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1. Introduction

In most European countries, the increased efforts to establish heavy metal monitoring
have led to a number of environmental programs at the national and international levels. The
moss technique, introduced in the Scandinavian countries about 25 years ago, has shown to
be the most suitable for studying the deposition of the heavy metals. It has found numerous
applications and is now being widely used for large scale deposition studies.

Matters of environmental protection matter are also being considered most
attentively in Romania, especially with respect to the intense local pollution problems
resulting from intensive industrial and agricultural activities. In Romania, however, the
available resources for the next 10-20 years necessary for the improvement of the
environmental conditions are very limited, whereas the cost of attaining certain targets
connected with the environment is very high.

For the first time, the moss technique was applied in Romania in 1995 to a
systematic study of air pollution with heavy metals and other trace elements in several
industrialized and urban areas of the Eastern Romanian Carpathians. This was done to cover
one more “white spot” on the heavy metal atmospheric deposition map of Europe. The study
has continued later in other regions of Southern and Western Carpathians and most recently
in 1999 in the Transilvanian Plateau.

The most important results to be expected by this study are as follows:

o identification of areas with high contamination levels to be considered for the

evaluation of environmental risk;

e creation of a database for continued studies at regular intervals;

establishment of a regional sampling network for future monitoring programs;
comparison of the environmental contamination levels in Romanian regions with
other strongly polluted areas in Europe, such as the “Black Triangle”, the Copper
Basin in Poland, the Ural region, etc.

Romania, known for its rich mineral resources, is a highly industrialized country
where a great number of metal processing plants as well as coal-fired power plants are
operating. The most important metals are iron, chromium, nickel, aluminum, gold, silver,
copper and zinc; other important elements are arsenic, mercury, vanadium and rare earth
elements. A high concentration of industrial activity is clustered within a limited
geographical region in Transilvania. As a result, the environment in the area has reached a
state of deep ecological stress. For example, non-ferrous metal processing plants pollute the
surroundings of Copsa Mica, Zlatna and Baia Mare with heavy metals such as lead, tin,
copper and cadmium, the maximum values of the concentrations exceeding by far the
permitted norms [1].

2. Methodology

Study area and sampling

Samples of the moss Hypnum cupressiforme were collected during the summer of
1999 according to guidelines described in detail elsewhere [2—4]. The sampling sites (Fig.1)
were located at least 300 m from main roads and populated areas and at least 100 m from
smaller roads or single houses. From each sampling site, 5 to 10 subsamples were taken
within a 50 x 50 m area and mixed in the field. The samples were collected with plastic
gloves and stored in clean plastic bags. Unwashed green parts of moss plants, cleaned and
dried at 40 °C, were taken for analysis. No further homogenization of the samples was
performed [5]. '
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Figl. Sampling sites
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Analysis

Moss samples of about 0.3 g were packed in aluminum cups for long-term irradiation
and samples of about 0.3 g were heat-sealed in polyethylene foil bags for short-term
irradiation. Elements yielding long-lived isotopes were determined using the Cd-screened
channel 1 (Chl) (epithermal neutron activation analysis, ENAA) at the IBR-2 reactor in
Dubna, Russia. Samples were irradiated for 5 days, re-packed, and then measured twice
after 4-5 and 20 days of decay, respectively. Measurement time varied from 1 to 5 hours. To
determine the short-lived isotopes of Na, Mg, Al, Cl, K, Ca, Mn, I, and Br (*Br), channel 2
(Ch2) was used (conventional NAA). Samples were irradiated for 5 min and measured twice
after 3-5 min of decay for 5-8 and 20 min, respectively.

Table 1. Characteristics of the irradiation channels

Irradiation site

Dy 102, n/scm?,

Dres 10", /s cm?,

D 102, n/scm?,

E=0+0.55 eV E=0.55+10°eV E=10° +25-10° eV
Ch1 (Cd-screened) 0.023 3.31 4.32
Ch2 1.23 2.96 4.10

Data processing and element concentration determinations were performed on the
basis of certified reference materials and flux comparators, using software developed in
FLNP JINR [6]. For long-term irradiation in Chl, single comparators of Au (1pg) and Zr (10
pg) were used. For short-term irradiation in Ch2 a comparator of Au (10 pg) was employed.
Concentrations of elements yielding long-lived isotopes were also determined using
certified reference materials: SDM sediment (International Atomic Energy Agency, Vienna),
Montana Soil (NIST) and moss DK-1, prepared for calibration of laboratories participating
in the corresponding 1990 Nordic survey [7]. Interference from the *Fe(n,p)**Mn and
Fe(n,p)’'Cr reactions was estimated at less than 0.1% for the given concentrations of Fe.
The high density of fast neutrons in the irradiation channels used provided favourable
conditions for the determination of Ni by the **Ni(n,p)**Co reaction. However, problems
with interfering nuclear reactions are evident in a number of instances, as shown in Table 2.

Table 2. Interference by fast neutron reactions*

Intended reaction Interfering reaction Level of
interference/ng ”
“Na(n,y)**Na »Mg(n,p)*'Na 3x10°
7 Al(n,0)**Na 1.5x10°
*Mg(n,y)Mg”’ 7 Al(n,p)*’'Mg 9x10°8
N 2Si(n,p)*Al 3x107
31p(n,0) Al 9 x 10°
“K(n,y)‘uK 42Ca(n,p)42K . 1
Se(n,0) K 1.5 x 10°
SW(n,y)*V 2Cr(n,p)*V 1x10*
Cr(n,y)*'Cr Fe(n,0)’'Cr 4x10°
*Mn(n,y)**Mn *5Fe(n,p)*Mn 7x10*
58Fe(n,a) Fe **Co(n,p)*Fe 23x10°%
SCu(n,y)**Cu #Zn(n,p)*Cu 5x10°

* Cr and Fe were determined in Ch 1, all other elements mentioned here in Ch2 (see Table 1).
** As compared with 1 gram of the interfering element.

t Cross—section not available.




3. Results and discussion

The results obtained for the Transilvanian Plateau are shown in Table 3, in
comparison with other relevant areas from Russia (Ural), Poland (Copper Basin) and
Norway (Mo, local ferrochrome smelter).

Polymetallic mining industries have polluted a vast territory with Fe, Pb, Cr, etc.
Non-ferrous metal industries in Copsa Mica, Zlatna, and Baia Mare are responsible for
pollution with elements such as Pb, Cu, and Cd. The iron and steel factories of Hunedoara
and Calan show emissions of iron and non-ferrous metals.

From Table 3 the following observations can be made regarding the concentrations
of metals such as As, Cr, Cu, Fe, Mg, Mn, Ni, Pb and Zn:

e in Transilvanian Plateau the concentrations of these elements exceed the values
from Russia, Poland and Norway; very serious is the fact that As, Cu, Pb and Zn
show concentrations about ten times greater in Romania;

e the concentrations of Mg, Cr and Mn in Romania, Poland and Norway are
comparable and lower than in the South Ural Mountains (Russia);

o the Ni concentration is lower in Romania that in the other areas

A correlation coefficient matrix (Table 4) shows the inter-elemental relationships
between pairs of elements in moss. Good correlations between some elements indicate a
common source or identical behaviour during long range atmospheric transport.
Representative graphs for some inter-element correlations are shown in Fig. 2 and Fig 3.
Most of these correlations represent pollution one way or another. Exceptions are the pairs
Ti-Al, V-Al, Co-Fe, Ta-Th, and Th-Sc, which probably express geochemical similarities of
these elements in soil particles attached to the moss samples.

The results of factor analysis are given in Table 5. Preliminary assessment of factors
could be assumed as follows: factors 1-2: soil (crustal components); factors 3-4: pollution;
factor 5: soil again.

A graphical technique developed for aerosols, [14] for extracting the elemental
compositions of the crustal, marine, and general pollution components and proved to be
efficient for lichens [15] was successfully applied to Transilvanian moss samples.

The moss-crust enrichment factor of an element X is defined as

EF crust=(X/SC)moss/ (X/SC)crust

where Sc is the usual crustal reference element and the dominator (X/Sc)crst is the ratio of
the X and Sc in the crustal reference material. It is evident that enrichment factors for
“crustal” elements fall within factors of three or so of unity and signify that those elements
have come from the crust (either directly as windblown soil or indirectly as coal fly ash).
Enrichment factors for other elements lie well above unity, and in our case are to be found
between 10%-10°. These “enriched” elements are noncrustal in origin (Fig. 4).

Potential best indicators of non-crustal origin can be distinguished by comparison of
moss average composition with that of atmospheric aerosol or deposition. Fig. 5 does this by
showing enrichment factors of the average moss relative to average urban aerosol [16],
where the enrichment factor X is defined as

EF=(X/S¢)moss/(X/S¢)urban acrosol
Potential best indicators of deposition as follows from Fig. 5 Cl, V, Ni, Se, Br, Sb, Cs.
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Fig. 2 Inter-element correlations for Transil
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Fig. 3 Inter-element correlations for Transilvanian

moss
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Fig. 4 Enrichment factors of elements in Transilvanian moss with respect to crust
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Fig. 5 Enrichment factors of elements in Transilvanian moss with respect to urban aerosol
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Table 5

Rotated Component Matrix In the following text the elements
Component studied area discussed with regard to the
! 2 8 4 5 6 observed spatial trends as influences b,
NA 024 076 007 034 -0.01 023 p . y
MG 002 0.81 -0.07 -0.12 031 -0.04 long range atmospheric transport,
AL 020 0.9 -0.04 -005 0.12 -0.04 deposition of pollutants from local point
CL -007 -0.06 001 0.18 0.83 0.14 : :
K 018 041 002 077 021 -0.07 sources, etc. The locations of point
CA -006 -0.11 033 0.01 064 008 sources of heavy metal pollution are
SC 075 061 003 010 -0.13 0.06 mentioned in the text.
V. 026 081 002 -0.08 0.24 -0.08 Aluminium
CR 063 050 001 022 -0.04 0.13 he Al concentrati b di
MN 022 057 048 -0.08 -0.09 0.4 The Al concentrations o served in moss
FE 079 040 037 013 -0.04 005 are most probably explained by
ﬁlo g-‘;g ggg ggé 8:)2 "gv;g g-?g contribution from local soil material
CU 003 042 096 -002 006 -0.05 (mamly. v&{lnd.blown dust). ' This
ZN 032 -0.15 055 070 0.08 -0.12 assumption is in agreement with the
AS 004 005 094 014 001 -0.01 conclusion from the principal component
gg g‘gg 'g‘:; _g'zg _g'gg 'g'g; g‘gg analysis carried out. All Al values were
RB 092 020 018 0.02 -0.08 0.07 between 828 ppm and 23010 ppm, with a
SR 078 -0.22 027 020 034 0.11 median of 5411 ppm, which is very high
ZR 094 005 026 0.00 0.03 -0.08 :
mpare val served in northern
MO 0.0 0.01 0.96 003 0.04 -0.05 compared to values ob .
AG 048 005 068 022 0.03 0.02 Europe and strongly suggesting a
CD -0.02 -0.03 032 0.89 003 -0.09 generally significant soil contamination
SB  0.36 -0.18 0.68 0.55 0.01 -0.11 of the moss samples.
1 006 023 006 -0.12 0.16 0.75 I
CS 082 049 000 0.08 -0.04 0.15 iron . .
BA 092 0.5 -0.02 0.07 -0.03 0.14 The Fe concentration in moss is
LA 019 085 -009 017 -0.30 018 explained by the soil factor, as indicated
CE 040 075 -0.10 0.02 -0.33 0.15 : .
oM 012 0.86 042 -0.01 028 040 e.g. by the hlgh F.e-Sc corre}atwq. The
HF 084 045 0415 004 -0.14 0.00 lower correlation in Luncani region is
AU 003 -006 0.88 010 023 004 caused by major emission from the
TH 072 063 004 007 -0.17 002 wirework industry. The Fe values range
U 021 087 004 010 -0.19 021 i th di
Extraction Method: Principal Component Analysis. om 800 ppm to 21000 ppm, the median
Rotation Method: Varimax with Kaiser Normalization belng 340 ppm.
Rotation converged in 7 iterations.

Antimony
The highest levels of Sb were found in Cergau close to one of the most important center of
non-ferrous metal industry of Romania. The Sb values of all samples analyzed range from
0.16 ppm to 50 ppm, the median being 0.92 ppm. Similar situation was observed for the
South Ural Mauntains [8].

Selenium
Se is typical for all copper deposits, due to its presence in ore forming sulphides . A second
source of Se could be Pb - Zn deposits. The Se values were between 0.075 ppm and 5.0 ppm,
with a median of 0.37 ppm.

Arsenic
Strongly elevated arsenic levels were found in the northern part of Transilvania (Zagra,
Letca, Magoaja) where there is a long tradition of ore mining and in the Baia Mare region
which is affected by the non-ferrous metal industry. All arsenic values in this investigation
were between 0.59 ppm and 118 ppm, with a median of 2.3 ppm.
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Zinc
Two regions with high Zn concentration were distinguished. One of them is Cergau, where
there is a Zn and Pb smelter. The second is Letca — Magoaja — Ileanda, characterized by non-
ferrous ore mining. The Zn values were between 39 ppm and 2900 ppm, median being 137
ppm.

Copper
Copper showed the highest concentration in the same region as arsenic and has the same

source, ore mining and non-ferrous metal industry. All Cu values range between 18 ppm and
2400 ppm, the median being 73 ppm.
Cadmium .

The high cadmium concentration in Cergau region is mainly due to Zn and Pb smelters.
Moreover, the pattern of Cd distribution showed increased concentrations in Zagra — Letca -
Magoaja region, probably a result of ore mining. A high Cd concentration level observed in
Aiud may be explained by the presence of an oil-fired power station without proper filters.
All Cd values were between 0.23 ppm to 55 ppm, with a median of 1.99 ppm.

The average life expectancy in Romania is one of the lowest in Europe: 66.56 years for
men and 73.17 years for women.The serious air pollution situation is likely to be one of the
factors responsible for these unfortunate health conditions. In the period after 1989, and
especially during the last three years extensive measures have been taken in order to improve
the environmental conditions in Romania. The results from the present work however show
that there is still a long way to go.
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Cran O.A. u 1p. E14-2000-126
Hosble pe3yabTaTthl 110 aTMOC(EpHBIM 3arps3HEHHSIM B PyMbIHUM

Coo6LaloTcs pe3yabTaThl BHIONIHEHUS CIEAYIOLIEro sTana npoekTa «Msyyenne atMo-
cepHBIX BHINMANEHUH TSXENBIX METAUIOB B CEIbCKOXO3SHCTBEHHBIX M MPOMBILIIEHHBIX paii-
oHax PyMbIHMH C OMOLIBI0 MXOB GHOMOHHMTOPOB H SNEPHO-(DU3HYECKHX METONOB aHAIH3a»
10 KOOPAMHALMOHHON NporpaMMe MeXIyHapOIXHOIO areHTCTBa N0 aTOMHOM sHepruu (Bena,
Ascrpus). Cembaecsr o6pa3suos Mxa Hypnum Cupressiforme 6bini cobpansl B Hanbonee 3a-
IPSA3HEHHBIX paliOHaX ceBEpPO-BOCTOUHOM 4acTh TpancuabBanuu neToM 1999 r. Dniureniosoi
HENTPOHHBIH aKTHBALIMOHHBIN aHA/IM3 STUX 06pa3LoB npoBoxuica Ha peakrope HBP-2 THD
OUSIN, dy6Ha. KoHTponbs KayecTBa W3MepeHMil oOecrieynBaiicsl IPUMEHEHHEM CTaHIAapTOB
MATATD. B pesynsrate GbUT ONIpEE/IeH IMPOKHI KPYT 3JIEMEHTOB, BKJIOYAs TSXETIbIE Me-
TaUl 1 pexko3eMenbHble anemeHTl (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni
((n,p)-peakuus), Cu, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Ag, Sn, Sb, I, Cs, Ba, La, Ce, Nb, Sm,
Eu, Gd, Tb, Hf, Ta, W, Au, Th, U). Bsuin onpezeneHbl naTHa arMoc(epHbIX BHINANCHUIH TS-
KeNbIX METAJVIOB Ha PErMOHAJIbHOM ypOBHe. 10 aHaJIOTMH C JPYTHMM «TPSA3HBIM» PETMOHOM,
IOxHpIM YpanoMm, B pyMbIHCKOM ropoje Yepray Obula BbisiBjEHa BbICOKad KOHLEHTpaLMs
CypbMBl, JocTHraiomas B MakcumyMe 50 ppm. IlonyyeHHble pe3yIbTaThl COMIACYIOTCS C MC-
ClleJOBaHUSIMH aTMOCGEpHBIX BHIMANCHHH TAXENbIX METAJUIOB, KOTOPbIE NMPOBOAWIMCH B Py-
MBIHUH paHee, a TaKXe C aHAJOTMYHBIMM McciiefnoBaHuiMH B I'epmanuu, Hupmepnanpax,
Ionbie, Poccun u apyrux crpaHax.

PaGoTa BbimonHeHna B Jlaboparopum HeiiTpoHHO# ¢hu3uku uM. U.M.®panka OHUAN.
TMpenpunt OGBeAMHEHHOTO HHCTUTYTA SAEPHBIX HccnenoBanuii. dy6ua, 2000

Stan O.A. et al. E14-2000-126
New Results from Air Pollution Studies in Romania

Results from the next stage of the project «Atmospheric Deposition of Heavy Metals
in Rural and Urban Areas of Romania Studied by the Moss Biomonitoring Technique Em-
ploying Nuclear and Related Analytical Techniques», carried out under the auspieces
of the International Atomic Energy Agency, Vienna, are reported. A total of 70 moss sam-
ples (Hypnum Cupressiforme) were collected from highly polluted areas in the north-eastern
part of Transylvania during the summer of 1999. The samples were analyzed by epithermal
neutron activation analysis at the pulsed fast reactor IBR-2 at JINR, Dubna, for a wide range
of elements including heavy metals and rare earths (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn,
Fe, Co, Ni ((n,p) reaction), Cu, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Ag, Sn, Sb, I, Cs, Ba, La, Ce,
Nb, Sm, Eu, Gd, Tb, Hf, Ta, W, Au, Th, and U). IAEA certified reference materials were
used to ensure the quality of the measurements. The regional extent of pollution patterns
of specific metals was determined. Like another strongly polluted area — the South Ural
Mountains — concentrations of Sb as high as 50 ppm were observed in the vicinity
of Cergau in Romania. The results reported are consistent with those obtained in the previ-
ous moss-surveys in Romania and also with studies carried out in Germany, the Netherlands,
Poland, Russia and other countries.

The investigation has been performed at the Frank Laboratory of Neutron Physics,
JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2000
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