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1 Introduction

In the last few years the investigation of the continuum state of Coulomb three-body
problem has been attracting attention of researchers. A simple wave function when
all three interparticle distances tend to infinity, first was proposed by P.J. Redmond
1] as sited in L. Rosenberg [2] and R.J. Peterkop [3]. A more general asymptotic
continuum wave function has been stated by M. Brauner, J.S. Briggs, H. Klar [4]
and S.P. Merkuriev [5]. This function is referred to as 3C, because it is producted
of three Coulomb wave functions. In this model, the initial three-body system is
splited into two-body subsystems which are uncoupled.

The construction problem of the solution, when the distance between any two
particle is small as compared to the distance of the third particle, is considered by
E.O. Alt and A.M. Mukhamedzhanov [6]. They have shown that the correct de-
scription requires an introduction of a local relative momentum [7]. New additional
terms in the wave function were derived recently by Y.E. Kim and A.L. Zubarev 8].

J. Berakder and J.S. Briggs [9] corrected the 3C wave function introducing
momentum-dependent Sommerfeld parameters. They used an invariance of the total
potential under overall rotation in parabolic- hyperspherical coordinates.

A particular case of the Coulomb three-body problem is a two-center problem
of quantum mechanics. This problem is devoted to investigation of the electronic
state, moving in the field of two fixed point charges and has lost of applications to
molecular scattering, slow atom-ion collision and mesic atom processes.

The two-center problem is separable in spheroidal coordinates and solved further
only numerically. However, in this case, the momentum of scattered electron is not
defined. It is well known that in the statement of the scattering problem, it is
adequate to use the wave functions having the asymptotic momentum k.

In this paper, we will consider a possibility of finding the asymptotic wave func-
tions with definite momentum for the electron, scattered from the two fixed Coulomb
center.

In Sec.2 we construct a 3C-type solution for the two-center problem and show
that this solution satisfies Schrodinger equation asymptotically up to the terms of or-
der O(1/(kr)?). In Sec.3, we calculated the terms of order O(1/(kr)?) in Schrodinger
equation and we modified the 3C-type solution, too. In a point dipole approxima-



tion, the slow electron scattering is considered in Sec.4. Conclusions are given in’
Sec.5.

2 3C-type solution for the two-center problem of

quantum mechanics

Let us consider the electron moving in the field of two fixed charges with values
Z1,Z> and having a separation R. The coordinates of the two-center problem are

shown in Fig.1.
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FIG.1.The Fig coordinates as used in the text

The vectors 7 and 7 refer to the positions of the electron with respect to the centers,
while the position from the middle of separation is labeled by 7.

In the atomic units (e = A = m = 1) the electronic Hamiltonian has the form
H=-in -2 2 W
We seek a solution to the Schrédinger equation
(H-E)¥() =0 2
as a product of the functions

U(r) = U1 () a(72), (3)



where
Uy(7) = e*12Qu(7) (4)
and k is the momentum of the electron.
In this case, Eq.(2) converts to the following form:
(61Q1)62
2

1 oo Z R
[§A1Q1 +1ikV1Q: + T—:Ql + } Q2(72)+

(62Q2)61

1 e Z. .
+ §A2Q2 +1kV2Q2 + r_2Q2 + T] @:1(7) =0, (5)
2

where A; = A,, and V, = V,,.

Now we suppose that each expression in the middle bracket is zero, separately. Then

(ﬁlQl)ﬁn

5 Qn(rn) =0 l#n; ILn=1,2. (6)

1 oo Z
|:§AIQI +1ikV,Q + #Qz +

If we neglect the term which contains a product of nabla, then we have an exact

solution
Qu(ry) = F(im, 1,ilkr, — kr)), (7)

where F(im, 1,i[kr; — Eﬁ]) is the Kummer confluent hypergeometric function. In

this approximation the solution of Eq.(2) reads
(R (F1+72))/2 . . . _ . .
V() = TNlNQF(”ha 1,i[kry — k1)) F(ing, 1, i[kry — k75]).  (8)
)2

We normalize this function by condition

< U (1) >= 6(F - ), ©
then
Ny = €7 |D(1 — iny)], (10)

in this case n = Z;/k is the Sommerfeld parameter.
The expression (8) is just a 3C-type (exactly: 2C-type, because two Coulomb
centers have no motion ) solution to the two-center problem of quantum mechanics.

In the limit k7 — oo from Eq.(8) we arrive to Redmond asymptotic:

ST 4Ty = . =
\11(7—") ~ ezk—l—az e i in(kry krl)e inaln(kre krz). (11)
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The derived solution (8) satisfies the Eq.(6) within the accuracy of order O ((k+)2)
Now, we analyze the term VQ,VQ,, neglected in (6). Since

VQ(F) = —n(kf — E)F(in + 1,2, i[kr — k7)) (12)

we have at kr — oo

R e LA

From this the neglected terms will write following order

(V1Q1)(VQs) ~ O ((,:T)z) | (14)

3 The modified 3C-type solution

Now, we will reconstruct to the solution of Eq.(6) approximately calculating the
term (VQ;)VQ,. For this purpose we replace (VQ;)VQ, by asymptotic expression
(13). Then Eq.(6) reduces to

g Tk VQ!

—AlQl +ikV,Qr + k"’ Q-
2 1 —rlk T

=0. (15)

When we write the fourth term of Eq.(15) we have replaced 7, by 77. This change has
no influence on the terms of order O ((k+)2) in Eq.(2), because 1/r,, = 1/r+0(1/r}).

To solve the new equation (15), we introduce a variable
= i(kr, — k7). (16)

Then, taking into account
ViQu = ik(f — k)Q,
2k? )
AQ = (1 — ki)Q — 2k*(1 — kA)Q] (17)
(where the frame denotes the derlvatlve with respect to z;) we lead to the equation

:ElQ;’ + (1 — Ny — xl)Q; — i@ = 0. (18)

The latter equation has the solution

Ql = F(Z'I]l, 1-— iT]n,l'l). (19)



Fig.2. Comparison of the 3C-type solution, the modified 3C-type solution and the

Redmond asymptotic. a). Real parts of solutions. b). Imaginary parts of solutions.
=12 =1,k =1,/(k7) =)

(7
ReW(7r)

1.007]

0.007

modlﬁed BBK solution

— asympto}:’"c solutlon of Redmond

-2.00 T T i r
0.00 5.00 10.00 15.00
a).
ImW(r)

rﬁlodlﬁecli IE:SBK solution
asymgtooil:liclosolutlo of Redmond

r

o0
—
o

5.00 10.00 15.00

b).



Thus, for the total wave function we have

etk(P+7)/2 ) ‘ ] o ) ) ) .
\I/(f") = “—(2 )Q NlNQF(’LTh, 1-— 2, Z[k?"l - le])F(ZT]Q, 1-— M, Z[sz — kFg]) (20)
T)2
If we normalize this function by the condition (9), then

iy

lelwez, (21)

I'(1—in)

The modified function (20), as seen from the previous calculation, satisfies the Eq.(2)

with accuracy of order O( (kr)g) The substantial difference between the function (8)
and the function (20) is that in the latter, part of the full function describing the
electronic motion relatively to one of the Coulomb center, depends on Sommerfeld
parameter of the other center. It is seen that the second argument of confluent
hypergeometric function in (20) became 1-i7 instead of the previous value 1 in (8).
Due to this, the normalization constant is changed, too.

Fig.2 compares the real and imaginary parts of the functions (20) ,(8) and Red-
mond asymptotic with Z) = Z; = 1,R = 1 and /(7, E) = 135. The difference

between two solutions increases when r is small.

4 Scattering of slow electron

The major deficiency of the solutions obtained above, is no practical application for
low electron energies £ = k?/2. Therefore, we need to pay particular attention to
this case.

Expanding the electron-nuclear interaction in series of 1/r and maintaining a

dipole term only, we recall to a reduced Schrédinger equation:

—%A\p(m - (Zl E Z | (ZQZ;QZI)RCOSG) V(7 = BU (). (22)
Writing the solution as a product
U(7) = Wy () Wa(F) (23)
and requiring that W, (7) satisfies the equation
%M/ (*)+<ZI+Z2 )\Ill(f')zo, (24)
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we lead to the following equation for Wy(7):
1
U, () (5A‘I’z(f') + 2 cos 9\1:2(r*)) VAV (H) =0

where o = (Z, — Z;)R.
The solution of Eq.(24) is given by

() = MeF P (2521 i - )

and at a small electron momentum (k — 0) it becomes

U, (7F)—s Ny, (2\/(21 + Zo)(r — im) ,

where Jy(z) a zero order Bessel function.

In an asymptotic region, the function ¥, (7) tends to zero by the low

wl(r—)m O (r-%) |
T — 00

Our goal is to find a solution to Eq.(25) which satisfies the constraint

VI(VE() —2 0 (%), >2

T — 00

(25)

(27)

(28)

In this case, one can drop in (25) the term with the product of nabla and arrive to

a more simple equation:

AT, (7) — 7%cos Oy (7) = 0.

(29)

Equation (29) is separable in spherical coordinates. Choosing the z axis along the

dipole moment and putting
a(F) = Q(r)O()e™, 1 = cos b,

we obtain two equations

0 9 00 m?
— — | = — A0 =
o ((1 ,u)a'u> apd® 1_#@4- (C)

9’Q  20Q

orz2  ror r2

(30)

(31)

(32)



Here A = A(«) is a separation constant and m is an integer.
If we look for solutions to Eq.(31) as a sum of Legandre polynomials

o) = gdﬂ’z’"(ﬂ), (33)

then the coefficients d; will be obtained by three-term recursion relations. From this,
one can express eigenvalue A;(a) in terms of itself and the parameter o [8]. It has a
discrete infinity of solutions which [ = 0,1,2,... (we have already known for o = 0:
M(a=0)=1(l+1)). Thus, we can write

M) =11 +1) + g(e) (34)

and suppose that g;(a = 0) = 0, for all .
The solution of Eq.(32) bounded at the origin of coordinate system is given by

Q(r) =Cir (35)
where
—14+ V144N
s = — (36)

Note that Re{s;} > —0.5.

Clearly that at R=0 (a = 0), our problem reduced to the one center Coulomb
continuum problem with unified charge Z; + Z,. Therefore, we must require ¥y (7) =
1 in Eq.(35). This condition is fulfilled if I = 0 or Ay = 0. So, we need the lowest

eigenvalue \g(c) only. The lowest eigenvalue is computed in [10] as

/\()— a_2+H£2@a_23+
=76 T30\ 6 450 \ 6

The function A = Ag(e) monotonically decreases with increasing a € [0,00) as it
has been shown in [11].
Thus, the solution of (29) is expressed by the sum
Uy(7, R) = C1r* Y diPy(p) (37)
=0
(for convenience we choose m=0).
Now consider when the constrain (28) be fulfilled. Taking into account

Viy(r) ——= 0 (r™) (38)



Fig.3. Wave functions for slow electron scattering.
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Table 1. The result of critical points (Z, = — 2, = 1).

Our results are shown in the lower lines. [11] results are shown in the upper lines.

0 1 2 3 4 5 6 7
0 | 1.218630 7.583936 19.058055 35.724656 57.586409 84.643914
1.27862975 7.58393585 19.05805466 | 85.72465505 | 57.58640912 | 84.64391432 | 116.89737351 | 15434687274
1| 15.093911 28.224229 46.797070 70.670380 99.790199 134.133766 -
15.09391142 | 28.2422919 | 46.79707021 | 70.67037995 | 99.79019900 | 13413376699 | 173.60011671 218.45337381
2 | 42.601806 62.603396 88.132519 119.061744 155.311824 196.837449 - -
42.60180661 | 62.80330577 | 88.13251008 | 119.06174348 | 155.31182366 | 196.83744941 | 243.61214172 | 295.61974547
3 | 83.854611 110.730886 143.172019 181.078418 224.370210 272.991924 - -
83.85461430 | 110.73088570 | 143.17201864 | 18107841765 | 224.37020975 | 272.99192390 | 326.90618101 | 386.08764044
138.85677140 | 172.60811742 | 211.94305720 | 256.78710010 | 307.06533241 | 362.72148672 | 423.71277413 490.00766578

and the (27), we see the condition (28) is equal to

Re{sp} < -—i.

It seen from numerical calculation that the last inequality is true if

Ia] = RIZQ — le > 1.096.
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Finally, at ¥ — 0 and @ > 1.096 the asymptotic solution to the two-center
problem which includes the terms of order O(1/7#) (8 > 2), in Schrédinger equation
is given by

U(7) = N J, (2\/(21 + Z,)(r — kf')) 0 id Py(cosb), (41)
1=0

where N is a cut off number of asymptotic series in (37).
The constraint (40) is not fulfilled if Z; = Z,. But in this case according to (22)
and (24) we have

U(F) = Nyt Jy (2\/ (20 + Zo)(r — l“cf)) . (42)

In an other particular case, when Z; + Z, = 0, the low energy scattering wave
function reads

. N
() = N1 3" d P (cos). (43)
=0

Now let us compare the last expression with the Redmond asymptotic wave function
given by Eq.(11). At Z, + Z; = 0 or ;, + 72 = 0. The Redmond wave function
reduces transfers to a plane wave. Thus, there are two major differences between our
Eq.(43) and the Redmond asymptotic wave function. First, our function contains
the additional product 7* and secondly, has a certain angle dependence expressed
by the sum or Legendre polynomials. See the comparison between the results of the
one center wave function and the new wave function in Fig. 2.

We have calculated the critical points of Eq. (31) and used the continued fraction

for the parameter a.. See the results of the critical points in Table 1.

5 Conclusion

A 3C-type solution to the two-center problem of quantum mechanics is derived. We
have shown that this function satisfies the Schrodinger equation asymptotically up
to terms of order O(1/(kr)?).

By calculating all the terms of order O(1/(kr)?) in Schrédinger equation, the
3C-type solution is modified. A substantial feature of the modified solution is that
part of the total wave function, which describes the electronic motion relatively to
one of the Coulomb center, also depends on the Sommerfeld parameter of an other

10



center. So, in this approximation, a correlation between two Coulomb subsystems
is somewhat accounted.

The series type asymptotic solution for the slow electron scattering is found.
These solutions satisfy the Schrédinger equation with accuracy O(1/r3). In the
asymptotic region r — oo, the obtained solutions differ both from the Redmond

wave function and from the one-center Coulomb continuum function with unified
‘ charge Z = Z, + Z,.
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Yynyyn6aarap O., Hooxyy X. E11-2000-240
BonHoBbIE (PyHKLMH C aCHMIITOTUYECKHM KOHTHHYYMOM
U1 IBYXLUEHTPOBOH 3aayd KBAaHTOBOM MEXaHUKH

AcuMnToTHYecKHe (r-60MbII0e) PEIEH s CTPOSTCS U1 COCTOSHHS KOHTHHYY-
Ma BJIEKTPOHA, JIBHXYLIErocs B 06J1acTH ABYX (PMKCHPOBAHHBIX KYJIOHOBCKUX LIEH-
TpoB. Pemnenus tuna 3C mony4eHs! Wis 3a0a4u IByX LEHTPOB KBAHTOBOM MEXaHH-
ku. Ilpu mpubnvxeHHoM BbuMCIeHHH wiensl nopsiaka O (1/(kr)?) B ypaBHEHUH

Hpenunrepa u pemenna tina 3C MomuduuMpyotcs. OTIMYUTENBHAS YEPTa MO-
IUUUHPOBAHHOTO PEIIEHHs — 3TO TO, YTO BOJHOBAsA (PYHKLHS, KOTOPAs OIUCHI-
BAaeT BJIEKTPOHHOE [IBUXEHHE OTHOCHTENBHO ONHOIO M3 KYJIOHOBCKMX LIEHTPOB,
TAKX€e 3aBHCHT OT mapameTpa 3oMmepdesbaa Jpyroro LeHTpa.

B To4euHO# AMMONBHOM aNNPOKCHMALMH ACHMIITOTHYECKHE BOJIHOBbIE (PyHK-
UMM TIOJIYyYaloTCs VIl MENJICHHOTO 3IeKTPOHHOro paccesHus. Iloka3aHo, 4To
B KOHKPETHOM ciyyae Z;+Z,=0 3Ta (pyHKLUHUS OTIMYAETCS OT PEAMOHICKOrO
ACUMIITOTHYECKOro wieHa r°, rne Re{s}>-0,5.

Pa6ora BeimonHena B JlaGoparopuu HHGOPMaUHOHHBIX TexHonoruii OUSIHU.

Mpenpunt O6BEIMHEHHOTO HHCTUTYTA SAEPHBIX HccienoBaHui. dy6Ha, 2000

Chuluunbaatar O., Tsookhuu Kh. E11-2000-240
Asymptotic Continuum Wave Functions for Two-Center Problem
of Quantum Mechanics

Asymptotic (large-r) solutions are constructed for the continuum state
of the electron moving in the field of two fixed Coulomb centres. A 3C-type solu-
tion is derived for a two-center problem of quantum mechanics. When calculating
approximately, the terms of order O(l/(kr)?) in Schrédinger equation

and the 3C-type solution are modified. The essential feature of the modified solu-
tion is that the wave function describing the electronic motion relatively to one
of the Coulomb center, also depends on the Sommerfeld parameter of an other
center.

In the point dipole approximation, the asymptotic wave functions are obtained
for slow electron scattering. It is shown that in the particular case Z, +Z, =0 this
function differs from the Redmond asymptotic by a product r*, where
Re{s}>-05.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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