and so on. This means that the matrices γμ are the matrix repre-
sentation of the group of re
ections along three axes perpendicular to the xμ axis, and the
Dirac bispinors realize this representation.

Taken together, the above two groups form a group of four sliding symmetries with
perpendicular axes (sliding symmetry means translations plus corresponding re
ections). The
physical spaceÄtime does not have such a symmetry. So, this group may operate only in
some auxiliary space. On the other hand, it is known that discrete groups operating in
some space can re
ect a symmetry of geometrical objects that have nothing in common with
this space. It will be the case when such a space is a universal covering space of some
closed topological manifold. Universal covering spaces are auxiliary spaces that are used in



92 Ol'khov O. A.

topology for the description of closed manifolds, because discrete groups operating in these
spaces are isomorphic to fundamental groups of manifolds Å groups whose elements are
different classes of closed paths on manifolds (so-called π1 group [5, 6]). We assume that
function (4) realizes a representation of the fundamental group of some closed nonorientable
topological 4-manifold Å a speciˇc curved part of the spaceÄtime. Equation (1) imposes
limitations (5) on the possible values of the fundamental group parameters λμ. SpaceÄtime
plays also the role of a universal covering space for the above manifold.

At the present time, only two-dimensional Euclidean closed manifolds are classiˇed in
detail, and their fundamental groups and universal covering planes are identiˇed [5]. There-
fore, we have no opportunity for rigorous consideration of speciˇc properties of suggested
pseudo-Euclidean 4-manifold. But qualitative properties, explaining main ideas of new in-
terpretation, can be investigated using one of the advantages of geometrical approach Å
possibility of employment of low-dimensional analogies. Using these analogies we will show
within elementary topology that the above-mentioned 4-manifold can represent propagation
of the space topological defect that can demonstrate stochastic properties of a single quantum
particle.

2. STOCHASTIC BEHAVIOR

Consider the simplest example of closed topological manifolds Å one-dimensional mani-
fold homeomorphic to a circle with given perimeter length λ. The closed topological manifold
is representable by any of its possible deformations (without pasting) that conserve manifold's
continuity, and we will see that just this property explains appearance of probabilities in
quantum formalism. For simplicity we consider plane deformations of the circle (some of the
possible deformations are shown in Fig. 1).

Fig. 1

To use concrete simple calculations, we consider only all possible manifold's deformations
that have a shape of ellipse with perimeter length λ. The equation for the ellipse on a Euclidean
plane has the form

x2

a2
+

y2

b2
= 1, (7)

where all possible values of the semiaxes a and b are connected with the perimeter length λ
by the known approximate relation

λ � π[1, 5(a + b) − (ab)1/2]. (8)

This means that the range of all possible values of a is deˇned by the inequality amin � a �
amax � λ/1, 5π, amin � amax.

In the pseudo-Euclidean two-dimensional ®spaceÄtime¯, the equation for our ellipses has
the form of the equation for hyperbola (after substitution y = it)

x2

a2
− t2

b2
= 1, (9)
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and this equation deˇnes the dependence on time t for a position of point x of the manifold
corresponding to deˇnite a. At t = 0, x = ±a; that is, our manifold is represented by the
two point sets in one-dimensional Euclidean space, and the dimensions of these point sets are
deˇned by all possible values of a. So, at t = 0, the manifold is represented by two regions
of the one-dimensional Euclidean space amin � |x| = a � amax. It can easily be shown that
at t �= 0 these regions increase and move along the x axis in opposite directions.

All another possible deformations of our circle will be obviously represented by points
of the same region, and every such a point can be considered as a possible position of the
®quantum object¯ described by our manifold. All manifold's deformations are realized with
some probabilities depending on external conditions. In the considered case of free particle
all deformations are realized with equal probabilities Å there are no reasons for another
suggestion. Therefore, all possible positions of the point-like object into the region are
realized with equal probabilities. So, this example shows the possibility of the consideration
of the above object as a point with probability distribution of its positions in closed region of
the space as it is suggested within standard representation of quantum particles.

It should be stressed that within suggested approach stochastic behavior is a property of
a single quantum particle: the role of statistical ensemble plays here the ensemble of all
possible topological realization of the same particle.

3. TOPOLOGICAL DEFECT. WAVE-CORPUSCULAR PROPERTIES

The above example does not explain what geometrical properties allow us to differ points
of the moving region from neighbour points of the Euclidean space making them observable.
To answer this question we consider more complex analogy of the closed 4-manifold Å two-
dimensional torus. In Euclidean 3-space such a torus is denoted as topological production
of two circles Å S1 × S1. The role of different manifold's deformations as a reason for
stochastic behavior was considered in Sec. 2. Therefore, now we restrict our consideration to
one simplest conˇguration when one of S1 is a circle in the XY plane and another is a circle
in the plane ZX (we denote it as S′

1).
In pseudo-Euclidean space this torus looks like a hyperboloid that appears if we replace

the circle S′
1 by a hyperbola (as it was done in Sec. 2). Positions of the geometrical object

described by our pseudo-Euclidean torus are deˇned by time cross sections of the hyperboloid.
These positions form an expanding circles in the two-dimensional Euclidean plane (Fig. 2).

Fig. 2

But we need to have in mind that two-dimensional
pseudo-Euclidean torus describes the object existing in
two-dimensional spaceÄtime with one-dimensional Euclid-
ean ®physical¯ space. This means that an observable part
of the object is represented in our example by the points
of intersections of the above circle with 0X axis though,
as a whole, the circle is ®embedded¯ into two-dimensional,
®external¯ space. This circle can be considered as a topolog-
ical defect of the physical one-dimensional Euclidean space.
Just an afˇliation of the intersection points to the topologi-
cal object differs these points geometrically from neighboring points of the one-dimensional
Euclidean space. So, in pseudo-Euclidean four-dimensional physical spaceÄtime the suggested
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object described by the Dirac equation looks like a topological defect of physical Euclidean 3-
space that is embedded into 5-dimensional Euclidean space, and its intersection with physical
space represents an observable quantum object.

Note, that expanding circles in Fig. 2 can be considered as a model for propagation in
opposite directions of two identical noninteracting particles. Being the intersection points of
the same defect with the physical space, these particles can correlate one with another without
any interaction in physical space Å the channel for information is provided by their common
defect embedded in the outer space. This can be considered as an explanation for the paradox
of Einstein, Podolsky, Rosen.

The above analogy with torus does not yet demonstrate appearance of any wave-corpuscular
properties of the object, represented in ®physical¯ one-dimensional space by the moving in-
tersection point Å properties that could be expressed by wave function (5) and relation (4).
In the case of considered two-dimensional ®spaceÄtime¯ this solution has the form

ψ = u(p) exp (−2πix1λ−1
1 + 2πix2λ2). (10)

Topological defect represented by the expanding circle does not demonstrate any periodical
movements when the intersection point (physical object) propagates along one-dimensional
Euclidean 0X space.

Appearance of observable wave-corpuscular properties is a consequence of nonorientable
character of the topological defect. Torus is an orientable two-dimensional closed manifold
and, therefore, we need to use some nonorientable low-dimensional analogy. The nonori-
entable Klein bottle could be such a two-dimensional analogy [5, 7]. In the case with torus,
topological defect was represented by cross sections of pseudo-Euclidean torus-plane circles.
The Klein bottle is a manifold that is obtained by gluing of two Mobius strips [7]. Therefore,
the Klein bottle cross section is an edge of the Mobius strip. This edge cannot be placed in the
two-dimensional XY plane without intersections, and it means that corresponding topological
defect is now a closed curve embedded into three-dimensional XY Z space.

In this case the position of the topological defect relative to its intersection with 0X axis
(physical object) can change periodically. Such a periodical process can be expressed by
function (10). It leads to the new interpretation of the wave function as a description of
periodical movement of the topological defect relative to its projection on the physical space.
Corpuscular properties of the above periodical movement appear as a result of the deˇnition
for classical notion of 4-momentum through the wave characteristic of the topological object,
namely

pμ = 2π/λμ. (11)

Substitution of these relations into (18) leads to the Dirac solution (2)

ψ = u(p) exp (−ip1x
1 + ip2x

2). (12)

It is important to note that within suggested geometrical interpretation the notions of the less
general, macroscopic theory (4-momentums) are deˇned by (11) through the notions of more
general microscopic theory (wave parameters of the defect periodical movement). This looks
more natural than the opposite deˇnitions (4) within traditional interpretation. And this means
rejection of atomistic concept where all matter is considered as consisting of more and more
small elementary particles. There are no any particles a priori, before measurement: the
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notions of particles appear as a result of classical interpretation of the contact of the region
of the curved space with a device. Experimentally this fact was established in investigations
of effects of quantum nonlocality (see, e.g., [8]).

Preliminary results see in [9].

REFERENCES

1. Bjorken J. D., Drell S. D. Relativistic Quantum Mechanics and Relativistic Quantum Fields. N.Y.:
McGraw-Hill, 1964.

2. Rachevski P. L. Riemannian Geometry and Tensor Analysis. Œ.: Nauka, 1966. § 55.

3. Jelnorovitch V. A. Theory of Spinors and Its Applications. M.: August-Print, 2001. § 1.3.

4. Achiezer A. I., Peletminski S. V. Fields and Fundamental Interactions. Kiev: Nauk. Dumka, 1986.
Ch.1.

5. Dubrovin B. A., Novikov S. P., Fomenko A. T. Modern Geometry. M.: Nauka, 1986.

6. Schvartz A. S. Quantum Field Theory and Topology. M.: Nauka, 1989.

7. Gilbert D., Kon-Fossen S. Nagladnaya Geometriya. M.: Nauka, 1981 (in Russian).

8. Belinsky A. V. Quantum Nonlocality and Absence of a priori Values of Measuring Quantities in
Experiments with Photons // Usp. Fiz. Nauk. 2003. V. 173, No. 8. P. 905.

9. Olkhov O. A. Geometrization of Quantum Mechanics // J. Phys.: Conf. Ser. 2007. V. 67. P. 012037.


