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We investigate time-dependent properties of EinsteinÄPodolskyÄRosen (EPR) light beams generated
in nondegenerate optical parametric oscillator (NOPO) driven by a sequence of laser pulses with Gaussian
time-dependent envelopes. The peculiarities of EPR beams are discussed on the basis of quadrature
squeezing and also in the framework of phase-space Wigner functions for EPR beams which are
combined on a half beam splitter. We also investigate the Wigner functions of intensity-correlated twin
beams following the conditional photon state-preparation scheme. It is demonstrated that the Wigner
functions involve negative values in parts of the phase space for the schemes with one, two, and three
photons.
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INTRODUCTION

It is recognized that nondegenerate optical parametric oscillator (NOPO) is one of the
effective systems generating EinsteinÄPodolskyÄRosen (EPR) entangled light beams [1Ä3]. In
the standard treatment of NOPO, the pump ˇeld is considered as a monochromatic beam and
the calculations are performed in the frequency domain. Nevertheless, recent experimental
achievements in quantum optics initiate investigations of EPR entanglement also in the time
domain. Such investigations may open a way for new applications in many areas of time-
resolved quantum information and communications in addition to the well-known protocols
already elaborated in the spectral domain. In this area generation and characterization of
quadrature-squeezed pulses as well as entangled light pulses in the time domain have been
recently performed (see [4] and the references therein). The experimental generation and
characterization of a two-mode squeezed vacuum state in a time-gated way has also been
recently demonstrated in [5].

Thus, for applications with nonclassical states, particularly with EPR states, in the time
domain a rigorous study of NOPO operating in various time-dependent regimes is needed.
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As a step in this direction, a periodically pulsed NOPO, i.e., a NOPO under time-modulated
pumping ˇeld, has been proposed and studied theoretically [6] in application to generation of
EPR entangled light beams in the time domain.

In this paper we continue investigation of periodically pulsed NOPO. In one part of the
present paper we extend our previous results [6] regarding NOPO above threshold under
the action of a sequence of the Gaussian pulses. The other part of the paper is devoted
to calculation of dynamics of the Wigner functions for the pulsed regime of NOPO, since
Wigner functions give a complete description of the states of quantum systems.

1. EPR ENTANGLEMENT IN THE PULSED REGIME

We consider below a NOPO driven by Gaussian pulses separated by the time intervals τ .
The corresponding time-dependent ˇeld is

EL(t, z) = E0Lf(t) e−i(ωLt−kLz), (1)

f(t) =
∞∑

n=−∞
e−(t−t0−nτ)2/T 2

. (2)

We assume wideband collinear phase matching which can be more effectively realized in
a periodically poled crystal. The basic energy conservation for the central frequencies and

perfect phase matching imply that ωL → wL

2
(↑) +

wL

2
(→) and Δk = kL(ωL) − k1(ω1) −

k2(ω2) − kg = 0, where kg is the poling wave vector. We also allow ω1 and ω2 vary

from the degenerate frequency ω1 = ω2 =
ωL

2
as ω1 =

ωL

2
+ δω1 and ω2 =

ωL

2
+

δω2. The corresponding interaction Hamiltonian within the framework of the rotating wave
approximation reads

H = i�χf(t)
(
eiΦLb+

3 − e−iΦLb3

)
+ i�k

(
eiΦk b3b

+
1 b+

2 − e−iΦk b+
3 b1b2

)
, (3)

where χ is the coupling constant of pump ˇeld with the ω3-intracavity mode which is
proportional to the amplitude E0L of the pump ˇeld and constant k eiΦk determines the
efˇciency of the parametric process. The operators bn are discrete-nonmonochromatic mode
annihilation operators.

The analysis shows [6] that like the standard NOPO with stationary pump ˇeld amplitude,
the periodically pulsed NOPO also exhibits threshold behavior, which is easily described

through the period averaged pump ˇeld amplitude f(t) =
1
τ

τ∫

0

f(t)dt. For the case of

Gaussian pulses (2), the above threshold regime is realized if χ > χth =
γγ3√
πk

τ

T
, where γ

and γ3 are the damping rates of the modes ω1, ω2 and ω3.

The criterion of two-mode squeezing or EPR entanglement is formulated as V =
1
2
(V (x1−

x2) + V (y1 − y2)) < 1 in terms of the variances of the quadrature amplitudes of two
subharmonic modes.
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Fig. 1. Degree of two-mode squeezing versus dimensionless time for the following parameters:

k2/γγ3 = 10−8, χ = 1.1χth, τ = 6γ−1, T = 0.6γ−1

The dependence of V on the scaled time is shown in Fig. 1. The dashed line in Fig. 1
indicates the degree of two-mode squeezing for the stationary regimes: T � γ−1, τ → 0
and χ = χth. In the nonstationary regime (see solid curve, pulses of duration T = 0.6γ−1

separated by the time interval τ = 6γ−1) the modulation of the quadrature variance repeats
the periodicity of the pump laser. It is clearly seen that the variance for pulsed dynamics
obeys the EPR criterion V 2 < 1/4 for the deˇnite time intervals. We also found a remarkable
result that the variance goes below the stationary limit of 0.5 in the ranges where photon
number is maximal for appropriate chosen parameters. Particularly, comparing the results
of Fig. 1 and calculations of the mean photon number, we conclude that for time intervals
leading to the maximal photon number nmax = 6.5 · 107, the corresponding variance equals
V = 0.35. On the other hand, the maximal variance Vmin = 0.146 takes place for the main
photon number n = 2.5 · 106.

2. QUANTUM DISTRIBUTIONS IN THE TIME DOMAIN

In this section we present the results of numerical calculations of the Wigner functions
in the phase space. At ˇrst, we consider the Wigner function for EPR beams by combining
the correlated output modes (1) and (2) with a half beam splitter. This procedure is proposed
here for veriˇcation of EPR entanglement in the time domain as a two-mode squeezing. Note
that the opposite procedure is usually used for generation of CV entangled light beams.

We consider the output behavior of NOPO assuming that all losses occur through the
output couples [6]. In this case the output ˇelds of subharmonics are bout

i (t) =
√

2γbi (t)
(i = 1, 2), and the output modes (bA, bB) from the half beam splitter can be expressed as

bA =
√

2γ(b1 + b2), bB =
√

2γ(b1 − b2). (4)

We present below the result for the Wigner functions WA(α) of the combined, dimension-
less modes α = α1+α2, corresponding to the operators bA/

√
2γ. A qualitative demonstration

of strong EPR entanglement that is below the stationary limit is provided in Fig. 2 that shows
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the Wigner function of the combined mode (A) for the time interval corresponding to the
maximal squeezing. Indeed, the qualitative measurement of the time-dependent squeezing
effect can be revealed from our results by considering the quadrature amplitude probability
distributions P (x), P (y) (x = Re (α), y = Im (α)). Those are plotted in the backgrounds
of Fig. 2. Note that probability distribution P (x, Φ) for any quadrature amplitude operator

X(Φ) =
1√
2

(
b e−iΦ + b+eiΦ

)
can be obtained by integrating the Wigner function over the

conjugate quadrature:

P (x, Φ) =

∞∫

−∞

dp W (x cosΦ − p sinΦ, x sin Φ + p cosΦ). (5)

We next consider Wigner functions of intensity-correlated twin beams following the con-
ditional state-preparation scheme. According to the method of conditional measurement,
counting n photons in one of the correlated mode projects the other mode in an n-photon
Fock state, which can then be analysed using quantum homodyne tomography. These mea-
surements were recently demonstrated for one-photon Fock state (n = 1) [7] as well as for
two-photon Fock state (n = 2) [8] by using pulsed nondegenerate ampliˇer producing a pure
two-mode squeezed state. Here we consider this problem for the more general case that in-
cludes the full description of dissipative and pump ˇeld effects in the framework of the theory
of periodically pulsed NOPO. The single-photon conditional measurement (n = 1), as well
as both two-photon (n = 2) and three-photon (n = 3) measurement schemes are considered.
We assume that for the multiphoton cases, n = 2 or n = 3, the detection of coincidences
by the photodiodes operating on a photon-counting regime means that at least two-photon or
three-photon states are created by the same pulse.

For this goal we calculate the conditional Wigner functions for light pulses if one of the
modes (labeled trigger) is prepared in n-photon Fock state (n = 1, 2, 3). When n-photon
Fock state |ψn(2)〉 of the trigger mode (2) is detected, the signal mode (1) is prepared in a
quantum state whose density operator ρ1(n) reads as

ρ1(n) =
〈ψn(2)| ρ |ψn(2)〉

Sp1 〈ψn(2)| ρ |ψn(2)〉 . (6)

We analyze the conditional Wigner functions of the output signal mode (1): W (1; ρ, θ),
W (2; ρ, θ) and W (3; ρ, θ) corresponding to the various conditional measurement schemes
with n = 1, n = 2 and n = 3 photon Fock states. As we see, all the three Wigner functions
clearly display negative regions in the phase space that re
ect a highly nonclassical character
of quantum states. All Wigner functions are rotationally symmetric and hence the conditional
mixed states are phase-independent. In Fig. 2 we show the radial dependence of the Wigner
functions.

We stress that these results are in agreement with the experimental results on conditional
Wigner functions W (1) and W (2) presented in [7, 8]. Thus, the corresponding conditional
mixed states are very close to one-photon and two-photon Fock states. The nonclassicality
of the mixed states depicted in Fig. 2 is displayed as quantum interference effects. It is quite
reasonable that these effects for the state-preparation schemes based on pulsed NOPO are less
than for the case of photon pair generated in the process of parametric down-conversion or
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Fig. 2. The Wigner function for the transformed coordinates. The parameters are: k2/γγ3 = 0.05, χ =

1.3χth, τ = 4γ−1, T = 1γ−1

Fig. 3. Radial dependence of Wigner functions for conditional measurement for the parameters

k2/γγ3 = 0.05, χ = 0.5χth, τ = 4γ−1, T = 1γ−1: solid curve Å n = 1; dashed curve Å n = 2;
dotted curve Å n = 3

in an ideal nondegenerate ampliˇer producing pure two-mode squeezed states. The negative
values of the Wigner functions W (1), W (2) and W (3) decrease with increasing of the photon
number of the signal mode. Nevertheless, as our analysis shows, the negativity of Wigner
functions also takes place for the pulsed NOPO above threshold. However, in this regime
the time intervals when the Wigner functions involve negative values correspond to small
number of photons. With increasing of the parameter χ (the intensity of the pump ˇeld) such
time intervals become shorter. Thus, the time intervals where the Wigner functions contain
negative values become shorter as well.

These results demonstrate a highly nonclassical character of time-dependent mixed states
generated in periodically pulsed NOPO.
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