ФИЗИКА И ТЕХНИКА УСКОРИТЕЛЕЙ

ТРЕБОВАНИЯ К ВАКУУМУ В БУСТЕРЕ УСКОРИТЕЛЬНОГО КОМПЛЕКСА NICA

А. В. Филиппов, В. А. Мончинский, В. А. Михайлов, А. Б. Кузнецов Объединенный институт ядерных исследований, Дубна

Приводятся результаты расчета потерь пучка ионов ¹⁹⁷Au³²⁺ при взаимодействии с атомами и молекулами остаточного газа в ускорительной камере вакуумной системы бустера ускорительного комплекса NICA [1].

The calculation results of ${}^{197}Au^{32+}$ ion beam losses due to interaction with residual gases in accelerated chamber of booster's vacuum system for NICA accelerator complex [1] are presented.

PACS: 29.20.-c; 29.27.-a; 29.90.+r

1. БУСТЕР УСКОРИТЕЛЬНОГО КОМПЛЕКСА NICA

Главной задачей бустера [1] является накопление порядка 10⁹ ионов ¹⁹⁷Au³²⁺ и ускорение их до энергии порядка 600 МэВ/нуклон, достаточной для последующей обдирки до состояния ¹⁹⁷Au⁷⁹⁺ в канале транспортировки бустер–нуклотрон, что позволяет

• получить пучок ионов ¹⁹⁷Au⁷⁹⁺ с максимальной энергией на выходе из нуклотрона;

• из-за уменьшения рекомбинации ионов ¹⁹⁷Au⁷⁹⁺ на остаточном газе существенно снизить требования, налагаемые на вакуумные условия в ускорительном канале нукло-трона;

• кроме того, применение в бустере электронного охлаждения ионов ¹⁹⁷Au³²⁺ на энергии 100 МэВ/нуклон уменьшает продольный эмиттанс пучка до величины, требуемой для сжатия сгустка по завершении его ускорения в нуклотроне.

Основные параметры бустера приведены в табл. 1.

Таблица 1. (Основные	параметры	бустера	[1]	
--------------	----------	-----------	---------	-----	--

Сорт ионов	$^{197}\mathrm{Au}^{32+}$
Периметр кольца, м	211,2
Эффективная длина «холодной»/«теплой» части кольца, м	176/35,2
Суперпериодичность	4
Энергия инжекции/вывода пучка, МэВ/нуклон	6,2/600
Магнитная жесткость, Тл · м	2,5–25
Максимальное поле в магнитах, Тл	0,18
Частота повторения циклов, Гц	0,25
Скорость роста магнитного поля, Тл/с	1
Тип инжекции пучка	Две однооборотные
Тип вывода пучка	Однооборотный
Время накопления пучка, с	0,8
Средний вакуум, пТорр	10-100

910 Филиппов А.В. и др.

2. МЕХАНИЗМЫ ПОТЕРЬ ПУЧКА

Механизмы потерь пучка в ускорителях хорошо известны и описаны во многих работах, например [2–5]. Основными процессами потерь многозарядных ионов в кольцевых ускорителях, оказывающими влияние на вакуум, являются перезарядка ускоряемых ионов на атомах и молекулах остаточного газа и сама ионизация этих молекул. В первом случае перезаряженные ионы отклоняются диполями периодической структуры и с ускоренной энергией под малым углом достигают стенок камеры ускорителя. Во втором случае ионы остаточного газа ускоряются потенциалом пучка и с малой энергией падают на стенки перпендикулярно. В обоих случаях в камеру поступает большое количество десорбированных со стенок камеры молекул, однако согласно [3] процесс перезарядки ускоряемых ионов на атомах и молекулах остаточного газа является доминирующим.

Основываясь на полуэмпирических формулах Франзке [4], ниже проведем численный расчет потерь пучка ионов ¹⁹⁷Au³²⁺ в процессе перезарядки на остаточном газе вакуумной камеры бустера нуклотрона ускорительного комплекса NICA [1].

3. СЕЧЕНИЯ ПЕРЕЗАРЯДКИ

Сечения перезарядки ($\sigma_{q \to q-1, Z_T}$ захвата и $\sigma_{q \to q+1, Z_T}$ потери одного электрона) ионов с зарядом q на атомах и молекулах остаточного газа согласно [4]

$$\sigma_{q \to q-1, Z_T} = \frac{2 \cdot 10^{-24} \overline{Z}^2 \overline{Z_T}}{(\gamma^2 - 1)^2 \sqrt{Z}} \left(\frac{q}{\overline{Z}}\right)^a, \quad \sigma_{q \to q+1, Z_T} = \frac{3.5 \cdot 10^{x-18}}{\sqrt{\gamma^2 - 1}} \frac{\overline{Z_T}}{\overline{Z}^2} \left(\frac{q}{\overline{Z}}\right)^b,$$

$$\overline{Z} = Z \left(1 - e^{-\alpha^{-1}\beta Z^{-2/3}}\right), \quad \overline{Z_T} = Z_T \left(1 - e^{-\alpha^{-1}\beta_T Z_T^{-2/3}}\right),$$

$$\gamma = 1 + \frac{E}{E_u}, \quad \beta = \sqrt{\frac{\gamma^2 - 1}{\gamma^2}}, \quad \gamma_T = 1 + \frac{k_B T}{m_T c^2}, \quad \beta_T = \sqrt{\frac{\gamma_T^2 - 1}{\gamma_T^2}},$$

$$x = 0.6 \lg^{1.5} Z, \quad a = \begin{cases} 2, \ q \geqslant \overline{Z}, \\ 4, \ q < \overline{Z}, \end{cases} \quad b = \begin{cases} -4, \ q \geqslant \overline{Z}, \\ -2.3, \ q < \overline{Z}. \end{cases}$$

$$(1)$$

Здесь \overline{Z} и $\overline{Z_T}$ — равновесное зарядовое состояние ионов пучка и частиц остаточного газа соответственно; Z и Z_T — атомный номер ионов пучка и частицы остаточного газа; γ и γ_T — релятивистский фактор ионов пучка и частиц остаточного газа; m_T — масса покоя атома или молекулы остаточного газа в граммах; E — энергия ионов пучка в МэВ/нуклон; $E_u = 931,5$ МэВ/нуклон; $k_B = 1,6 \cdot 10^{-12}$ Эрг/эВ — постоянная Больцмана; $c = 3 \cdot 10^{10}$ см/с — скорость света.

Граница применимости формул (1)

$$Z > 36, \gamma \leq 1,1,$$
т.е. $E \leq 93,15$ МэВ/нуклон. (2)

Для аппроксимации в область больших энергий, т.е. E > 93,13 МэВ/нуклон, был использован формализм [5], а именно:

$$\sigma_{q \to q-1, Z_T} = c_0 + (c_1 + c_2 e^{c_3 q}) \left(c_4 + c_5 e^{c_6 Z_T} \right) e^{c_7 E},$$

$$\sigma_{q \to q+1, Z_T} = \tilde{\sigma}_{q \to q+1, Z_T} \left(\tilde{E} \right) \left(\frac{\tilde{E}}{E} \right)^{c_1 + c_2 e^{c_3 Z_T}},$$
(3)

здесь $\tilde{\sigma}_{q \to q+1, Z_T}$ и \tilde{E} — сечение потери по формуле Франзке (1) и энергия, при которой достигается хорошее согласие с экспериментом; c_0, \ldots, c_7 — эмпирические параметры [5].

В работах [3,4] суммарное сечение процесса взаимодействия σ_{Σ,Z_T} бралось в виде суммы сечений захвата и потери электронов атомными оболочками ионов:

$$\sigma_{\Sigma,Z_T} = \sigma_{q \to q-1,Z_T} + \sigma_{q \to q+1,Z_T}.$$
(4)

В формуле (4) принято во внимание условие (2) для формул (1), а для энергий E > 93,13 МэВ/нуклон при расчете используем формулы (3). Размерность сечения по формулам (1), (3) и (4) — см²/атом.

Таблица 2. Эмпирика и эксперимент для ионов 238 U²⁸⁺ на установке ESR [6], сечение потери одного электрона $\times 10^{-18}$ см²/атом, теоретическая оценка (1)

Газ	Z_T	Е, МэВ/нуклон	Эксперимент	Теория	Теория/эксперимент
		3,5	1,62	5,07	3,13
		6,5	1,14	3,97	3,48
		10	$1,2{\pm}0,064$	3,33	2,78
H_2	2	20	$0,5{\pm}0,12$	2,48	4,96
		40	$0,36{\pm}0,046$	1,82	5,06
		50	0,23±0,036	1,64	7,11
N ₂	14	3,5	22,52	30,83	1,37
		6,5	14,69	26,02	1,77
		20	$8,4{\pm}2,2$	17,21	2,05
		40	3,6±0,11	12,69	3,53
		50	3,5±0,53	11,44	3,27

Таблица 3. Эмпирика и эксперимент для ионов $^{197}Au^{52+}$ на установке AGS [7], сечение потери одного электрона $\times 10^{-18}$ см²/атом, теоретическая оценка (3)

Газ	Z_T	Е, МэВ/нуклон	Эксперимент	Теория	Теория/эксперимент
H_2	2	100 380	$0,031 \pm 0,003$ $0,015 \pm 0,002$	0,14 0,047	4,52 3,13
N_2	14	100 380	0,69 0,31	3,16 2,05	4,58 6,61

912 Филиппов А.В. и др.

Рис. 1. Отношение $\sigma_{q \to q-1, Z_T} / \sigma_{q \to q+1, Z_T}$ в зависимости от энергии на основе формул (1) и условия (2) для ионов ¹⁹⁷Au³²⁺

В табл. 2 дано сравнение расчета по формулам (1) и (3) с экспериментальными данными для ионов $^{238}U^{28+}$ на установке ESR [6], а в табл. 3 — для ионов $^{197}Au^{52+}$ на установке AGS [7].

На рис. 1 показано, что процесс потери электрона преобладает при энергии E > 6,2 МэВ/нуклон по сравнению с процессом захвата электрона. Этот факт будет использован ниже для расчета потерь пучка ионов Au³²⁺.

4. РАБОЧИЙ ЦИКЛ БУСТЕРА

Длительность цикла работы бустера не должна превышать длительность цикла работы нуклотрона и составляет 3 с. Цикл работы бустера состоит из четырех частей:

1) адиабатический захват на фиксированной частоте ВЧ-питания на плато магнитного поля;

2) ускорение ионов на 4-й гармонике частоты обращения до 100 МэВ/нуклон и разгруппировка, выключение ВЧ-системы;

3) электронное охлаждение и группировка пучка на 1-й гармонике частоты обращения;

4) ускорение ионов на 1-й гармонике частоты обращения до энергии порядка 600 МэВ/нуклон.

На рис. 2 представлена диаграмма рабочего цикла бустера и рост энергии пучка ионов.

Рис. 2. Диаграмма рабочего цикла бустера (*a*) и рост энергии пучка ионов 197 Au³²⁺ в бустере (*b*)

Требования к вакууму в бустере ускорительного комплекса NICA 913

5. РАСЧЕТ ПОТЕРИ ПУЧКА

Общая формула для коэффициента потерь (F_{эфф}) имеет вид

$$F_{\vartheta \varphi \varphi} = 100 \% \cdot (1 - D_{\vartheta \varphi \varphi}), \qquad (5)$$
$$\ln D_{\vartheta \varphi \varphi} = -\int_{0}^{T} \frac{dt}{\tau_{\vartheta \varphi \varphi}}, \text{ rge } \tau_{\vartheta \varphi \varphi} = \sum_{\alpha} \frac{1}{\sigma_{\Sigma, \alpha} \beta c n_{\alpha, \vartheta \varphi \varphi}}.$$

Здесь $D_{\mathfrak{p}\phi\phi}$ — эффективный коэффициент передачи; $\sigma_{\Sigma,\alpha}$ — полное сечение перезарядки на частицах остаточного газа сорта α по формуле (4) в см²; $n_{\alpha,\mathfrak{p}\phi\phi}$ — эффективная концентрация частиц остаточного газа сорта α в см⁻³; βc — относительная скорость ионов пучка; T — длительность цикла в секундах.

Для расчета $n_{\alpha, \mathfrak{o}\phi\phi}$ по формуле (5) использовалась формула

$$n_{\alpha, \mathsf{p} \phi \phi} = \frac{L_{\mathsf{XOT}} \cdot n_{\alpha, \mathsf{XOT}} + L_{\mathsf{TEILT}} \cdot n_{\alpha, \mathsf{TEILT}}}{L},$$

$$\frac{n_{\alpha, \mathsf{XOT}}}{n_{\alpha, \mathsf{TEILT}}} = \sqrt{\frac{T_{\mathsf{TEILT}}}{T_{\mathsf{XOT}}}},$$
(6)

где $L_{\rm хол}$, $L_{\rm тепл}$ — полные эффективные длины «холодного», «теплого» участков бустера соответственно; L — периметр бустера (см. табл. 1). Кроме того, концентрация (давление) на «теплом» участке рассчитывалась в соответствии с формулой Кнудсена. Во втором выражении (6) $T_{\rm хол}$ — температура на «холодном» ~ 10 K, $T_{\rm тепл}$ — температура на «теплом» ~ 300 K участках соответственно.

На рис. 3 приведен график эффективных потерь (5) за один рабочий цикл для выбранных параметров бустера из табл. 1.

Рис. 3. Сравнение зависимости коэффициента потерь пучка ионов 197 Au $^{32+}$ от времени при $P_{
m solph} \approx 3$ пТорр и $P_{
m solph} \approx 32$ пТорр

914 Филиппов А.В. и др.

ЗАКЛЮЧЕНИЕ

Данные табл. 2 и 3, а также анализ графика рис. 1 позволяет сделать следующие выводы:

1) формулы (1) — Франзке [4], а также формулы (3) — Смолякова [5] дают завышение для сечений перезарядки, т. е. реальные потери будут намного меньше, так как сечения (1) и (3) заметно завышены;

2) с ростом энергии пучка ионов 197 Au³²⁺ процесс потери электрона преобладает при энергии E > 6,2 МэВ/нуклон по сравнению с процессом захвата электрона, поэтому при расчете потерь пучка возможно пренебрежение процессом захвата.

При выбранных параметрах бустера нуклотрона, а также для рабочего цикла бустера в соответствии с формулой (5) потери пучка ¹⁹⁷Au³²⁺ за один рабочий цикл будут составлять величину порядка 24 %, при давлении $P_{\rm xon} = 10$ пТорр на «холодных» и $P_{\rm тепл} = 100$ пТорр на «теплых» участках, это соответствует величине эффективного давления — $P_{\rm эф\phi} \approx 32$ пТорр. Парциальные составы остаточного газа на «теплых» и «холодных» участках принимались одинаковыми, а именно, состав из 100 %-й фракции молекулярного водорода H₂.

СПИСОК ЛИТЕРАТУРЫ

- 1. Concept of NICA Collider. Dubna, 2010.
- 2. Omet C. et al. // New J. Phys. 2006. V. 8. P. 284.
- 3. Mahner E. CERN LHC-VAC/EM Vacuum Technical Note 2004-04. 2002.
- 4. Franzke B. // IEEE Trans. Nucl. Sci. 1981. V. NS-28, No. 3. P. 2116-2118.
- 5. Smolyakov A., Spiller P. ACC-note Internal-2006-001. DOC-2006-Jul-51-1.
- 6. DuBois R. D. et al. // Nucl. Instr. Meth. B. 2007. V. 261, Iss. 1-2. P. 230-233.
- 7. Feinberg B. et al. // Phys. Rev. A. 1993. V. 47. P. 2370-2373.