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In this paper four models are being discussed, concerning the -
gravitational field of a star at rest and the equations of motion
of the companion planet.

The first model has been created by Newton and the sec-
ond model by Lobachevsky. The third model has been initiated
by Einstein, further developed Schwarzschild and completed by
Fock. The fourth model has been created by the author of this
paper.

In the second and in the fourth models the Lobachevsky
geometry with the characteristic constant k is introduced in the
background space. The constant k is the absolute measure of
the length in the background space.

In the third and in the fourth models the Lobachevsky geom-
etry with the characteristic constant c is introduced in the veloc-
ity space. The constant c is the absolute measure of the rapidity
in the velocity space. It equals the light velocity.

In the first and in the third models the gravitational field of
the star obeys the Einstein’s equations. In the second and in
the fourth models the gravitational field of the star obeys new
equations, proposed by the author.

As space co-ordinates z*, 2 and z* we choose the distance p
from the star, the polar angle 6 and the azimuth ¢ on a sphere
p = const ; the notation z* = t we will preserve for the time
co-ordinate. Co-ordinates p, 6, ¢,t are independent of ¢ and &,
therefore operations ¢ — oo and k — oo have a common sense.
The fourth model turns into the third model, if & — oo. The
fourth model turns into the second model, if ¢ — co. The fourth
model turns into the first model, if ¢ = oo and k — oo.

We must solve the new equations of the gravitational field

v
Rmn = Rmn )

where R,,, is Ricci tensor for the gravitational connection, Ifimn
is Ricci tensor for the background connection. Here the second
connection is given, but the first connection is to be found.
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I have shown in my works [1], that any physical theory is
founded on the concept of velocity space and that the geometry
of this space is the Euclidean or the Lobachevsky one. In the
first case the theory is named nonrelativistic and in the second
case it is named relativistic. It is strange, of course, but it has
been named in this way.

It is interesting, that the background connection f‘fnn does
not depend on the light velocity ¢. Consequently it refers to the
Absolute Geometry of Bolyai in velocity space.

The gravitational connection is defined by the equations of
motion for a particle in a gravitational field , when there are no
any other forces.

The background connection is defined by the equations of
motion for a free particle.

The trivial solution I';,, = '@ means that the background
connection is the gravitational connection in its trivial form. In
this case there is no gravitational field.

If the gravitational field is absent, we put

Gmndz™dz" = Grpdz™d2™ = hy,datdz” — ¢ dtdt |

where h,, do not depend on z* =t.

The quadratic form hy,dz#dz” is either the metrics of the
Euclidean space in the Newton’s model (the case k = o0), or
the metrics of the Lobachevsky space in the Lobachevsky model
(the case k < 00).

The components of the Christoffell’s connection for the met-
rics hy,dztdz” we shall denote by h7,.

The Ricci tensor r,, for the connection hij equals 7, =
—k~% hy, in the case k < 0 and it equals zero (r,, = 0) in the
case k = 00.

Both in the relativistic case and in the nonrelativistic case
the background connection equals

re, =he, ,0e,=0,0%=0,I'%y=0,Th,=0.

71 728]
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Accordingly, both in the relativistic and in the nonrelativistic -
case the background Ricci tensor equals

RLWZTIW’R‘I":O:RWA:O-

1. The Newton’s Model: the Case (k = 0o, ¢ = 00).

According to Newton, the equations of motion for a planet

are:
g;g_y %g—gj—f —sin@cos@i—f% =0,

Here + is the Newton’s constant, M is a mass of the star.
From here we find the gravitational connection I'y,, in the
Newton’s case. If M = 0, it coincides with the background

connection. In this case all components of the tensor
P, 7(71m = F%m - ann

equal zero except

yM
P, 414 = —p? )
which equals the force, with which the star attracts the planet’s

unit mass.

It is remarkable that the Newton’s gravitational connection
with an arbitrary constant yM is an exact solution of Einstein
equations

Ryn=0.



2. The Lobachevsky Model: the Case (k < oo, ¢ = 00):

In the Lobachevsky geometry the length of a circle of radius
p equals 277, and the area of a sphere of the same radius equals
47r?, where r = ksinh £. Because of it Lobachevsky has shown
[2, c. 159] that in the new model the force, with which the star
attracts the planet’s unit mass should equal

The rest components of tensor'P;fm must be equal zero. The
force of attraction in the Lobachevsky model has potential [3],
which equals

U= ]]fw(l—cothk)

In order to find the background connection in this model we
must write down the equations of motion for a particle in the
case when the Lagrangian equals

Ldpdp 1 ,d0ds 1 , ., dpds

—=" r? sin :
pdtdt 2" @di T2 O at
From these equations we receive
féz = —ksinh 2 cosh 2, T}, =1,sin?0,
FfQ—k 1cothﬂ—l“gl, F33:—sin0c050
I3, =k~ lcoth2 =T1%,, I} =cotd =1%,,

the remaining components ann being equal to zero.
The background Ricci tensor in the coordinates p, 8, ¢, is a
diagonal one. Its diagonal elements are

Ru = —2]{?‘2, RQQ = —2/{5_27'2, Rgg = —2]€_27"2 SiIl2 9, R44 =0.

The Lobachevsky gravitational connection with an arbitrary
constant vM is an exact solution of the equations

R, = —2k“2hﬂ,,, Ry = Ry, = 0.



3. The Einstein-Schwarzschild-Fock Model:
the Case (k = 00, ¢ < 00).

The construction of this model began Einstein, and it was
continued by Schwarzschild, and completed by Fock, who in-
sisted on the application of the harmonicity condition. The grav-
itational metrics in this case equals

pray, o 20702 1 cin2 2 P—QyN 9.9
—)dp” + df” + sin” 0 d¢*) — (—— )c dt”

(S=g) e+ o+ o)’ - ()
where o = yMc¢™2 is the gravitational radius of mass M. This
metrics satisfies the equation R,,, = 0. (See [4, c. 263]).

In the case of the static spherical symmetric metrics

Grndz™dz™ = F2dp* + H2(d6? + sin? 0d¢?) — V2dt’

the second, the third and the fourth components of anharmonic-
ity vector ®* = gmmpP2 = gmn(['e T ) equal zero.

In regard to the first (radial) component ®!, it depends on
the choice of the background connection. In the considered case
it equals
o' = g™ pl = ! [i(F‘IVHQ) — 2FVp)
™ VFH? Ydp '

As a consequence of the Fock harmonicity condition

d
—(F"'VH?*) —2FVp=0
y p( ) p=0,
the radial component ®' equals zero. The Fock condition does
not follow from the Einstein’s equations, but it follows from our
equality
d 2
d—p(F‘IVHZ) — FVksinh ?p =0
taking in the limit £ — oo.



4. The General Case (k < 00, ¢ < 00).

In the case (k < oo, ¢ < 00) we must solve the following
equations of gravity:

2 .
Ry = 2 Ryy = —2sinh? “Z‘, (1)

R33 = -2 sinh2 %sinQ 9, R44 - 0,

Ry =0, if m#n.

The gravitational metric we find as the static spherical sym-
metric one. In this case we have all nondiagonal components of
tensor R,,, being equal to zero; as to the diagonal components
we have the equality R33 = Rao sin®@ .

Consequently, we must solve the following equations:

2 12 P
R44=O, Rll :_ﬁ, R22:—251nh E (2)
We have
V d (H?dV
fu= Y L (VY.
FH? dp\ F dp
H 5 dH 1 d(FV) d°H
- F? - —
5 (Bu+ V7 F°Ry) F o a ©
1 d (\VHdH
-1 — (=)
Bz FVdp( F dp)

Therefore we must solve the following equations:

deary o n )
dp\ F dp/) 7 dp> k2 dpFV dp ’
d (VHdH 2



We shall solve this system provided that FV = C = const,
when we shall have

2 2
gy g EHE
dp dp dp?*  k?
& (a2 2 2p
BF(VH)—2C’ cosh?. (7)

It follows from (6), that

2 A,

H = Phsinh(6 +£), V=N - % coth(6 + ), (8)

where £ = p/k, é = p/k, and B P,p, N are integration con-
stants. Now it follows from (7) and (8), that

V2H? = C?k? sinh(€ + £) sinh(¢ — £). (9)
Consequently, we have
Gmndz™dz" = F2dp? + H?(d6? + sin® d¢?) — V2dt* =

= P?k?[E7'dE? + sinb® (€ + £)(d6” + sin® 0 d¢?| - ~C*P°Ed#’,
(10)

where R
__sinh(§ —§)
sinh(€ + &)
On large distances from the star the gravitational metric (10)
must approximate the bacground one. It follows from this that

[1]

C=c, P=exp(=£).
Taking into consideration the nonrelativistic limit we get

: : o
sinh(2¢) = 2 T



In the case under consideration

1 d, ., 2p
1 1 2\ —
O = s [—dp(F VH?) = FVksinh -]

k  d 2 2
= E[ZE sinh(§ 4 §) sinh(§ — £) — sinh(2¢)] = 0.
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Yepuukos H.A. E2-2000-210
YeTsipe MOIENN TPABUTALIMOHHOTO TOJIS 3BE3/bI

PaccMoTpeHbl 4eTsipe MOZENIM TPaBUTALIMOHHOTO MOJA MOKOSILUEHCS 3BE3Ibl BMECTE
C YpaBHEHUSIMH HBUXKEHUS €€ CIyTHMIBI — IIJIAHETDI.

Iepsast Mogens mocrpoena HuioroHoM. Bropas mMozens nocrpoena Jlo6auesckum. Ilo-
CTPOEHHE TpeThel MOJeNM HayaTo DiHIITEHHOM, nponorkeno IIsapuiumnasiom u 3asepiue-
HO ®okoM. YeTsepTast MOJENb NIOCTPOEHA aBTOPOM JAHHOM paGOTBI.

Bo BTopoi#i 1 YyeTBepTOi MOZENX B (POHOBOE IIPOCTPAHCTBO BBOAMTCS reomeTpus Jloba-
YEBCKOI0 C XapaKTepHOM KOHCTAaHTOH k, sBnsiouieiics B pOHOBOM NMPOCTpaHCTBE abCOMIOT-
HOM MEpPOM JUIUHBI.

B Tpertbeii 1 yeTBepTOi Moaex reoMeTpHs JIo6aueBCKOro ¢ XapaKTepHO# KOHCTaHTOM
€ BBOIHMTCS B POCTPaHCTBO ckopocTeil. KoHcTaHTa ¢ sBiisieTcst abCOMOTHOMH Mepoii 6bICTpo-
Thl B MPOCTPAHCTBE cKopocTed. OHa paBHAETCS CKOPOCTH CBETa.

B nepBoii ¥ TpeTbeli MOZEINIIX TPABHTALMOHHOE T0JI€ 3BE3/Ibl MOXYHMHSETCS YPABHEHUSIM
DiiHiTeliHa. Bo BTOpoii H 4eTBEpTOH MOJE/IAX IPaBUTALMOHHOE I10JI€ 3BE3/bl ITOAYMHAETCS
HOBBIM YPaBHEHMSIM, NPEIOKEHHBIM aBTOPOM.

PaGota BbimosHeHa B JlaGoparopum Tteopetuyeckod ¢usuku uM. H.H.Boromo6osa
OUsN.
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