ФИЗИКА И ТЕХНИКА УСКОРИТЕЛЕЙ

КАНАЛ ТРАНСПОРТИРОВКИ БУСТЕР–НУКЛОТРОН ПРОЕКТА NICA

А. В. Тузиков, В. А. Михайлов

Объединенный институт ядерных исследований, Дубна

В статье представлена концепция канала транспортировки бустер-нуклотрон ускорительного комплекса NICA, разрабатываемого Объединенным институтом ядерных исследований (Дубна). Канал служит для перевода ионных пучков и обдирки ионов на промежуточной энергии. Рассматривается магнитная система канала. Приведены результаты моделирования динамики пучка ионов золота Au³²⁺/Au⁷⁹⁺ в канале транспортировки.

We present the conceptual project of booster-Nuclotron beam line in frame of accelerator complex NICA developed by the Joint Institute for Nuclear Research (Dubna). The beam line will be used for transfer of ion beams between two synchrotrons of NICA complex and stripping of ions at intermediate energy. Magnetic system of the beam line is considered. Results of simulations of Au^{32+}/Au^{79+} ion beam dynamics within the transport beam line are given.

PACS: 29.20.-c; 29.27.-a

введение

Канал транспортировки бустер-нуклотрон разрабатывается в рамках проекта Nuclotron-based Ion Collider fAcility (NICA) [1]. Проект NICA предполагает создание ускорительного комплекса для проведения экспериментов на встречных пучках. На первом этапе планируется осуществление столкновений пучков тяжелых ионов, в частности, ядер золота.

Канал является связующим звеном между двумя ключевыми элементами ускорительного комплекса: бустерным синхротроном и нуклотроном. Назначение канала: перевод ионного пучка и согласование его параметров со структурными функциями нуклотрона; обдирка ионов до максимального зарядового состояния (далее — центральная зарядность пучка); сепарация паразитных зарядностей.

1. СХЕМА КАНАЛА

Ввиду взаиморасположения бустера и нуклотрона транспортировка пучка в канале осуществляется по горизонтали и вертикали одновременно. Вывод пучка из бустера осуществляется по горизонтали. Угол экстракции равняется 100 мрад. Расстояние между плоскостями бустера и нуклотрона составляет 3,76 м. В нуклотрон пучок инжектируется по вертикали. Угол наклона линии инжекции к плоскости нуклотрона — 105 мрад.

782 Тузиков А.В., Михайлов В.А.

Проект канала предполагает поворот бустера на $7,5^{\circ}$ против направления циркуляции пучка в нем. Азимутальный размер канала составляет 45° , что соответствует инжекции пучка через один октант нуклотрона от точки экстракции из бустера.

Фокусировка пучка в канале осуществляется с помощью шести квадруполей, а также градиентами полей в дипольных магнитах.

Станция обдирки располагается внутри стойки ярма бустера. После обдирки ионный пучок имеет не менее двух зарядовых состояний. В нуклотрон инжектируются ионы центральной зарядности. Паразитные зарядности сепарируются по вертикали посредством дипольных магнитов и последующего магнита Ламбертсона.

Общий вид канала бустер-нуклотрон представлен на рис. 1.

На рис. 2 и 3 представлены схема канала бустер-нуклотрон и принцип сепарации зарядностей соответственно.

Рис. 1. Общий вид канала транспортировки бустер-нуклотрон

Рис. 2. Схема канала. VBM — вертикальный поворотный магнит; TBM1–TBM3 — наклонные поворотные магниты; LM — магнит Ламбертсона; LS1, LS2-1, LS2-2, LS3-1, LS3-2 — линейные участки канала; Q1–Q6 — квадрупольные линзы; Stripper — станция обдирки

Рис. 3. Принцип сепарации зарядностей. Стриппер — станция обдирки; ТВЅ — наклонная секция поворота, состоящая из поворотных магнитов ТВМ1–ТВМ3; LM — магнит Ламбертсона; ϕ — угол поворота пучка в секции ТВЅ; α — угол поворота пучка в магните VBM; β — угол наклона линии инжекции (LS3-2) к плоскости нуклотрона; Z_{\max} и $Z_{\max -1}$ — траектории пучков центральной и соседней паразитной зарядностей

Угловые характеристики канала транспортировки: угол поворота пучка в поворотном магните VBM — 140 мрад; угол поворота пучка в секции TBS — 1010 мрад.

Длины линейных участков канала: LS1 — 1,5 м; LS2-1 — 3,3 м; LS2-2 — 7,4 м; LS3-1 — 2 м; LS3-2 — 7 м. Полная длина канала — 30,5 м.

Магнитная система канала (см. табл. 1) ограничивает магнитную жесткость ионов. Максимальная магнитная жесткость ионов, транспортируемых от бустера до станции обдирки, равна 25 Тл · м, что соответствует максимальной магнитной жесткости ионов в бустере. После станции обдирки максимальная магнитная жесткость ионов центральной зарядности равняется 11 Тл · м.

Таблица 1. Параметры магнитов канала

Магнит	Тип магнита	Эффективная длина, м	Макс. магнитное поле, Тл
VBM	Прямой/секторный	2,2	1,6
TBM1–TBM3	Секторный	2,06	1,8
LM	Магнит Ламбертсона	1	1,5

2. ТРАНСПОРТИРОВКА ПУЧКА

Были проведены расчеты по согласованию пучка ионов золота Au³²⁺/Au⁷⁹⁺ (см. табл. 2 и 3) со структурными функциями нуклотрона. Требовалось добиться ра-

784 Тузиков А.В., Михайлов В.А.

Местоположение	Сорт	Энергия,	Магнитная	Эмиттанс, $\pi \cdot MM \cdot Mpad$	Импульсный
пучка	ионов	МэВ/нуклон	жесткость, Тл·м		разброс
Вход канала ¹	¹⁹⁷ Au ³²⁺	600	25	7,5	$ \begin{array}{r} 10^{-4} \\ 10^{-4} \end{array} $
Выход канала ²	¹⁹⁷ Au ⁷⁹⁺	600	10,127	< 8,3	
¹ Точка экстракции из бустера (после септум-магнита системы экстракции бустера). ² Точка инжекции в нуклотрон (перед септум-магнитом системы инжекции нуклотрона).					

Таблица 2. Параметры пучка ионов золота

Таблица 3. Оптические функции

Местоположение пучка	β_x	α_x	D_x	D'_x	β_y	α_y	D_y	D'_y
Вход канала ¹ Выход канала ²	14,22 12,42	-2,34 2,02	$-0,94 \\ -2,61$	0,21 0,253	2,88 3,34	$0,5 \\ -0,566$	$0 \\ -0,06$	0 0,12
¹ Точка экстракции из бустера (после септум-магнита системы экстракции бустера). ² Точка инжекции в нуклотрон (перед септум-магнитом системы инжекции нуклотрона).								

венства заданным значениям функций β , α , D и D' по горизонтальному и вертикальному направлениям. На станции обдирки требовалось наличие перетяжки огибающей пучка ($\alpha = 0$) и приблизительное равенство горизонтального и вертикального размеров, при этом радиус пучка не должен превышать 1,5 см. Подбирались квадрупольные коэффициенты в линзах Q1–Q6 и углы скоса магнитов TBM1–TBM3 на входе и выходе. Магниты TBM1–TBM3 считались одинаковыми.

Расчеты показали, что α - и β -функции пучка с хорошей точностью согласуются с требуемыми значениями в точке инжекции. Дисперсионные функции полностью согласовать не удается. Но при этом возможно согласование одной из дисперсионных функций.

Результаты согласования пучка приведены в табл. 4 и на рис. 4, 5. Параметры фокусирующих элементов канала представлены в табл. 5 и 6.

Транспортировка пучка в канале производится с увеличением эмиттанса. Причинами роста эмиттанса являются: многократное рассеяние ионов на атомах обдирочной мишени, связь движений в наклонной секции поворота TBS и несогласование дисперсионных функций пучка, инжектируемого в нуклотрон. Так как пучок обладает ненулевым

Параметры	Получено	Требуется
β_x , м	12,42	12,42
α_x	2,02	2,02
β_y , м	3,3381	3,34
α_y	-0,566	-0,566
D_x , м	-4,73	-2,61
D'_x	0,253	0,253
D_y , м	-1,02	-0,06
D'_y	-0,23	0,12

Таблица 4. Параметры пучка на выходе канала

Канал транспортировки бустер-нуклотрон проекта NICA 785

Рис. 4. Оптические функции пучка в канале

Рис. 5. Огибающие пучка в канале

Таблица 5. Параметры оптических элементов канала

Квадрупольные линзы Q1–Q6	Квадрупольный коэффициент, м ⁻²	Градиент, Тл/м
Q1	1,005	25,12
Q2	-0,999	-24,97
Q3	0,5	5,06
Q4	-0,448	-4,54
Q5	1,264	12,8
Q6	-0,924	-9,36

Таблица 6. Углы влета *E*1 и вылета *E*2 наклонных поворотных магнитов ТВМ1–ТВМ3

Угол	Радианы	Градусы
E1	0,4	22,8
E2	0,59	-33,6

импульсным разбросом, будем отличать эффективный эмиттанс пучка от бетатронного, соответствующего моноэнергетическому пучку.

Рост бетатронного эмиттанса при обдирке ионов пучка зависит от типа обдирочной мишени. Предварительные оценки показывают, что эмиттанс после обдирки может увеличиваться на несколько процентов.

786 Тузиков А.В., Михайлов В.А.

Моделирование динамики пучка с помощью метода моментов второго порядка показывает, что вследствие связи движений в наклонной секции поворота TBS бетатронный эмиттанс растет по обоим направлениям на 20–25 %.

Несогласование дисперсионных функций может быть представлено как увеличение эффективного эмиттанса пучка. При значениях дисперсионных функций, приведенных в табл. 4, рост эффективного эмиттанса составляет 8,5 и 4% для горизонтального и вертикального направлений соответственно.

Оценки суммарного роста эффективного эмиттанса пучка при переводе в канале: горизонтальный эмиттанс — порядка 45 %, вертикальный эмиттанс — менее 40 %.

3. СЕПАРАЦИЯ ПАРАЗИТНЫХ ЗАРЯДНОСТЕЙ

Состав пучка после прохождения станции обдирки обусловлен эффективностью обдирки. Для ионов золота эффективность обдирки оценивается величиной не менее 80% [2], и пучок после обдирки имеет две зарядности: $Au^{79+} - \ge 80\%$, $Au^{78+} - < 20\%$.

Были проведены расчеты разделения зарядностей ионов золота Au⁷⁹⁺ и Au⁷⁸⁺ в наклонной секции поворота TBS и на последующем линейном участке LS3-1. На входе в магнит Ламбертсона LM ионы золота 78-й зарядности отклоняются от траектории центральной зарядности на расстояние около 8 см. Бетатронные полуразмеры пучков обеих зарядностей приблизительно равны 1,3 см, горизонтальные дисперсии — около 5 м при импульсном разбросе 10^{-4} . Таким образом, размеры пучков позволяют развести зарядности по разным камерам магнита Ламбертсона.

Рис. 6. Динамика центра масс пучка ионов Au⁷⁸⁺

Отклонение центра масс пучка ионов Au⁷⁸⁺ от траектории движения пучка центральной зарядности показано на рис. 6.

ЗАКЛЮЧЕНИЕ

В процессе работ над концепцией канала транспортировки бустер–нуклотрон рассматривались различные варианты геометрии канала, в том числе «длинный», т.е. с переводом пучка через два октанта нуклотрона (азимутальный размер 90°). Несмотря на некоторые преимущества такого варианта, недостатком «длинного» канала являлась его большая стоимость. По этой причине предложенный вариант более оптимален, несмотря на свою сложность.

Моделирование показало, что канал в хорошей степени соответствует требованиям к нему. В канале обеспечивается обдирка транспортируемых ионов и сепарация паразитных зарядностей. Увеличение эффективного эмиттанса пучка при переводе в канале является незначительным, и эмиттанс на выходе канала гораздо меньше аксептанса нуклотрона.

СПИСОК ЛИТЕРАТУРЫ

- 1. Design and Construction of Nuclotron-based Ion Collider fAcility (NICA). Conceptual Design Report / Ed.: I. Meshkov and A. Sidorin. Dubna: JINR, 2008.
- 2. Advance in the NICA Concept / Ed.: I. Meshkov, V. Mikhailov, A. Sidorin. Dubna: JINR, 2009.