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MULTIMODE SQUEEZING
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We analyze the spectral properties of both squeezed light and twin-photon states produced in
pulsed parametric down conversion in microstructured nonlinear media. We also analyze the multimode
structure of biphoton spectrum and formation of effective squeezing modes by varying the spectral
phase-matching in supperlattices.
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INTRODUCTION

Quantum communication protocols are usually realized in terms of photonic states as
well as in terms of amplitudes of the electromagnetic ˇelds by using the well-established
experimental techniques of laser physics and quantum optics. In this way, quantum informa-
tion resources such as entangled and squeezed states of light beams emerge often from the
nonlinear optical interactions of a laser with various nonlinear crystals or/and atomic systems.

In this paper we consider the synthesis of various photonic states in down-conversion
processes realized in quasi-phase matched nonlinear materials pumped by pulsed laser ˇeld.
Microstructured materials such as photonic crystals or periodically poled crystals leading
to quasi-phase-matching multiwave interactions are very perspective in the ˇelds of laser
technologies and telecommunication because they allow efˇcient nonlinear optical couplings
in a broad range of wavelength. Recently, it has been shown [1, 2] that these materials,
particularly, periodically poled nonlinear crystals (PPNC), are also extremely promising for
generation of nonclassical states of light and open interesting perspectives for applied quantum
information. A particularly effective structure in PPNC is the one in which the sign of the
nonlinear susceptibility χ(2) is periodically reversed through the medium.

We investigate spectral properties and multimode structure of joint states of photon pair
produced by pulsed parametric down conversion in PPNC with linear dispersive segments.
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The results obtained are applied for investigation of multimode squeezed states. The key to this
approach is the idea of manipulating overall group delay mismatches among the various ˇelds
in structured materials for synthesis of twin-photon states [3]. Recently, this approach has
been developed in the series of papers (see [4] and references therein) devoted to controllable
generation of entangled states as well as single-photon wave packets in superlattice structures
of nonlinear and linear materials.

1. TWO-PHOTON SPECTRA
IN STRUCTURED NONLINEAR CRYSTALS

The two-photon state at the output of the one-dimensional nonlinear medium with second-
order susceptibility χ(2) under laser ˇeld E0 (z, t) is given by

|ψ〉 =
1
2

∫
dω1

∫
dω2 Φ (ω1, ω2) a+ (ω1) a+ (ω2)|0〉, (1)

where a+ (ω1) and a+ (ω2) are the creation photon operators for modes with frequencies ω1

and ω2, |0〉 is a vacuum state and Φ (ω1, ω2) is the spectral amplitude of two-photon radiation.
We assume type-I collinear parametric interaction when both photons have the same linear
polarizations and ω0 = ω1 +ω2, leading to a pulsed spontaneous parametric down conversion
(SPDC). The amplitude of two-photon state is given by the product of the pump envelope
function E0 (ω0) and the phase matching function

Φ (ω1, ω2) = E0 (ω1 + ω2)
∫

dzχ(2) (z) eΔkz. (2)

Here χ(2) is the distribution of second-order nonlinearity along the longitudinal axis and Δk is

the wave vector mismatch function: Δk = k0−k1 (ω1)−k2 (ω2), where ki = |ki| =
n (ωi)ωi

c
,

n (ωi) is the index of refraction (i = 1, 2). The probability of twin-photon spontaneous
parametric radiation is deˇned as |Φ (ω1, ω2) |2. The pump envelope function is modeled by
a Gaussian pulse of duration τp in terms of the frequency detuning from the central SPDC
frequency ω1 + ω2 − ω0.

At ˇrst, we consider an assembly of N χ(2) crystals and linear media. Let each com-
ponent m have thickness lm, wave vectors km

0 , km
1 , km

2 and nonlinear susceptibility χm.
Some of the components can be linear with χm = 0. The resulting two-photon amplitude is
calculated as the sum of the partial amplitude [3]:

Φ (ω1, ω2) = χE (ω1 + ω2))
∑
m

lmχm exp
[
−i

(
ϕm +

Δkmlm
2

)]
sinc

(
Δkmlm

2

)
,

δm ≡ Δkmlm, ϕm =
m−1∑

n

δn, ϕ1 = 0,

(3)

Δkm is the mismatch function in the mth component: Δkm = k
(m)
0 −k

(m)
1 (ω1)−k

(m)
2 (ω2) .

We consider below two important applications of these general expressions (see Fig. 1, a, b).
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Fig. 1. PPNC which involves nonlinear domains of lengths l with χ+ ≡ χ(2) > 0 and χ− ≡
χ(2) < 0 (a), PPNC in which nonlinear domains with χ+ and χ− are interchanged by the linear
domains with χ(1) �= 0 and length l2 (b)

2. SPDC IN PERIODICALLY POLED CONFIGURATIONS

We turn to the experimental arrangement shown in Fig. 1, a which consists of the periodic
assembly of N χ(2) crystals of length l with positive and negative susceptibilities: χ2n−1 =
χ+ = χ, χ2n = χ− = −χ, n = 1, 2, . . . , N/2. We assume that the mismatch functions and
lengths are the same in each domain, δn = δ = lΔk and hence we have ϕm = (m − 1) δ. On
the whole the amplitude is calculated from Eqs. (3) as

Φ (ω1, ω2) = E0 (ω1 + ω2) lχ exp−i
LΔk

2
sinc

(
l

2
Δk

) sin
L

2
(Δk − q)

sin
l

2
(Δk − q)

. (4)

Here L = Nl, q = 2π/d is the spatial momentum, and d = 2l is the period of the superlattice.
Thus, in this case we obtain phase-matching condition Δk � q which is usually takes place
in a PPNC.

The other composite system is shown in Fig. 1, b. It consists of N/2 crystals of length
l1, with positive and negative susceptibilities and N/2 linear optical χ(1) spacers of length
l2. In this conˇguration we assume two mismatch functions Δk1 and Δk2 corresponding to
nonlinear n = 1, 3, 5, . . . and linear n = 2, 4, . . . segments. The amplitude can be calculated as

Φ (ω1, ω2) = E0 (ω1 + ω2) l1χe−iφ(ω1,ω2) sinc
(

l1
2

Δk1

) sin
(

LΔK

2

)

sin
(

(l1 + l2)ΔK

2

) . (5)

Here ΔK = l̄1Δk1 + l̄2Δk2 − q, φ (ω1, ω2) =
l1Δk1

2
+

N (l1 + l2)ΔK

4
+

(l1 + l2)ΔK

2
,

L =
N

2
(l1 + l2), l̄i =

li
l1 + l2

(i = 1, 2, . . .), l̄1 + l̄2 = 1 and q =
2π

d
, d = 2 (l1 + l2).

As we see, the amplitude is the product of the phase-matching function of a single
nonlinear segment and the phase-matching function which involves the combined effect of
the χ(2) segment, the spacer dispersion and the spatial momentum. Analogous results have
been obtained in papers [4] however for the other conˇguration of the superlattice. For larger
numbers of the segments: N � 1, L � l, the amplitude reads as

Φ (ω1, ω2) = E0 (ω1 + ω2) l1
N

2
χ e

(
−i

LΔK

2

)
sinc

(
LΔK

2

)
. (6)
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Then, we analyze the spectral structure of SPDC using Schmidt decomposition of the
two-photon spectral amplitude

Φ (ω1, ω2) =
∞∑

n=0

ξnψ∗
n (ω1)ψ∗

n (ω2). (7)

Here ξn are nonnegative Schmidt coefˇcients, while ψn (ωi) are mutually orthogonal Schmidt
functions, normalizing to one. We expand the phase-matching functions Δk1 and Δk2 in
Eqs. (5) up to the second order in derivation from the respective central frequencies. Then
the approximate expression for the phase-matching functions in nonlinear segments (i = 1)
and for linear segments (i = 2) takes the form

Δki =
(
β

(1)
0,i − β

(1)
i

)
(ω1 + ω2 − ω0) −

1
2
β

(2)
i

[ (
ω1 −

ω0

2

)2

+
(
ω2 −

ω0

2

)2
]
+

+
1
2
β

(2)
0,i (ω1 + ω2 − ω0)

2
, (8)

where β
(j)
i =

djki (ω)
dωj

∣∣∣∣
ω=ω0/2

and β
(j)
0,i = djk0,i(ω)

dωj

∣∣∣∣
ω=ω0

are the dispersion coefˇcients.

In this approximation the amplitude (Eq. (6)) can be rewritten in the Gaussian form:

Φ (ω1, ω2) =

√
2M

πΩσ
exp

{
− (ω1 + ω2 − ω0)

2

2σ2
− (ω1 − ω2)

2

2Ω2

}
, (9)

where spectral widths are

1
σ2

=
1
10

[
l1

(
β

(1)
1 − β

(1)
0,1

)
+ l2

(
β

(1)
2 − β

(1)
0,2

)]2

N2 + τ2
p ,

1
Ω2

=
1
12

N

[
l1β

(2)
1 + l2β

(2)
2

]
,

(10)

and the mean number of photon pairs is equal to

M =
∫

dω1 dω2 |Φ (ω1, ω2) |2 =
χ2l1N

2E0 (ω1 + ω2)πσΩ
2

. (11)

This Gaussian form of the amplitude allows us to ˇnd analytically the Schmidt decomposition.
Particulary, in this case the Schmidt coefˇcients read as

sinh ξn =

√
M

cosh r
tanhn r, r =

ln (Ω/σ)
2

. (12)

3. SQUEEZING OF INDEPENDENT MODES

The ˇnal two-photon state can now be written as

|ψ(2)〉 =
1
2

∑
n

ξn

(
b+
n

)2 |0〉, (13)
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through the nonmonochromatic operators

bn =
∫

dω ψn (ω) â (ω), (14)

which satisfy standard bosonic commutation relations.
Let us discuss a multimode quadrature squeezing. As the modes ψn (ω) are mutually or-

thogonal, the quadrature 
uctuations are given by a sum of independent contributions from all
the modes. Thus, if the local oscillator is prepared in one of the modes ψn (ω), the maximum

V
(+)
n and minimum V

(−)
n variances of the quadrature amplitude

1√
2

(
bn e−iΘ + b(+)

n e−iΘ
)

read as

V
(+)
n =

1
4

e+2ξn . (15)

Note that the spectral properties of squeezed light produced by pulsed SPDC in ordinary
nonlinear crystals have been analyzed on the basis of Schmidt decomposition (see, for ex-
ample, [5]). Thus, we discuss here some multimode characteristics of squeezing for the
superlattice. The number of squeezing eigenmodes depends on the spectral widths σ and Ω.
In a typical arrangement σ � Ω for an ordinary χ(2) crystal, which leads to excitation of a
broad range of modes. In the case of PPNC with linear space (see Fig. 1, b) it is possible to
realize almost factorizable Φ (ω1, ω2), i.e., SPDC with a few effective modes, by varying the
spectral phase-matching structure in Eq. (9). The factorizable amplitude Φ (ω1, ω2) is realized,
if σ � Ω. For increasing of σ (Eq. (10)) the crystal and spacer materials should be chosen

with opposite-signed group velocity mismathes, β
(1)
1 − β

(1)
0,1 and β

(1)
2 − β

(1)
0,2 . In this case, the

width σ may reach inverse length of pulse 1/τp by compensation of the dispersion effects.
On the other hand, we can suppress the width Ω by varying the thickness and dispersion

coefˇcients β
(2)
2 of the spacer material and hence reach the range σ � Ω. Some illustrations

are shown in Fig. 2. For calculations we assume M = 0.9, i.e., an average 0.9 photon pairs
per pulse [6].

Fig. 2. The squeezing parameter as a function of the mode number: solid line Å Ω/σ = 2; dotted

line Å Ω/σ = 30; dashed line Å Ω/σ = 10
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