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1 Introduction

In publications [1, 2] a new approach to perturbative QCD, the renormalization group (RG)
invariant analytic approach (IAA) was proposed (for the exhaustive review on this approach
we recommend paper [3]). This method consistently takes into account the renormalization
invariance and analyticity in perturbation theory (PT).

In work [4], a particular version of IAA has been formulated. According this version,
analytic perturbation theory (APT), the observables in the space-like region are represented
as a non-power series in the special universal functions A,(Q?, f) (n=1,2...and f denotes
number of quark flavor) [5]. Analogical set of functions {,(s, f)}, s > 0, was introduced in
the time-like region [6]. Both sets of functions are determined by the QCD running coupling
a5(Q?, f) and can be calculated in APT analytically or numerically. A systematic mathe-
matical investigation of these functions have been undertaken in works [5-7], in particular
the oscillating behavior in the infrared region was established. To calculate these functions
beyond the one-loop level the iterative approximation for the coupling was used [6, 8, 9], or
RG equation for the coupling has been solved numerically in the complex domain [10].

In papers [11, 12] the RG equation for the QCD running coupling, at the two-loop order,
has been solved explicitly as a function of the scale. The solution has been written in terms of
the Lambert W function. The three-loop order solution (with Pade transformed B-function)
also was expressed in terms of the same function [12]. Using the explicit two-loop solution,
the analytical structure of the coupling in the complex Q?-plane has been determined [11, 12].
The analytical formulae for the corresponding spectral function was found. Then using the
method of APT the analytically improved coupling [13, 14] has been reconstructed.

Afterwards, in paper [15], the running coupling of an arbitrary renormalization scheme,
to the k-th order (k > 3), was expanded as a power series in the scheme independent explicit
two-loop order solution. The new method for reducing the scheme ambiguity for the QCD
observables has been proposed in this work. A similar expansion for the single scale dependent
observable, motivated differently, has been suggested in [16].

In Sec.2 and Sec.3 we use the explicit solutions for the running coupling to calculate
the universal quantities A,(Q?, f) and %A, (s, f) beyond the one loop order. The results for
(s, f), to second and third orders, are presented in the analytical form.

In Sec.4, the matching conditions for crossing the quark flavor thresholds for the M3
scheme running coupling o, (Q, f), to the three loops, are solved analytically. By the way
we construct the global (independent on f) universal functions, A4,(Q?) and 2,(s) (both
introduced in [6]). These functions can be used in the whole momentum space.

In Sec.5 we present numerical estimations of the explicit-solutions for the coupling. We
consider the cases of standard PT and of APT separately. To third order, we compare
numerical results for Pade and standard iterative approximations to the coupling. The scope
of validity for the iterative approximation is estimated. We give numerical results for the
“analyticized couplings” A;(Q?, f) and (s, f) calculated to second and third orders. The
differences between these quantities and the standard coupling, a,(Q?, f), are estimated. We
also give numerical results for the global functions A, (Q?) and 2,(s) (n = 1,2, 3), to second
and third orders (see Tables 7-12).
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2 Exact solution for the two-loop coupling in the space-
like region
The running coupling of QCD satisfies the differential equation 2

Oa f
Q2 58(82 ) _ ﬂf(as QZ Zﬂ N+2 Q2 ) (1)
as(p?) = o, = ;19;, g is the renormalized coupling constant, p is the renormalization point,
and f denotes the number of %uark flavors. In the class of schemes where the beta-function is
mass independent 6((, and ﬁl are universal and the result for 3] is available in the modified
MS (MS) scheme
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For convenience in what follows we shall omit index f in the coefficients [3,{ . Exact two-loop
solution to Eq. (1) is given by [11, 12]
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b= B1/Bs, A = Azzg and W (¢) denotes the Lambert W function [17]. This is the multivalued
inverse of ¢ = W({)expW((). The branches of W are denoted Wy (¢),k = 0,41,.... A
detailed review of properties and applications of this special function can be found in [17].
The three-loop solution (with Pade transformed beta-function) for the coupling is [12]

o® 0 1 :_l </60ﬂ2 (Q_2>_%
Al 0 =g < we (57) W

Expressions (3) and (4) allows us to perform analytical continuation in the complex Q? plane
and to calculate discontinuity along the negative Q? axis. ® In this way we construct the
corresponding analytically improved expressions for the coupling. The “analyticized n-th
power” of the coupling, obtained from the solution (4), can be written as

o0 (3) o, oo et
D@ 1) = 1o0@ N = 1 [T = L [" 0 e, 0

pct, f) = S{ay(—o —40)}", is given by

) = (ﬁ) 0(_1—ﬂzﬁo/ﬂ¥1+ WI(Z(t))>n’ ©)

2(0) = - exp(Boa/ B ~ t/b+1(1/b — D). @

Note that formula (6) is relevant for 0 < f < 6. Taking the limit S — 0 in (6) one can
reproduce the corresponding formula for the two loop case.

I

where the spectral function, p,(a, f)

with

*We use the notation Q% = —¢?, Q@ > 0 corresponds to a spacelike momentum transfer.
bFor details of analytical continuation we recommend papers [11-14).



3 Continuation of the QCD running coupling to the
timelike region

The APT approach allows us to define the QCD coupling in the timelike region in a correct
manner [8, 9, 18, 19]. Here, instead of common power series for a timelike observables, there
appears asymptotic series over the set, of oscillating functions {2, (s, f)} [6, 7]. The functions
A, (s, f) are defined by the elegant formula [20]

(s, f) = / © i, 1), ®)

here the spectral function is p, (0, f) = I{as(—o —0)}". In the one-loop order the set
{%4.(5)} has been studied in Ref.[6]. In this case, the first four functions of the set are given
by

W = Los_ L ISy ap SR

W)= 508 - s, %6 = s oo
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here 5 = s/A% In this section we will calculate 2, (s, f) to second and third orders. Let us
define the auxiliary functions

00

Rals, )=+ [ aian(r, ). (10)

Ins

where Sa"(t, f) = pn(t, f) = palo, f) with o = exp(t). Then A, (s, f) = SR, (s, f). The
expressions for @, at the two and three loop orders, can be read from (6). In the two loop case

1 e—1-t/b+ip
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Integral (10), with (11), can be rewritten as a contour integral in the complex z-plane
% dz 1
RO(s, f) = pn / A 12
(s, f)=p T Twmer (12)
here
po= Z(Bo/B) 2= 2D, nmcet, g=r (o (13)
n T b § eb b € K b )
and the limit € — 0 is assumed. Let us introduce the new integration variable in (12)
W(z) dz
= W _—
w=W), o= s, (14)
then Watea)
W) 14w
RO (s f) = / — " dw. 15
n ( f) Pn Wiee) w(l —!—w)“ W ( )

For n > 2, from (15) we find the relation

- a5, +

A (s, f) = S(1+ Wi (z,))* ™. (16)

Pn
(n-2)



Eq. (16) can be rewritten as the recurrence relation for 2,(s)

82[51222(37 f)

T = (0= 2) (B (s, ) + BAD (s, f), (17)

formula (17) gives the generalization of the similar one-loop order relation obtained in paper
[6]. From (17) with the help of Eq. (8) we find analogical formula for the spectral function

92,0, f)

e =~ =2 (B (0, ) + fupP (o, ). (18)

Let us multiply Eq. (18) by the factor (0 + Q*)~! and take the integral over the region 0 <
o < co. Integrating by parts and taking into account the condition p,—2(0)o/(Q*+0)|3, = 0

we obtain aA® ,
@) — o o)A (@ 1) + AP 1), (19)

Note that for n = 3 Eqs. (17) and (19) are analogous to the basis Eq. (1) with «, replaced
by 2, and A, respectively.

It is sufficient to calculate 2; and ;. Note that Rgz)(s, f) is divergent in the limit e — 0,
(see (12) ). Nevertheless, it has finite imaginary part ¢. By direct calculation we find

a9 (s, f) = 29 (s, f) = % - ﬂiﬁo%ln Wi (), (20)
@ o L _Wl_(z_>)
20(0.1) = o (), (1)

with z; given by (13). Using the known asymptotic behavior of the W-function [17], in the
limit s — 0, we verify [1, 2]

(s, f) = AP0 (s, ) - 7, and AP (s,f) >0 for n>1. (22)

Analogically in three loop case we find

A, ) = a5, ) = - (%%m(vvl(zs)) L= D3Il + W (2) - w) @

®) = (Lo (M2 N Lo (L
%N =15 <n2 : <n+W1(Zs)> =3 <?7+W1(Zs))>’ ey
__Boge . Pn 2on g Po (1 o
AB (s, f) = _ﬂ%lmn’il(a, N S S+ Wi(Z)) " + -2 (G~ DS+ Wl(Zs))(%)

where n > 2, n=1— /5% and
1
Zy = 7 (s/A*) 7 exp(=n +(1/b — 1)m).

Note that the “analyticized” perturbative expansions for timelike observables (which contain
specific functions 2,) may be rewritten as power series in traditional coupling as(s) with

“for the asymptotic behaviour of the W function see paper [17)]



modified by m2-factors coefficients [6, 7]. Previously, these modified power series have been
obtained in [21, 22]. Application of the series can be found in papers [23-28]. Thus, “r*
effects” for various timelike quantities have been estimated in paper [27], in particular, it
was found that the m*-factors give dominating contributions to the coefficients of R(s) =
oo(e"e” — hadrons)/o(ete™ — ptp~). On the other hand, in recent paper [7] various
timelike events was analyzed in the f=5 region. Higher-order “m2-effects” have been taken
into account properly. It was found that the extracted values for «,(M2) are influenced
significantly by these effects.

4 Matching procedure and construction of the global
space-like and time-like couplings

In MS-like renormalization schemes important issue is how to introduce the matching con-
ditions for the strong coupling constant at the heavy quarks thresholds. In literature few
different recipes are known (see for example [6, 7, 29, 30, 31, 32, 33]). Here, we follow works
[6, 7]. Let us impose the continuity relations

(M2, Mg, | = 1) = ay(M2, Ay, f). (26)
Inserting in (26) the three-loop solution (4) we solve equation (26) for Ay
Ay = My{=bsF(271) exp(ns + F(zp-1))}"/? (27)

where by = Bl =1— 5{{5{/(ﬂ{)2»

_ex A 2/bs-1
= pg My-1) < I- 1) (28)
-1
ﬂf
F(zp-1) = (np—1 + Woi(zp1)) 25 ﬁ =1y (29)
1
In paper [6] special model for the spectral functions pn( ) was proposed

Pa(0) = pu(0,M3,3) + > O(0 = M) (pn(0, Ay, f) = pulo, Apa, f = 1)), (30)

>4
here the mass My corresponds to the quark with flavor f, and A; is determined according

formula (27). Inserting (30) in formula (8) we find following expression for the “analyticized
powers” of the global coupling in the timelike region [6]

An(s) = An(s, f) + Culf) for My < Vs < My, (31)
where the shift coefficients C,(f) are defined by relation
Cnlf) = (M7, f +1) = An(MFyy, f) + Ci(f +1) (32)

with C,,(6) = 0. The analogical formula follows for the corresponding global spacelike func-
tions A, (Q?)

1 Mg
a@) =1 [ S nona ) +

5
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5 Numerical estimations

For the quarks masses throughout this paper we assume the values M; = M, = M3 = 0,
My =13 GeV, Ms = 4.3 GeV and Mg = 170 GeV'.
In practice usually used the iterative approximation for the coupling [34]

®n2y - L frinL 1 Bt Ba
alt(Q)—m—ﬁ—gF—F'@(ﬂ—g(ln L—lnL-1)+E)7 (34)
where L = InQ?/A%... The same formula is used in the timelike region. It is instructive
to compare solutions (4) and (34). Numerical results for these functions are summarized
in the Table 2. We see, that the difference between these functions becomes noticeable for
Q<12 GeV.

In Table 3 we give results for the three-loop Pade approximated coupling a(3)(Q2,5)
and the corresponding analytic coupling A (Q?,5). In Table 4, a®(s,5) and A (s,5)
are compared. The interval 5 GeV < @, /s < 200 GeV is chosen and it is assumed that
As =264 MeV. Here, we observe the inequality

a®(@?,5) > AP(@2,5) > 2P (Q?,5), (35)

the relative difference A (%) between o(®(Q?,5) and AP (Q?% 5) decreases from 1.4% at
Q =5 GeV t0 0.15% at Q = 200 GeV, whereas the difference between o®) (s, 5) and 2[53)(5, 5)
is more appreciable: A(%) = 7.5% at /s =5 GeV and A(%) = 1.6% at /s = 200 GeV. The
“ mirror symmetry ” [8] between A¥(Q2,5) and %) (s, 5) is essentially violated (see Tables
3 and 4). Thus, the relative difference, A(%) = (AP(Q2 5) — A (s,5)) /.4 (@2, 5) * 100,
monotonically decreases from 5.6 % at Q = /s =1 GeV to 1.5% at 200 GeV.

In Table 5 various functions at the two-loop and three-loop orders are compared. We
choose f = 5 and As = 215 MeV. Then, from the matching formula (27), in the two-loop
case (n = 1) we find A3 = 363 MeV, while A3 = 340 MeV in the three-loop case. The
interval 20 GeV < Q,+/s < 170 GeV is chosen. Here, we demonstrate the stability of results
of PT and of APT, with respect to the higher-loop corrections. In this region, the numerical
difference between the three-loop and the corresponding two- loop couplings are of order
0.3% — 0.2%.

In Tables 7-12 we have summarized numerical results for the global three-loop functions ,
A<"3)(Q2) and 2[%3)(3) for n=1,2,3. The values for the parameter A3 are chosen 350, 400, and
450 MeV. The corresponding values for the Ay for f > 3 are calculated from the three-loop
matching condition (27) (see Table 1).

Let us compare the global three-loop function A (Q?) (see Table 9) and o (Q2,5)
(Table 3) in the case A3 = 400 MeV (the corresponding value for As is 264 MeV). We
see that the global coupling .A@(QZ) does not obey the inequality (35). The difference
a®(@Q?,5) — Aga)(Qz) becomes negative when @ increases. For Az = 400 MeV, this takes
place at @@ ~ 17 GeV. This difference is small but it increases with Q. It is about 0.6% at
@ = 200 GeV. The same effect is occurred for other values of the A3. This enhancement of
the global APT coupling can be explained from formula (33). It is easy to verify that (33)
contains additional positive non-perturbative contribution, which was not occurred in the
case of the local APT coupling (5). This contribution increase the coupling for large values

of Q.



Table 1: The values of Ay determined by the threshold matching condition (27). Aj is chosen
as a basis quantity.

The three loop case Exact two loop case

As Ay As Ag As Ay As Ag
MeV | MeV | MeV | MeV | MeV | MeV | MeV | MeV
300 | 2584 |183.0 {76.2 |300 |248.4 |170.4 |69.2
310 | 268.2 |190.8 | 79.7 310 |257.6 |177.3|72.3
320 | 278.0 | 198.6 | 83.4 |320 |266.8 |184.3|75.5
330 | 287.9 |206.5 | 87.0 |330 |276.0 |191.4 | 78.7
340 | 297.8 | 214.4 [ 90.8 |340 |285.3 | 198.5 | 81.9
350 | 307.8 | 222.5 | 94.6 | 350 | 294.6 | 205.7 | 85.2 .
360 | 318.0 | 230.6 | 98.4 | 360 | 303.9 | 212.9 | 88.5
370 | 328.0 | 238.8 | 102.3 | 370 | 313.2 | 220.1 | 91.9
380 | 338.1 | 247.1 | 106.2 | 380 | 322.6 | 227.4 | 95.2
390 | 348.4 | 255.5 | 110.2 | 390 | 332.0 | 234.8 | 98.7
400 | 358.7 | 263.9 | 114.3 | 400 | 341.4 | 242.2 | 102.1
410 | 369.0 | 272.5 | 118.4 | 410 | 350.9 | 249.6 | 105.6
420 | 379.4 | 281.1 | 122.6 | 420 | 360.4 | 257.1 | 109.1
430 | 389.9 | 289.8 | 126.8 | 430 | 369.9 | 264.7 | 112.7
440 | 400.5 | 298.6 | 131.1 | 440 | 379.5 | 272.2 | 116.2
450 | 411.1 | 307.5 | 135.4 | 450 | 389.0 | 279.9 | 119.8
460 | 421.8 | 316.5 | 139.8 | 460 | 398.6 | 287.5 | 123.5
470 | 432.6 | 325.6 | 144.3 | 470 | 408.3 | 295.2 | 127.2
480 | 443.4 | 334.8 | 148.8 | 480 | 417.9 | 303.0 | 130.9
490 | 454.4 | 344.1 | 153.4 | 490 | 427.6 | 310.8 | 134.6
500 | 465.4 | 353.5 | 158.1 | 500 | 437.3 | 318.6 | 138.4




Table 2: The three loop Pade improved solution (4) versus iterative formula (34). We choose
A3z = 400 MeV. Then, from formula (27) we have Ay = 358.7 MeV, A5 = 263.9 MeV and
Ag = 114.3 MeV. A(%) denotes the relative difference of the approximants.

Q [ad(@) [ oR@) [a%) | [Q [al@) [a(@) [Aa%)
GeV | {=3 f=3 GeV | f=5 f=5

8 | 90931 | 88340 |28 10 |.18849 | .18847 | .01
9 | .68022 |.69179 | 1.7 11 |.18413 |.18413 | .01
1.0 |.57853 |.58784 | 1.6 12 |.18033 |.18033 | .00
11 |.51548 |.52195 |1.3 13 |.17698 | .17699 | .01
12 | 47126 |.47589 | 1.0 14 |.17398 |.17400 | .01
1.3 | .43803 |.44153 | 8 15 |.17129 | 17131 | .01
14 | 41190 | .41469 |.7 16 | .16884 |.16887 | .02
15 |.39068 |.39301 |.6 17 |.16661 | .16664 | .02
1.6 |.37302 |.37503 | .5 18 | .16457 | .16460 | .02
1.7 |.35803 |.35982 |.5 19 | .16268 |.16271 | .02
1.8 |.34511 |.34674 | .5 20 |.16092 |.16096 | .02 .
1.9 |.33384 |.33535 |.5 21 | .15929 |.15933 | .03
2.0 |.32389 |.32530 | .4 22 | .15777 | .15781 | .03
2.1 |.31502 | .31637 | .4 23 | .15634 | .15639 | .03
2.2 |.30707 |.30835 |.4 24 | .15500 |.15504 | .03
2.3 |.20987 |.30111 | .4 25 | .15374 |.15378 | .03
24 |.29333 | .29452 | .4 26 | .15254 | .15259 | .03
2.5 |.28735 | .28850 | .4 27 | .15141 |.15145 |.03
2.6 |.28185 |.28297 | .4 28 | .15033 | .15038 | .03
Q [a@) [ oP@) [A%)| |29 |.14931 |.14936 | .03
GeV | =4 f=4 30 |.14834 | .14839 | .03
2 33390 | 33391 |.0 40 | .14057 | .14062 | .04
3 27539 | .27564 | .1 50 |.13510 |.13515 | .04
4 24564 | 24597 | .1 60 |.13094 |.13099 | .04
5 22690 | .22725 | .2 70 | .12763 | .12768 | .04
6 |.21371 | .21405 | .2 80 | .12489 |.12494 | .04
7 |.20376 |.20410 | .2 90 | .12258 |.12263 | .04
8 19590 | .19623 | .2 100 |.12058 |.12063 | .04
9 18948 | 18980 | .2 110 |.11883 |.11888 | .04
10 | .18410 |.18441 | .2 120 |.11728 |.11732 | .04




Table 3: The Q? dependence of the three loop Pade improved coupling a®(Q?, f), (4), and
the corresponding analytic coupling .A(IS)(QZ,f) for f = 5 and A5 = 264 MeV (A3 = 400
MeV'). A(%) denotes the relative difference between the couplings.

Q GeV | a®(Q25) | AP(Q%5) | A%) | Q Gev [ a® (@2 5) [ AP (@%5) [ A(%)
5 22814 .22494 14 60 13094 13075 14
6 .21610 .21383 1.0 62 13022 .13003 14
7 .20692 20521 .82 64 .12953 12934 14
8 .19959 19825 .67 66 12887 12868 14
9 19357 19247 .56 68 12823 12805 .14
10 18849 18757 .48 70 12762 12744 .14
11 18413 18334 42 72 12703 12686 .14
12 .18033 17964 .38 74 12647 12629 .14
13 17697 17636 .34 76 12592 12575 .14
14 17398 17343 31 78 12540 12522 .14
15 17128 17078 .29 80 12489 12471 .14
16 .16884 .16838 27 82 12439 12422 .14
17 .16661 .16618 .25 84 12392 12374 .14
18 .16456 .16416 .24 86 12345 12328 .14
19 16267 .16230 .22 88 12301 12283 .14
20 .16092 16057 21 90 12257 12240 .14
21 .15929 15895 21 92 12215 12198 14
22 15777 15745 .20 94 12174 12157 .14
23 15634 .15603 .19 96 12134 12117 .14
24 .15500 15470 .19 98 .12095 12078 14
25 15373 15345 .18 100 1205 1204 .14
26 15254 15226 18 105 11967 .11950 14
27 15140 15114 17 110 .11882 11865 .14
28 .15033 15007 A7 115 11803 11786 .14
29 14931 .14905 .16 120 11727 11710 .14
30 14833 .14808 .16 125 .11656 11639 .14
32 14651 14628 .16 130 11588 11571 .14
34 14485 14462 15 135 11523 11507 .14
36 14331 14309 15 140 11462 11445 .14
38 14189 14167 15 145 11403 11387 .14
40 .14056 .14035 .15 150 11347 11331 .14
42 .13933 13912 .14 155 11294 11277 .14
44 13817 13797 .14 160 11242 11225 14
46 13709 .13689 .14 165 11193 11176 .14
48 13606 .13586 .14 170 11145 11128 .14
50 13509 .13490 .14 175 .11099 .11083 .14
52 13418 13398 14 180 11055 .11038 .15
54 13331 13312 .14 185 11012 .10996 .15
56 .13248 13229 .14 190 .10971 .10955 .15
58 .13169 13150 .14 195 .10932 .10915 .15

200 .10893 10877 .15
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Table 4: The three loop analytic coupling ngs)(s, 5) ( see (23)) versus the ordinary 3-loop Pade
approximated coupling o/®)(s,5). We have assumed that Az = 400 MeV, correspondingly
As =264 MeV.

Vs GeV | a®(s,5) [ 47 (5,5) [ A(%) [ 5 Gev [ a®(s,5) [ 4P (s,5) | A(%)
5 22814 21221 7.5 60 .13094 12793 2.3
6 .21610 .20253 6.7 62 13022 12726 2.3
7 .20692 .19498 6.1 64 12953 12662 2.2
8 .19959 18887 5.6 66 12887 12600 2.2
9 19357 .18378 5.3 68 12823 12541 2.2
10 18849 17945 5.0 70 12762 12484 2.2
11 18413 17570 4.7 72 12703 12429 2.2
12 .18033 17241 4.5 74 12647 12376 2.1
13 17697 .16949 44 76 12592 12325 2.1
14 17398 16687 4.2 78 12540 12276 2.1
15 17128 .16450 4.1 80 12489 12228 2.1
16 .16884 16234 4.0 82 12439 12182 2.1
17 .16661 .16037 3.8 84 12392 12137 2.0
18 .16456 .15855 3.7 86 12345 12094 2.0
19 16267 .15687 3.7 88 12301 12052 2.0
20 .16092 15530 3.6 90 12257 12011 2.0
21 15929 15384 3.5 92 12215 11972 2.0
22 15777 15247 3.4 94 12174 11933 2.0
23 15634 15119 3.4 96 12134 .11896 2.0
24 .15500 .14998 3.3 98 12095 11859 1.9
25 15373 14884 3.2 100 12057 11823 1.9
26 15254 14776 3.2 105 11967 11739 1.9
27 .15140 14673 3.1 110 11882 11659 1.9
28 15033 .14576 3.1 115 11803 11583 1.8
29 14931 14483 3.0 120 11727 11512 1.8
30 14833 14394 3.0 125 11656 11445 1.8
32 14651 14228 2.9 130 11588 11381 1.8
34 .14485 .14076 2.9 135 11523 11320 1.8
36 14331 13935 2.8 140 11462 11261 1.7
38 .14189 .13805 2.7 145 .11403 11206 1.7
40 .14056 .13683 2.7 150 11347 11153 1.7
42 13933 13570 2.6 155 11294 11102 1.7
44 13817 13463 2.6 160 11242 11053 1.7
46 .13709 13363 2.5 165 11193 .11006 1.6
48 13606 13268 2.5 170 11145 .10961 1.6
50 .13509 13179 2.5 175 .11099 10917 1.6
52 13418 .13094 2.4 180 11055 .10875 1.6
54 13331 13013 2.4 185 11012 .10835 1.6
56 13248 12936 2.4 190 10971 .10796 1.6
58 .13169 12863 2.3 195 .10932 10758 1.6

200 10893 10721 1.6
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Table 5: The two and three loop couplings o*)(Q?, 5), Agk)(Qz, 5) and ngk)(s, 5) (k=2,3) as
a functions of variables @) and /s. We take f=5 and A5 = 215 MeV.

Qs | (@2, 5) | AP (@, 5) [ 24P (s,5) [ oP(@2,5) [ AP (@7, 5) [ 2P (s,5)
GeV

20 15373 15345 .14888 15429 .15400 14934
25 14719 14696 14294 14769 14744 14335
30 14226 14205 .13843 14271 14249 13880
35 13835 13815 13483 13876 13856 13517
40 13514 .13495 13185 13552 13532 13218
45 13243 13224 .12934 13279 113260 12965
50 .13010 12992 12717 13044 13025 12746
55 12806 12788 12527 12838 112820 .12555
60 .12626 12608 12358 12656 12639 12385
65 12464 12447 12207 12494 12476 12233
70 12318 12301 12070 12347 12330 .12096
75 12186 12169 11946 12213 12196 11970
80 .12064 12047 11831 12091 12074 11855
85 11952 11936 11726 11979 11962 11749
90 11849 11832 11628 11874 11857 11651
95 11753 11736 11538 11778 11761 11560
100 11663 11646 11453 11687 11670 11474
105 11579 11562 11373 .11603 .11586 11394
110 11500 11483 11298 11523 11506 11319
115 11425 11408 11228 11448 11431 11248
120 11355 11338 11161 11377 11360 11181
125 11288 11271 11098 11310 11293 A1117
130 11225 11208 11037 11246 11230 11057
135 11164 11148 .10980 11186 11169 .10999
140 11107 11090 .10926 11128 d1111 .10945
145 11052 11035 10873 11073 11056 .10892
150 .10999 .10983 .10823 .11020 11003 10842
155 .10949 10932 10776 .10969 10953 10794
160 10901 .10884 10730 10921 .10904 10748
165 10854 .10838 10685 10874 10857 .10703
170 .10810 10793 10643 .10829 10813 .10660
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Table 6: The shift constants Ci(f) as a functions of the parameter As.

Az MeV | 250 | 300 |[350 |400 |450

C1(3) .0110 | .0137 | .0169 | .0203 | .024

C5(3) .0062 | .0079 | .0099 | .0120 | .014

C5(3) .0022 | .0028 | .0035 | .0042 | .0049
Ci(4) .0026 | .0032 | .0037 | .0043 | .0049
Cy(4) .0013 | .0016 | .0019 | .0023 | .0027
Cs3(4) .0004 | .0005 | .0007 | .0008 | .0010
Cyi(5) .0003 | .0003 | .0003 | .0083 | .0004
Cy(5) .0001 | .0001 | .0001 | .0020 | .0001
C5(5) -0000 | .0000 | .0000 | .0003 | .0000
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Table 7: The three-loop Pade approximated global analytic coupling A; (Q?) and the corre-
sponding global “analyticized powers” Ay(Q?) and A3(Q?) as a functions of the momentum
transfer Q for A3 = 350 MeV. The matching conditions give Ay = 307.8 MeV, A5 = 222.5
MeV and Ag = 94.6 MeV.

Q GeV | Ai(Q%) [ A(Q°) [ As(@°) [Q GeV [ A(Q7) [ A (Q%) [ As(Q7)
1 36571 | .09320 | .015540 | 38 13774 | .01898 | .00258
2 .28689 | .06861 | .012776 | 40 13650 | .01864 | .00252
3 .25144 | .05641 | .010598 | 42 13534 | .01833 | .00246
4 .23041 | .04903 | .009107 | 44 13442 | .018047 | .00240
5 21615 | .04403 | .008042 | 46 13340 | .01777 | .00235
6 .20566 | .04039 | .007245 | 48 13244 | .01752 | .00230
7 19753 | .037601 | .006626 | 50 13153 | .01728 | .00225
8 .19098 | .035378 | .006131 | 52 13067 | .01706 | .00221
9 18555 | .033557 | .005724 | 54 12986 | .01685 | .00217
10 .18095 | .032033 | .005384 | 56 12908 | .01665 | .00213
11 17698 | .030734 | .005095 | 58 .12834 | .01646 | .00210
12 17351 | .029610 | .004845 | 60 12763 | .01628 | .00206
13 17043 | .028626 | .004628 | 62 12696 | .01611 | .00203
14 16768 | .027755 | .004436 | 64 12631 | .01595 | .00200
15 16520 | .026977 | .004266 | 66 12569 | .01580 | .00197
16 16295 | .026277 | .004113 | 68 12510 | .01565 | .00195
17 .16089 | .025643 | .003975 | 70 12452 | .01551 | .00192
18 15900 | .050652 | .003851 | 72 12397 | .01537 | .00190
19 15725 | .024535 | .003737 | 74 12344 | .01524 | .00187
20 15563 | .02405 | .00363 | 76 12293 | .01511 | .00185
21 15412 | .02359 | .00353 | 78 12244 | .01499 | .00183
22 15270 | .02317 | .00344 | 80 12196 | .01488 | .00181
23 15138 | .02278 | .00336 | 82 12150 | .01477 | .00179
24 15013 | .02242 | .00328 | 84 12105 | .01466 | .00177
25 14895 | .02208 | .00321 | 86 12062 | .01455 | .00175
26 14784 | .02176 | .00315 | 88 .12020 | .01445 | .00173
27 .14678 | .02145 | .00308 | 90 11979 | .01436 | .00171
28 .14578 | .02117 | .00303 | 92 11940 | .01426 | .00170
29 .14483 | .02090 | .00297 |94 11902 | .01417 | .00168
30 14392 | .02064 | .00292 | 96 .11864 | .01408 | .00166
32 .14222 | .02016 | .00282 |98 .11828 | .01400 | .00165
34 14066 | .01973 | .00273 | 100 11793 | .01391 | .00163
36 13923 | .01934 | .00265




Table 8: The three-loop Pade approximated global analytic coupling 2;(s) and the corre-
sponding global “analyticized powers” 2y (s) and s(s) as a functions of the energy /5 for
A3 =350 MeV.

Vs GeV | Ai(s) [Aa(s) [As(s) [ V5 GeV [ Ai(s) [ Aa(s) | As(s)

1 .34270 | .09196 | .01903 | 58 .12550 | .01544 | .00185
2 .26679 | .06266 | .01286 | 60 .12484 | .01528 | .00183
3 .23451 | .05024 | .00979 | 62 .12420 | .01513 | .00180
4 21571 | .04338 | .00811 | 64 12359 | .01498 | .00178
5 .20343 | .03896 | .00701 | 66 .12301 | .01484 | .00175
6 .19452 | .03582 | .00623 | 68 .12245 | .01471 | .00173
7 18755 | .03344 | .00566 | 70 12191 | .01459 | .00171
8 18190 | .03156 | .00521 | 72 12139 | .01447 | .00169
9 17718 | .03002 | .00485 | 74 .12089 | .01435 | .00167
10 17316 | .02874 | .00456 | 76 .12040 | .01424 | .00165
11 16967 | .02764 | .00432 | 78 .11993 | .01413 | .00163
12 .16661 | .02670 | .00411 | 80 .11948 | .01403 | .00161
13 16389 | .02587 | .00392 | 82 .11904 | .01393 | .00160
14 .16144 | .02513 | .00376 | 84 .11862 | .01383 | .00158
15 15923 | .02447 | .00362 | 86 11821 | .01373 | .00156
16 15722 | .02388 | .00350 | 88 11781 | .01364 | .00155
17 .15537 | .02335 | .00338 | 90 11742 | .01356 | .00153
18 15367 | .02286 | .00328 | 92 .11704 | .01347 | .00152
19 .15209 | .02241 | .00319 | 94 .11668 | .01339 | .00151
20 15063 | .02199 | .00311 | 96 .11632 | .01331 | .00149
21 .14926 | .02161 | .00303 | 98 11597 | .01323 | .00148
22 .14798 | .02125 | .00296 | 100 1156 | .01316 | .00147
23 14677 | .02092 | .00289 | 105 .11483 | .01298 | .00144
24 14563 | .02061 | .00283 | 110 .11407 | .01281 | .00141
25 .14456 | .02031 | .00277 | 115 11335 | .01265 | .00139
26 .14355 | .02004 | .00271 | 120 11267 | .01251 | .00136
27 .14258 | .01978 | .00266 | 125 .11203 | .01237 | .00134
28 .14166 | .01953 | .00262 | 130 11142 | .01224 | .00132
29 .14079 | .01930 | .00257 | 135 .11084 | .01211 | .00130
30 .13996 | .01908 | .00253 | 140 .11028 | .01199 | .00128
32 .13840 | .01867 | .00245 | 145 .10975 | .01188 | .00126
34 .13696 | .01829 | .00238 | 150 10925 | .01177 | .00125
36 .13564 | .01795 | .00231 | 155 10876 | .01167 | .00123
38 .13441 | .01764 | .00225 | 160 .10830 | .01157 | .00122
40 13326 | .01735 | .00220 | 165 .10785 | .01148 | .00120
42 .13219 | .01708 | .00215 | 170 .10742 | .01139 | .00119
44 13118 | .01682 | .00210 | 175 .10704 | .01131 | .00118
46 .13023 | .01659 | .00206 | 180 10667 | .01124 | .00116
48 12933 | .01637 | .00202 | 185 .10632 | .01116 | .00115
50 .12849 | .01616 | .00198 | 190 .10598 | .01109 | .00114
52 12768 | .01596 | .00195 | 195 .10565 | .01102 | .00113
54 12692 | .01578 | .00192 | 200 .10533 | .01096 | .00112
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Table 9: The three-loop Pade approximated global analytic coupling .4;(Q?) and the corre-
sponding “analyticized powers” A5(Q?) and A3(Q?) as a functions of the momentum transfer
Q for A3 = 400 MeV. The matching conditions give Ay = 358.7 MeV and As = 263.9 MeV.

Q GeV | A(Q7) | A (Q°) [ A3(Q%) [Q GeV [ Ai(Q%) [ A:(Q7) | A3(Q7)
1 38656 | .09988 | .01629 | 58 13190 | .01743 | .00228
2 .30263 | .07438 | .01387 | 60 13116 | .01723 | .00224
3 .26444 | .06128 | .01164 | 62 13044 | .01705 | .00221
4 .24171 | .05325 | .01005 | 64 12976 | .01687 | .00217
5 .22627 | .04777 | .00890 | 66 12910 |.01670 | .00214
6 .21492 | .04377 | .00803 | 68 .12847 | .01654 | .00211
7 .20613 | .04069 |.00734 | 70 .12786 | .01639 | .00208
8 19905 | .03824 | .00679 | 72 12728 |.01624 | .00206
9 19318 | .03623 | .00634 | 74 12672 | .01610 | .00203
10 .18822 | .03454 | .00596 | 76 .12618 | .01596 | .00200
11 18394 | .03311 | .00564 | 78 .12566 | .01583 | .00198
12 .18020 | .03187 | .00536 | 80 12515 | .01570 | .00196
13 17689 | .03078 | .00490 | 82 .12467 | .01558 | .00193
14 17393 | .02982 | .00471 | 84 .12420 | .01547 | .00191
15 A7127 | .02896 | .00454 | 86 .12374 | .01535 | .00189
16 16885 | .02819 | .00438 | 88 12330 | .01524 | .00187
17 .16664 | .02749 | .00424 | 90 12287 | .01514 | .00185
18 .16461 | .02685 | .00411 |92 12245 | .01504 | .00183
19 16273 | .02627 | .00400 | 94 12204 | .01494 | .00182
20 16099 | .02573 | .00389 | 96 12165 | .01484 | .00180
21 15937 | .02523 | .00379 | 98 12127 | .01475 | .00178
22 15786 | .02477 | .00370 | 100 12090 | .01466 | .00177
23 15644 | .02434 | .00361 | 105 .12001 | .01445 | .00173
24 15510 | .02394 | .00353 | 110 11917 | .01425 | .00169
25 15385 | .02357 | .03460 | 115 .11839 | .01406 | .00166
26 15266 | .02321 | .00339 | 120 11765 | .01389 | .00163
27 15153 | .02288 | .00332 | 125 11695 | .01372 | .00160
28 15046 | .02257 | .00326 | 130 11628 | .01357 | .00157
29 14944 | .02227 | .00320 | 135 11565 | .01342 | .00155
30 .14847 | .02199 | .00309 | 140 11505 | .01328 | .00153
32 .14666 | .02147 | .20099 | 145 11448 | .01315 | .00150
34 .14500 | .02100 | .00290 | 150 11394 | .01303 | .00148
36 .14347 | .02056 | .00282 | 155 11341 | .01291 | .00146
38 14205 | .02017 | .00275 | 160 11291 | .01280 | .00144
40 .14074 | .01980 | .00269 | 165 11243 | .01269 | .00142
42 13951 | .01946 | .00262 | 170 11197 | .01258 | .00141
44 13835 | .01915 | .00256 | 175 11153 | .01248 | .00139
46 13727 | .01885 | .00251 | 180 1110 | .01239 | .00137
48 13625 | .01858 | .00245 | 185 11069 | .01230 | .00136
50 13529 | .01832 |.00241 | 190 11029 | .01221 | .00134
52 13438 | .01808 | .00236 | 195 10991 | .01212 | .00133
54 13351 | .01785 | .00232 | 200 10954 | .01204 | .00132
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Table 10: The three-loop Pade approximated global analytic coupling 24 (s) and the corre-
sponding global “analyticized powers” 2(s) and %3(s) as a functions of the energy /s for
Az =400 MeV.

\/g GeV Qll (.5) 212(8) ng(s) \/g GeV 911(5) le(s) ng(S)

1 .36427 | .10048 | .02061 | 58 .12898 | .01628 | .00201
2 .28168 | .06873 | .01440 | 60 .12828 | .01611 | .00198
3 .24639 | .05489 | .01100 | 62 12761 | .01595 | .00195
4 122592 | .04723 | .00911 | 64 12697 | .01579 | .00192
5 .21256 | .04228 | .00785 | 66 12635 | .01564 | .00189
6 .20288 | .03876 | .00696 | 68 12576 | .01550 | .00187
7 19533 | .03610 | .00630 | 70 12519 | .01537 | .00184
8 .18922 | .03400 | .00579 | 72 12464 | .01523 | .00182
9 18413 | .03230 | .00539 | 74 .12411 | .01511 | .00180
10 17980 | .03087 | .00505 | 76 .12360 | .01499 | .00178
11 17605 | .02966 | .00477 | 78 12311 | .01487 | .00176
12 17276 | .02861 | .00453 | 80 12263 | .01476 | .00174
13 .16984 | .02769 | .00433 | 82 12217 | .01465 | .00172
14 16722 | .02688 | .00415 | 84 12172 | .01455 | .00170
15 .16485 | .02616 | .00399 | 86 12129 | .01445 | .00168
16 16269 | .02551 | .00385 | 88 .12087 | .01435 | .00167
17 16072 | .02492 | .00372 | 90 .12046 | .01425 | .00165
18 .15890 | .02438 | .00360 | 92 .12006 | .01416 | .00164
19 15721 | .02388 | .00350 | 94 11968 | .01407 | .00162
20 15565 | .02343 | .00340 | 96 11930 | .01399 | .00161
21 .15419 | .02301 | .00332 | 98 .11894 | .01391 | .00159
22 15282 | .02262 | .00323 | 100 1185 | .01382 | .00158
23 15154 | .02225 | .00316 | 105 11773 | .01363 | .00155
24 15033 | .02191 | .00309 | 110 11694 | .01345 | .00152
25 14919 | .02159 | .00302 | 115 .11618 | .01328 | .00149
26 .14811 | .02129 | .00296 | 120 11547 | .01313 | .00146
27 .14708 | .02101 | .00291 | 125 .11480 | .01298 | .00144
28 .14610 | .02074 | .00285 | 130 .11415 | .01283 | .00142
29 .14518 | .02048 | .00280 | 135 11354 | .01270 | .00139
30 .14429 | .02024 | .00275 | 140 11296 | .01257 | .00138
32 .14263 | .01979 | .00267 | 145 .11241 | .01245 | .00136
34 .14111 | .01939 | .00259 | 150 11188 | .01234 | .00134
36 .13970 | .01902 | .00252 | 155 11137 | .01223 | .00132
38 .13840 | .01867 | .00245 | 160 .11088 | .01212 | .00130
40 13718 | .01836 | .00239 | 165 .11041 | .01202 | .00129
42 .13605 | .01806 | .00233 | 170 10996 | .01193 | .00127
44 .13498 | .01779 | .00228 | 175 10956 | .01184 | .00126
46 13398 | .01753 | .00223 | 180 10918 | .01176 | .00125
48 13303 | .01729 | .00219 | 185 .10881 | .01168 | .00123
50 13213 | .01707 | .00215 | 190 .10845 | .01161 | .00122
52 13129 | .01685 | .00211 | 195 .10811 | .01154 | .00121
54 .13048 | .01665 | .00207 | 200 .10777 | .01147 | .00120
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Table 11: The three-loop Pade approximated global analytic coupling .4,(Q?) and the corre-
sponding global “analyticized powers” A,(Q?) and A3(Q?) as a functions of the momentum
transfer Q for Az = 450 MeV. The matching conditions give: Ay = 411.1 MeV, Ay = 307.5
MeV and Ag = 135.4 MeV.

Q GeV | Ai(Q7) | A(Q%) [ As(Q%) [ Q GeV [ AN(@%) [ Ax(Q7) [ As(@)
1 .40668 | .10611 | .01692 | 38 146322 | .02133 | .00306
2 31810 | .07993 | .01488 | 40 .144927 | .02093 | .00298
3 27716 | .06602 | .01264 | 42 143626 | .02057 | .00291
4 .25295 | .056739 | .01098 | 44 .142408 | .02022 | .00284
5 .23638 | .05146 | .00975 | 46 141263 | .01991 | .00277
6 .22419 | .04710 | .00880 |48 .140186 | .01961 | .00271
7 .21459 | .04374 | .00806 | 50 139168 | .01933 | .00266
8 20715 | .04106 | .00746 | 52 .138205 | .01907 | .00260
9 .20086 | .03886 | .00696 | 54 137291 | .01882 | .00255
10 19554 | .03702 | .00654 | 56 136422 | .01858 | .00251
11 19095 | .03545 | .00618 | 58 135595 | .01836 | .00246
12 18695 | .03410 | .00587 | 60 .134806 | .01815 | .00243
13 .18341 | .03291 | .00560 | 62 134052 | .01795 | .00238
14 .18024 | .03185 | .00537 | 64 133330 | .01776 | .00235
15 17740 | .03092 | .00515 | 66 132639 | .01758 | .00231
16 17481 | .03007 | .00496 | 68 131975 | .01740 | .00228
17 17245 | .02931 | .00479 | 70 131338 | .01724 | .00225
18 17029 | .02861 | .00464 | 72 .130725 | .01708 | .00222
19 16829 | .02797 | .00450 | 74 .130134 | .01693 | .00219
20 16643 | .02739 | .00437 | 76 129565 | .01678 | .00216
21 16471 | .02685 | .00425 | 78 .12885 | .01664 | .00213
22 16310 | .02634 | .00414 | 80 .128485 | .01650 | .00211
23 16159 | .02587 | .00403 | 82 127972 | .01637 | .00208
24 16017 | .02544 | .00394 | 84 127476 | .01625 | .00206
25 15883 | .02503 | .00385 | 86 126995 | .01613 | .00204
26 15756 | .02464 | .00377 | 88 126530 | .01601 | .00201
27 15637 | .02428 | .00369 | 90 126078 | .01590 | .00199
28 156523 | .02394 | .00361 | 92 125640 | .01579 | .00197
29 15415 | .02362 | .00354 | 94 125215 | .01568 | .00195
30 15312 | .02331 | .00348 | 96 .124801 | .01558 | .00193
32 15120 | .02274 | .00336 | 98 .124238 | .01548 | .00192
34 .14944 | .02223 | .00325 | 100 .12384 | .01538 | .00190
36 .14782 | .02176 | .00315
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Table 12: The three-loop Pade approximated global analytic coupling 2, (s) and the corre-
sponding “analyticized powers” 2(s) and 3(s) as a functions of the energy /s for Az = 450
MeV.

\/g GeV 2[1(5) le(s) 913(5) \/E GeV Q[l (S) le(s) 913(8)

1 38512 | .10857 | .02191 | 58 13226 | .01710 | .00216
2 .29624 | .07474 | .01590 | 60 13152 | .01692 | .00212
3 .25798 | .05953 | .01221 | 62 .13082 | .01674 | .00209
4 .23585 | .05108 | .01012 | 64 .13014 | .01657 | .00206
5 .22142 | .04560 | .00871 | 66 12950 | .01641 | .00203
6 .21096 | .04169 | .00770 | 68 .12887 | .01626 | .00200
7 .20283 | .03875 | .00696 | 70 .12828 | .01612 | .00198
8 19627 | .03643 | .00638 | 72 12770 | .01598 | .00195
9 19081 | .03455 | .00592 | 74 12715 | .01584 | .00193
10 .18617 | .03298 | .00555 | 76 .12661 | .01571 | .00191
11 18216 | .03165 | .00523 | 78 .12609 | .01559 | .00188
12 17865 | .03050 | .00497 | 80 12559 | .01547 | .00186
13 17553 | .02949 | .00473 | 82 12511 | .01535 | .00184
14 17273 | .02861 | .00453 | 84 .12464 | .01524 | .00182
15 17021 | .02781 | .00436 | 86 12419 | .01513 | .00180
16 16792 | .02710 | .00420 | 88 12374 | .01503 | .00179
17 .16581 | .02646 | .00405 | 90 12332 | .01493 | .00177
18 .16388 | .02587 | .00393 | 92 .12290 | .01483 | .00175
19 16209 | .02533 | .00381 | 94 112250 | .01473 | .00174
20 .16043 | .02483 | .00370 | 96 12211 | .01464 | .00172
21 15888 | .02438 | .00360 | 98 12172 | .01455 | .00170
22 .15743 | .02395 | .00351 | 100 12135 | .01447 | .00169
23 .15607 | .02355 | .00343 | 105 .12046 | .01426 | .00165
24 .15479 | .02318 | .00335 | 110 11963 | .01407 | .00162
25 15358 | .02284 | .00328 | 115 .11884 | .01389 | .00159
26 .15243 | .02251 | .00321 | 120 .11809 | .01372 | .00156
27 15135 | .02220 | .00315 | 125 11739 | .01356 | .00154
28 .15032 | .02191 | .00309 | 130 11672 | .01341 | .00151
29 .14933 | .02163 | .00303 | 135 11608 | .01327 | .00149
30 .14840 | .02137 | .00298 | 140 11547 | .01313 | .00147
32 .14665 | .02089 | .00288 | 145 11489 | .01300 | .00145
34 .14504 | .02045 | .00280 | 150 11434 | .01288 | .00143
36 .14355 | .02005 | .00272 | 155 11381 | .01276 | .00141
38 14218 | .01968 | .00264 | 160 .11330 | .01265 | .00139
40 .14089 | .01933 | .00258 | 165 11281 | .01255 | .00137
42 .13970 | .01902 | .00252 | 170 11233 | .01244 | .00136
44 13857 | .01872 | .00246 | 175 11192 | .01235 | .00134
46 13752 | .01845 | .00241 | 180 11152 | .01227 | .00133
48 13652 | .01819 | .00236 | 185 11114 | .01218 | .00131
50 13558 | .01794 | .00231 | 190 .11077 | .01210 | .00130
52 13468 | .01772 | .00227 | 195 .11041 | .01202 | .00129
54 .13383 | .01750 | .00223 | 200 .11006 | .01195 | .00128
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Such a behavior does not occur in the case of the global timelike coupling 221513)(5) (com-
pare Tables 4 and 10). However, the difference between o®(s, f = 5) and Ql(13)(s) is more
appreciable, it is about 7% at s = 5 GeV, 3.4% at s = 20 GeV and 1.75% at s = 90 GeV. It
is about 1% at s = 200 GeV. The relative difference between A(13)(Q2) and QL(IS)(S) decreases
from 6.9% at @ = /s = 2 GeV to 2% at 100 GeV (see Tables 9 and 10). The relative
differences A, (%) between A (Q?) and Ql;a)(s), for n=2 and 3, are even large. Thus, A,
(%)=6.1% and A3 (%)=11.1% at Q@ = /s = 100 GeV.

With the algebraic computer system Maple V release 5 we were able to calculate the
quantities {o(Q?, f)}" and A, (s, f) (see formulas (3), (4), (23)-(25)) with any arbitrary
given accuracy. However, this is no case for formulas (5) and (33). These integrals are
singular at ¢ — +o0, therefore, one needs to use a cutoff. With Maple V release 5 the cutoff
may be as big as 10*. This guarantees to obtain 4-5 reliable digits after decimal point. Most
of our calculations we have performed with this precision. To obtain more accurate results
we suggest following formula

An(Q*, f) = An(Q%, £, R) + U (A%€R, f) + O(e™F), (36)

Here A,(Q% f,R) denotes the regulated integral (5): the integral is taken over the finite
region —R <t < R. We remark that formula (36) provides sufficiently high precision even for
low values of the cutoff. In addition, for practical calculations, here we suggest the formula
©d
a@n=a [
0

o, (37)

evidently, this relation is also valid for the global quantities, A, (Q?) and 2A,(s).

6 Conclusion

The“analyticized powers” of the coupling in the spacelike region Aﬁf)(Qz, f), to second and
third orders, are written in terms of the Lambert W function (see integrals (5) and (37)).

The “analyticized powers” of the coupling in the timelike region, nglk)(s, f) (k=2,3), are
analytically calculated in terms of the Lambert W function (see formulas (20)-(25)). The
recurrence relations for A )(s, f) and AD(Q?, f ) are derived (see formulas (17) and (19)).

The matching conditions for crossing the quark flavor thresholds (26) are solved explicitly
for Ay in the cases of the exact 2-loop and Pade improved 3-loop solutions (see formulas (3),
(4) and (27)).

The global model for the coupling, of Refs.[6, 7], is considered up to the third order in the
context of obtained explicit solutions.

In Sec.5 numerical estimations of the explicit solutions for the powers of the standard and
analytical couplings are given. We have compared various solutions in the large region of
momentum transfer and energy, 1 GeV' < /s,Q < 200 GeV (see Tables 1-12). We have
confirmed that the differences between the powers of the standard iterative solution (34) and
the “analyticized timelike powers” AP (s) are appreciable even for moderate energies.
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Note Added

As I was writing this I was informed by D.S. Kourashev that he has also obtained the analytical
expressions for the “analyticized powers” of coupling in the timelike region in the equivalent
form [35] (see formulas (20)-(25)).
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Marpanze B.A. E2-2000-222
Dddexrupras koncranTa KXJI 10 TpeThero nopsjaxa BKIIOYMTEILHO
B CTaHNAPTHOM M aHATMTHYECKON TEOPHAX BO3MYLIECHHI

H3yyens! 1Ba Habopa crienubuyeckux dyskumi {#y (s)} u {4 (O 2}, KOTOpBIe 06pa-

3y10T 6a3UChl HECTEIIEHHBIX ACHUMIITOTHYECKHUX PA3NIOXKEHUH U1 BpeMEHU- U [IPOCTPAHCTBEH-
HONOJOOHBIX HaOogaeMbIX KBaHTOBOH XPOMOIMHAMUKH B aHAIUTHUYECKOH TEOPHH BO3MY-
menuit IupkoBa—ComnoBuoBa. D1y dyHKIMU (PyHKUMSA CBSI3UM U ee aHATUTH3UPOBAHHbBIE
CTeNeHH) BhIpaxaloTcs B TepMuHax W-¢ynkuuu Jlambepra. Bo BTOpoM mopsgke Teopuu
BO3MYILIEHHI MBI UCIIOJIB3YEM TOYHOE pEIleHHEe YPaBHEHHUS PEHOPMIPYIIIbI, a B TPETHEM I1O-
pAlKe — pelleHHe, KOTOPOEe COOTBETCTBYET Iame-npeoOpa3oBaHHOM 6era-(hyHKIHH.
Jna o6oux HabGopoB (hyHKLMIA MOJIydEHBI YIOOHBIE I YMCIEHHOTO aHAIM3a PEKyppPEHTHBIE
topmyisl. 1t mocTpoeHus moGanbHbIX BEPCUil STHX (PYyHKLHIA B CXeMe MUHUMAIBHOTO BBI-
YUTaHUS MBI UCIIONIb3YEM YCIIOBUS HENPEphIBHOCTH 3(h(peKTHBHOTO 3apsiia Ha MacCOBBIX IO-
porax TSXeNbIX KBapKoB. ITonydeHHbIe BRIPaXeHHS HCCIENYIOTCS YHUCIIEHHbIM METOOM B LU~
POKOM HHTEpBaJle NepefaHHOro UMITyIbca U aHepruu ot 1 no 170 I'sB. COCTaBneHbI noxgpo6-
HblE YMCJICHHbIE TaONmuubl W nepBbix Tpex (ynxkumit Hy (s) u &y (Q ), k=1,2,3, kak

B INIPOCTPAHCTBEHHOHM, TaK M BO BPEMEHHIIONOOHOH obnacTaX. Bpulo ycTaHOBIEHO, 4TO
BO BPEMEHUIIONOOHOH OOGNIACTH OHM 3aMETHO OTIIMYAIOTCH OT COOTBETCTBYIOLUMX CTEHeHei
9(GEKTHBHOIO 3apsifia, BHIYUCIEHHOTO UTEPATHBHBIM METONOM [UIS YMEPEHHBIX 3HEpruil
B 5-apoMaTHOH 06J1acTH.

Pa6ora BbimonHeHa B JlaGopatopuu Teopetuyeckoit ¢usuku um. H.H.Boromo6osa
OMIU.

Coobmenne O6beIMHEHHOTO HHCTHTYTa SAEPHBIX HccegoBanuit. yGHa, 2000

Magradze B.A. E2-2000-222
QCD Coupling up to Third Order in Standard and Analytic Perturbation Theories

We analyse two sets of specific functions, {#, (s)} and {&, (O 2)} that form the basis

of the nonpower asymptotic expansions both in the time-like and space-like regions for sin-
gle scale dependent QCD observables in the Shirkov-Solovtsov Analytic Perturbation
Theory (APT) free of unphysical singularities. These functions (effective running couplings
and two higher functions (k=2,3)) are explicitly derived up to the third order in the closed
form in terms of the Lambert W-functions. As an input we used the exact two-loop
and the three-loop (corresponding to Padé transformed beta-function) RG solutions for com-
mon invariant coupling o. ;. The elegant recurrence formulas, helpful for numerical analysis,
are obtained for the both sets of the APT functions. Then we construct the global versions
of APT functions using the continuity conditions (at the quark thresholds) on the o in the
MS scheme and give numerical results. For first three of these functions # r (s) and & (Q );

k=1,2,3, in the large interval of the momentum transfer and energy (1 GeV<Q,
J_s <170 GeV), numerical tables are presented. From these we observe that, for the time-like
arguments, the differences between functions ¥ (s) and the corresponding powers

of the standard iteratively approximated coupling oc’sc (s) are not negligible even for moderate
energies in the five-flavor region.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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