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1 Introduction

Recently, an infinite class of solutions to the symmetry equation of the two-
dimensional Toda lattice (2DTL) has been described in [1] in the frame-
work of a rather heuristic algorithm of simple calculations proposed there.
This algorithm resembles a computer program: It is necessary to perform
many identical operations that can be interrupted at an arbitrary step
and thus obtain relevant information about a system of (2+1)-dimensional
evolution equations belonging to the integrable 2DTL hierarchy. Then,
this algorithm has been generalized to the case of the N = (1|1) super-
symmetric 2DTL equation, and an infinite class of bosonic solutions to its
symmetry equation has been constructed in [2]. However, supersymme-
try suggests that the symmetry equation possesses fermionic solutions as
well, and they are responsible for fermionic flows of the hierarchy. Ref.
[3] dwelled upon this problem and derived a wide class of fermionic so-
lutions. Bosonic and fermionic solutions generate bosonic and fermionic
flows of the N = (1]|1) supersymmetric 2DTL hierarchy in the same way
as their bosonic counterparts — the solutions to the symmetry equation of
the 2DTL ~ produce flows of the 2DTL hierarchy.

For a more complete understanding of an equation and its solutions it
seems necessary to know as many solutions to the corresponding symmetry
equation as possible. But a symmetry equation represents a complicated
nonlinear functional equation, and its both general and particular solu-
tions are not known in general. Moreover, in general there even exists no
algorithm to solve this problem. As an illustration of the latter fact, let us
mention, e.g. the unsolved yet problem of constructing symmetries to the
N = (0]2) supersymmetric 2DTL equation proposed in [4]. Due to this
reason the algorithm developed in [1, 2, 3] and the resulting solutions to
the symmetry equations corresponding to the 2DTL and N = (1|1) 2DTL
equations, as they have been presented so far, may appear to have come
out of the blue, and it is interesting to understand their origin. In this
connection, let us point out that long ago one of the authors of the present
paper (V.G.K.), when analyzing an application of difference equations to
solving problems of mathematical physics, developed an efficient approach
to constructing solutions of some relativistic equations (for details, see refs.
[5, 6, 7, 8,9, 10] and references therein). Then this approach was success-
fully applied in [11, 12] to investigate the field theory with the momentum



space of a constant curvature where difference equations naturally arise in
the configuration space and the lattice spacing is defined by the inverse
radius of the curvature of the initial momentum space. Furthermore, it
was recently adapted in [13] to the case of the gauge field theory. It turns
out that this approach is also instructive in the context of the problem
under consideration. Thus, our goal here is to establish the origin of the
algorithm and symmetries of refs. [1, 2, 3] by reproducing them in the
framework of the previously known integrable discrete hierarchies — the
2DTL [14] and super-Toda lattice (STL) [15] hierarchies — containing the
2DTL and N = (1|1) 2DTL equations, respectively, as subsystems.

It is time to explain how we were led to this construction. Refs.
[1,2,3,5,6,7, 8,9, 10] and [14, 15] can be considered ancestors of the
present paper. As one might suspect, there is a correspondence between
symmetries of the 2DTL and N = (1]|1) 2DTL equations and flows of
the latter hierarchies, but this correspondence is however rather nontriv-
ial. Thus, the 2DTL (STL) hierarchy has been defined in [14] ([15]) as
a system of infinitely many equations for infinitely many fields, while the
2DTL (N = (1]1) 2DTL) equation involves only a single independent (su-
per)field v ;. From the point of view of the former approach the derivation
of symmetries of the 2DTL (N = (1|1) 2DTL) equation corresponds to ex-
tracting those 2DTL (STL) hierarchy equations which can be realized in
terms of the (super)field v, ; alone after excluding all other (super)fields
of the 2DTL (STL) hierarchy. Keeping in mind this correspondence it is
quite natural to suppose that the algorithm [1, 2, 3] of constructing sym-
metries of the 2DTL and N = (1]1) 2DTL equations is encoded in the
structure of these hierarchies. In the present paper, we demonstrate by
explicit construction that this is indeed the case at least with respect to
bosonic symmetries.

The paper is organized as follows. In sections 2 and 3, we reproduce
the algorithm [1, 2, 3] of constructing bosonic symmetries of the 2DTL
and N = (1]1) 2DTL equations starting with the 2DTL [14] and STL
[15] hierarchies, respectively, following the methodology of operating with
difference equations developed in [5, 6, 7, 8, 9, 10]. Furthermore, we also
establish algebras of both fermionic and bosonic symmetries which were
only conjectured in [1, 2, 3], discuss peculiarities of constructing fermionic
symmetries as well as propose related new problems to be solved in future.
In section 3, as a byproduct we also prove the proposed in [16] conjecture



regarding an N = (2|2) superfield formulation of the STL hierarchy. In
section 4, we solve the problem of constructing solutions to the symmetry
equation corresponding to the N = (0|2) supersymmetric 2DTL. Thus, we
first propose the new N = (0|2) supersymmetric 2DTL hierarchy which
contains the N = (0|2) 2DTL equation and then construct both bosonic
and fermionic symmetries of the latter equation as well as their algebra.
We also discuss an N = (0/2) superfield formulation of the N = (0|2) 2DTL
hierarchy. Section 5 is devoted to a generalization: We propose a wide class
of new supersymmetric integrable hierarchies whose first representative is
the N = (0|2) 2DTL hierarchy. In section 6, we present a short summary
of the main results obtained in the paper.

2 2DTL hierarchy and symmetries of 2DTL
equation

In this section, based on the 2DTL hierarchy of ref. [14], we develop a
general scheme for constructing symmetries of the 2DTL equation and
their algebra and as a byproduct establish the origin of the symmetries
constructed in [1].

2.1 Lax pair representation and flows

Our starting point is the Lax pair representation of the 2DTL hierarchy
(14, 17]:

oL
oL~

((Li)n):l: ) ’L+]’

[
(L*)™M+, L7), neN, (1)

with the two Lax operators L™ and L™,

o0 o0
Lt =3 €82 L7 =3 vy e®12, (2)
k=0 k=0

Uo,j = 1, Vo,j 75 0, (3)



which generates the abelian algebra of the flows

07, =185, o7]=0. (4)
Here, the bosonic fields ug; = ug;({t},1;}) and vp; = vy ;({t5,17}) are
defined on the lattice, j € Z, and ¢ are evolution times; 8 := af and the

subscript + (—) means the part of an operator which includes operators
e at 1 > 0 (I < 0). Hereafter, the operator ¢! (I € Z) is the discrete
lattice shift which acts according to the rule

lo — 1o %] — %]
€ uk,j = uk,j_He s e Ukﬂ' = Uk7j+16 . (5)

In this section, we will also use the following useful notation

o]

00
— Z ul(cfg)e(m——k)a, (L—)m = Z ,Ul(ct?)e(k—m)a, (6)
k=0

where {u,”, vkj)} (u,” = U, v,(clj) = 1) are the functionals of the

original fields {uy,j, vk;} whose explicit form is not important for further
consideration but the explicit form of the following functionals:

ugy =1 (7)
which can easily be found using egs. (3).
The following set of operator equations:

(L5, (L™,

o (L) =]
[ )n):’: ’ (L—)m]a n,m € N (8)

oy (L7)"

is identically satisfied as a consequence of egs. (1), and the corresponding
system of evolution equations for the functionals {u,(czl-), v,(c’z)} can easily
be derived from them. It reads

3: Ug’;) Z( (T,Lg)uimiﬁn,a—wn uz(zr,;')—k+p—n+mu§crz17+n,j)a (9)
p=0

el = S () ) ) (m) 10

n Uk, = Z(vmukﬂ) —nj+p—n ~ Upj—k—p+ntmUktp— n,J) ( )
p=0



010 = L (0 nimpin = Uikkipn-mthipng) (1)

p=0
m) _ = (), (m) (n) (m)
_— m n m n m
an Uk = Z(’UP,J' vk—P+n,j+p—n - vp,j+k—p+n—mvk—p+n,j)7 (12)
p=0

(m

where all fields {u,(ct';), ”k,j)} in the right-hand side should be put equal to
zero at k < 0.

2.2 Symmetries of 2DTL equation

The 2DTL hierarchy (1-2) is a system of infinitely many equations for
infinitely many fields {uy,;, vk;}, while the 2DTL equation

81—(9;- In Vo,; = —Vo,j+1 + 2’1)0,3' — Vo,j-1 (13)

represents its first flow and involves only the single lattice field v, ; and
two evolution derivatives, ;" and 8. The 2DTL equation (13) can be read
from eqs. (10-11) if eqs. (10) are restricted to the values {n = m = k = 1}

Oy u1,j = Vo,j — Vo j+1 (14)
and egs. (11) to {n =m =1,k =0}
O vo,j = vo(u1,; — ur 1), (15)

and then the field u, ; is eliminated from eqgs. (14-15).

Now we would like to demonstrate that symmetries of the 2DTL equa-
tion (13) can be decoded from the system (9-12).

First, one can easily observe the existence of the following subalgebra
of the flow algebra (4):

[6F , w1 =1[or , 3] =0 (16)

which is valid by construction of the 2DTL hierarchy, i.e. the flows 8
of the 2DTL hierarchy commute simultaneously with both the derivatives
(0f and 07) entering into the 2DTL equation (13). The latter remarkable
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property is a necessary, but not sufficient condition for the flows 8% to
form symmetries of the 2DTL equation (13). Nevertheless, keeping in
mind this property it is quite natural to suppose that the flows 6% form
the symmetries (see, ref. [17] for slightly different arguments), although to
complete the proof, we have additionally to show that they can in fact be
realized in terms of the 2DTL field v ; alone.

Second, with the last goal in mind let us discuss the above-mentioned
candidates to be the symmetries,

0 voj = +vo(ul) — ul’)_)) (17)
and

0 v0; = —vo; (0™ —v™_)), 18

n V0,j UO,J(Un,] Un,j—1 ( )

in more detail. When deriving these equations, we have used egs. (11-12)
at {m = 1,k = 0} and the useful relation

Z(Um Un—p,j+p-n — vzgtlj)+n—p—lvn—p,j) =0 (19)

resulting from the simple, obvious identitity (L=)"L~ — L~ (L™)" = 0. It
turns out that the functionals u( ) and v( J) in the right-hand side of eqs.
(17) and (18) can in fact be expressed in terms of the field vy ; alone by
excluding all other fields of the 2DTL hierarchy by means of the flows 9,
and 97, respectively, entering into the system (9-12). In order to see that,

let us analyze egs. (10) and (11), respectively, at n = 1

3‘“557;) vO,juch)l,j—l_’onj—k+m+1u§crz)1,j’ (20)
O vl — o™ (uy ; — Unjkom) = U574t — o™ (21)

Equation (21) can easily be transformed into a more useful form for a
further analysis which is similar to eq. (20). Thus, using the relations

m—k

Ui = U jrk-m = +0F In I] vojtk-min, m >k (22)

n=1



resulting from eq. (15) and introducing the new basis v,(:;) = ﬁ,(ct';), accord-
ing to the formulae

m—k
o) =5, o) = T vogrimen m> b (@3
n=1
eq. (21) becomes
of 5;?,';) = V04105 j1 — UO»j-i-k—mﬁl(cT)l,j? m 2> k. (24)

A simple inspection of (20) and (24) shows that they in fact allow one to

express u™ and ™ in terms of vy ;. Indeed, eq. (20) ( (24) ) represents a
n,J 7,7 ]

recurrent relation connecting the functional ufcnj) (5,&";) with u{™, ; (7™, ).

k14 \Vk—14
Being iterated with the simple starting value ugfj) =1(7) (17(()73) = 1), it
generates a very nontrivial expression for the functional u;"]) (vfl"]) = 17,(,"]) )

in terms of vy ; after the n-th step of the iteration procedure. The latter,
in turn, yield the symmetries 9;vo,; and 9; vg; to the 2DTL equation (13)
via egs. (17) and (18).

Let us remark that the 2DTL equation (13) possesses the involution
(B5) = 0F,  (v04)* = v, (25)
which relates the symmetries (17), (20) with the symmetries (18), (23-24),
according to the following rule:

@) =07, W) =03 @D =ul, ., (20
where ¢ € Z is a fixed number. Besides the involution (25-26), there exists
also another involution

(02)" =07, (v0y)" = vou-y. (27)
Applying this involution to equations (18) and (24) and introducing the
following notation:

@) =l Y = uT (28)

equations (17-18), (20) and (24) can be rewritten in the following unified
form:

+ +
0Evo,; = o, (ul)* — ulVE)),
+ + +
3?“&& = UO,jUScn—)l,jq - ”O,j—k+n+1U§cn—)1,ja ugn]) =1 (29)
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The symmetries (29) of the 2DTL equation (13) reproduce the solu-
tions to the corresponding symmetry equation derived first in [1] by a
rather heuristic construction, while the algebra (4) of the symmetries was
not established there. One of the advantages of the general, algorithmic
procedure, developed here, is the derivation of both the symmetries (29)
and their algebra (4). As a byproduct we have also established the origin
of the symmetries discussed in [1].

In next sections we extend the above-developed scheme of constructing
symmetries of the 2DTL equation to the case of supersymmetric Toda
lattices and discuss supersymmetric peculiarities related to fermionic flows
and their algebras.

3 N=(2|2) supersymmetric 2DTL hierarchy

In this section, we establish the relationship between bosonic symmetries
of the N = (1|1) supersymmetric 2DTL equation constructed in [2] and
bosonic flows of the STL hierarchy of ref. [15]. We also discuss the subtle
point for a relation between fermionic symmetries of the N = (1|1) 2DTL
equation constructed in [3] and fermionic flows of the STL hierarchy [15],
and establish the algebra of both bosonic and fermionic symmetries.

3.1 Lax pair representation and flows

The Lax pair representation of the STL hierarchy is [15]

DELY = (1) (((L*)2), ) L — (L) ™ (L)),
+ 5= ()@,
DEL™ = (—1)"((L*)1).)'L™ = (L) ™ (L))
FLUFDA- ()L, neN, (30)
I+ = i uk,je(l_k)a, L~ = i ’Uk,je(k_l)a, (31)
k=0 k=0



uO,j = 1, ’Uo,j ;é 0, (32) :

and it generates the non-abelian algebra of the flows
[D: ’ Dl_} = [D;:: ’ Dg;] 20’ {Dg:n+1 ) Dg;+1} = 2l);:(n+l+1) (33)

which may be realized via
Ditn = 32im D§En+1 82n+1 + Ztﬂ 1 2(k+l)’ (34)

where D3, and t5, (D%, and ti, +1) are bosonic (fermionic) evolution
derivatives and times, respectively; ug ;({t;, 1, }) and var ; ({85, 17})

((uart1,;({t), 1, }) and wvary;({F,%7}) ) are bosonic (fermlomc) lattice
fields. Hereafter, the subscripts (superscripts) * ( *(n) and * ) are defined
according to the rule [15]:

(LF)2 o= ((L*)*L®)", (L) = LE((LY)*L)",
(L:i:)*(Qn) = Li, (L:I:)*(2n+1) (L:i:)
(L [un gy vig))* o= L¥up 5,050, (ukg, o)™ = (=1)F(urj, vp ). (35)

In this section we will use the following notation:

(o]
(L) o= 3 o, (1)m o= S5 ofelboms ()
k=0 k=0

) _ 1 —
where {UZky "’Qk]} and {u2k+1]v ng':l-})-lj} (U’;c; = Uk, Uk]) = wvy,;) are
bosonic and fermionic functionals of the original fields {uy ;, vy ;} Wwhose
explicit form is not important in what follows but

u® = 1. (37)
The operator equations
D (L*)P = (=)™ ((L*)H£) ™ (L) = (LH)m) ™ (L))
F5AED( = (1)L,
Dy(L7) = (=)™ ((L*))2) ™ (L)r = (L)) ™ (L*)r)
FSAF - ()L, momeN (39)



are identically satisfied on the shell of the original equations (30) and
reproduce the latter at the value m = 1. Let us remark that they can
identically be rewritten in a rather standard Lax pair form if artificial
fermionic parameters €, and ¢, are introduced,

(Hz=lek)D:H;n=l(EpLjF) = [(szl(ekLi))i ’ H:=1(€PL;)]’
(H:=16’“)DTTHZI=1(5PL¢) = (=)™
x[(H:ﬂ(kai))i(_l)m T (eI)- (39)

The flows for the functionals {u;f’;), v,(ct';)}, corresponding to egs. (38), are

n

+,.(2m) _ (n), (2m)
Dyug ;- = Z(”p,j Uk —p+n,j—p+n
p=0

n)(k—p+n 2
- (_1)(p+ He=pt )U;Z?—k+p—n+2mu§c—n;)-i-n,j)’ (40)

2n
+ . (2m+1) __ p, (2n) (2m+1)
D2nuk,j - E((_l) Up,j Uk—p+2n,j—p+2n
p=0

_p) (2 o2m+1
- (_1)p(k p)ul(p,;'zlk+p—2n+2m+1U§c—n;;-++2)n,j)7 (41)

D, yuy ™ = i(<—1>P+1u§,T;;21,ju£"’_";39p
p=1
+ ("1)p(k_p)U;T;z21,j—k+p+2m+1u§c2-rz?;l))a (42)
n—1
D;ui',’}) = 2‘6((_1)(p+n)m”;(:,lj)“§£;—n»j+p—n
=
= (FLEEEI ) bl (43)

n
Doy = 3 (=)™ u ol i
p=0

= (CDEEEIGD, g (49)
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n—1

Do = 3 (upem)

n ’C,J rd PiJ k_p+n=j+p_n
p=
- 2
~ DTGt ng), (45)

2n—1
— (2m+1) _ p, (2n) (2m-+1)
D, vy = Z ((-1) Up,j " Vk—p+2n,j+p—2n

- 2 2 1
— (=L ooV ), (46)

k
- 2m+1 2n+1 2m+1
D2n+1vl(c,]7'n ) = ZO((_1)p+1v1(7-;12n421,jvl(c—p:;—|-)p
p:
k— 2n+1 2m+1
+ (__1)p( p)vz()-:?n%?l,j+k—p—2m—1'vl(c—";,j ))7 (47)

where all fields {ug";), v,(cf;)} in the right-hand side should be put equal to
zero at k < 0. When deriving eqgs. (42) and (47) we have used the follow-
ing identity: 2(L*)207™) = ((L2)2rH1) (LE)2mH L (D#)2met)s (pbpns
which can easily be verified using the definitions (35).

3.2 Bosonic symmetries of N = (2]|2) 2DTL equation

The N = (2|2) supersymmetric 2DTL equation belongs to the system
of equations (40-47). In order to see that, let us consider eqs. (43) at
{n=m=k=1}

Dyuij = ~vo,; = o1 (48)
and egs. (44) at {n=m =1,k =0}
Diwoj = v,3(u1,j — t1,5-1). (49)
Then, eliminating the field u; ; from egs. (48-49) we obtain
Df Di Inwg; = vg 1 — voj-1- (50)

Equation (50) reproduces the N = (1|1) superfield form of the N = (2|2)
superconformal 2DTL equation (see, e.g. refs. [18, 4] and references

11



therein) which is the supersymmetrization of the system of two decoupled -
2DTL equations (13). Indeed, it terms of the superfield components

fi=vo4l, 7 = (DfInvgy), (51)

where f; (v;,7;) are bosonic (fermionic) fields and | means the t7 — 0
limit, eq. (50) becomes

070y In fj = —fisi fiva + fi(fiwa + fiz1) — fi-1fi-2
= fieYa i + ficain
:F(%’)’f = fj+1’Y;F+1 - fj—ﬂ;-F_y (52)

Then, denoting v; := f;_1 f; in the bosonic limit when all fermionic fields
are set to zero, we finally obtain the equation

070 Invj = —vji0 + 20; — v;_y (53)

which obviously splits into the system of two decoupled 2DTL equations
(13) for the functions at even and odd lattice points, i.e. voj and vgjy1.

Now, we would like to discuss how bosonic symmetries of the N = (2/2)
2DTL equation (50) originate from the system (40-47). It appears that
the approach developed in the previous section for the case of symmetries
of the bosonic 2DTL equation (13) can straightforwardly be extended to
the present case.

First, let us derive the flows Djfvg; and D, vp; of the STL hierarchy
considering eqs. (44) at {m =1,k = 0} and eqs. (46-47) at {m = k = 0},

Difvoj = o, (ul) — ul)_,) (54)
and

Dy o5 = —v; () = v 55

n V0,j vO:J(vn,J vn,]—l): ( )

respectively. When calculating egs. (55), we have used the relation

2n
n 2 (2n
(10 van-pisap-an = (~1 U han portanps) =0 (56)
p=0
resulting from the identitity ((L7)?")*L~ — L=(L™)?" = 0 following from
the definitions (35).

12



From the algebra (33) one can easily observe that only bosonic flows
Dj;, commute simultaneously with both the fermionic derivatives Di and
Dy entering into the N = (2|2) 2DTL equation (50),

[Di'— ) Dg:n] = [Dl_ ) DQin] =0, (57)

while the fermionic flows D;tn_H do not satisfy this property. Due to this

reason, the bosonic flows Dy, (54-55) form symmetries of the N = (1]1)

2DTL equation (50) if one can possibly express the functionals ugl"]) and

véi"]) in the right-hand side of eqs. (54) and (55) in terms of the field vy

alone, while the fermionic flows D2n+1 do not.

(n

With the aim to express u,, ) and v in terms of vy j, let us consider

egs. (43) and (44) at n =1

Drugy) = (=)™ ul™ ;1 + (=1 v prmprul™ , (58)

Do — (=10 (w15 — wnjkem) = (=1)™0) 1 + (— 1)) (59)

Substituting
m—k
urj = Unjpk-m = +D7 In [T vojik-min, m>k (60)
n=1

derived from eq. (49) into eq. (59) and introducing the new basis v(m)

v,(c J), according to the formulae

(",Z) - 77("3’ ”l(c";) = Uy ]) H Vojtk-min M > K, (61)

n=1

eq. (59) becomes

D5 = (=1 00007y + (“) v0genn®Thy, m 2k (62)
and has the form similar to eq. (58).

The equations (58) and (62) derived represent recurrent relations which
being iterated with the startmg values u(" 1 (37) and ﬁé’; = 1 allow one

to express the functionals u and v,(l"J) = vn ;j in terms of vy ; after the n-th

13



step of the iteration procedure. The latter yield the bosonic symmetries -
D3,v0,; and Dj,vp; to the N = (1]1) 2DTL equation (50) via eqs. (54)
and (55).

Let us remark that the N = (2|2) 2DTL equation (50) possesses the
following involution:

(DY)* = Df, v}, =0y (63)
which relates the flows (54), (58) with the flows (55), (61-62),
DRy =DF, 3V =00 @) =uil (64

where ¢ € Z is a fixed number. Besides the involution (63-64), there exists
also another involution

(D7) =Dy, (v0g)* = —voj. (65)
Applying the latter to (55) and (62) and introducing the notation

@) = ulD L, = u{ (66)

the flows (54-55), (58) and (62) finally become

+ + 4
Doy = wny(ul)* —ulh), uff =1,

* n)E n)x
:I:Dfugf} = (_1)nUO,ju§c—)1,j_1 — (_1)kv0,j—k+n+1u;c_)l,j. (67)

The bosonic flows D3;,, resulting from eqs. (67),

+ . (2n)+ (2n)+ (en): _
D3pv0,5 = Uo»j(u2n,j - u2n,j—1)7 up; =1,
(2n)+ __ (2n)+ k (2n)+
iDT“k,j = Vo,jUk—1,5-1 — (-1) V0,5 —k+2n+1Ug—1 5, (68)

reproduce the bosonic solutions to the symmetry equation corresponding
to the N = (1]1) 2DTL equation (50) derived in [2] by a rather heuristic
construction, while the algebra of the bosonic symmetries Dz, (68)

(D3 » Dl = [D3, , Dy] =0 (69)

resulting from eqgs. (33) was not proved there.
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3.3 Fermionic symmetries of N = (2|2) 2DTL equa-
tion

In this subsection, we discuss the origin of the fermionic symmetries, pro-
posed in [3], of the N = (1]1) 2DTL equation (50) and construct their
algebra.

For completeness, we would like to start with the derivation of a close
set of equations for the functionals ufczf) aiming to reproduce the solutions
corresponding to fermionic symmetries first observed in [3].

With this goal in mind, let us consider egs. (40) at n =1,
2 2n
Dy + (=M (ungopan = uig) = ) 0 + (D, (70)

Then, using the recursive substitution (58), we express the functionals

uff_H) ; in the right-hand side of egs. (70) in terms of the functionals u; ])

particularly, we also use the relation

)

Unjkton — U1, = (D7) (vo,; + Vo jp1 — V0,j—k+2n — V0j—k+2n+1), (71)

and as a result, we elaborate the following close equations for the function-

als u(zn at different lattice points (j — 1, j and j + 1), but with the same
subscr1pt k

(= )kD1 Uk] (2n)(D1 )~ (UO,J‘ — Vo,j—k+2n+1
+0,j+1 = Vo,j—k+2n)
— 2n 2
= (D7)} (vo uly) ) — Vo j—kt2n U 1

+(=1)*(vo i1 — UO,j—k+2n)u§c2,;'L)) (72)

which reproduce the corresponding equations derived by a heuristic con-
struction in [2, 3]. According to [2, 3], equations (72) can be treated as
the result of the application of the recursive chain of substitutions (58) to
the symmetry equation corresponding to the symmetries D3, (68) of the

= (2]2) 2DTL equation (50). In other words, equations (72) represent
the consistency conditions for the algebra (57) realized on the shell of the

= (2|2) 2DTL equation (50). Due to this reason, we can forget for a
moment about their hierarchy origin and discuss their solutions which will
be relevant for further consideration.
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At k = 0, equation (72) possesses a very simple, constant solution
u&" ) =1 [2] which reproduces the condition (37) for the hierarchy we
started with. As it has already been explained in the previous subsection,
this solution generates a very non-trivial solution for the functional ugi"j
via eqs. (58) as well as the bosonic symmetry Df,vo; to the N = (1]1)

2DTL equation (50) via eq. (54).

It turns out that eq. (72) possesses also a fermionic, lattice-dependent
solution at k = —1, namely [3]

u?{l; = (=1)T*e, (73)

where ¢ is a dimensionless fermionic constant. It remains to show how
fermionic symmetries are being activated. With this goal in mind, let us
represent the bosonic time derivative Dj, corresponding to the solution
(73) and the functional u,(f;‘) which enter egs. (54), (58), (73) and (57) in
the following form:

2 2n+1
D} = eD;n_H, u§”") == eu,ﬁflj‘]. )+ (74)

defining a new fermionic evolution derivative DF,.; and the functionals

u,ﬁ?;“””. Then, the fermionic constant e enters linearly into both the
sides of egs. (54), (58), (73) and (57) which now become
2n+1)+ 1)+ 1)+ ~
D2in+l'U0J :UOJ(UQ(nZ-’l_,lj) - 2(2141—,]')—1)1 ué,?jn+) = (_'1)]_’-17
EDFUG I = —uo USTIT + (1) 00 i pgansad T DE, (75)
{DI, Do} = {07, Di} =0. (76)

When deriving eqs. (75-76) we have substituted eqs. (74) into eqgs. (54),
(58), (73) and (57), and additionally used the involution (65) and notation
(66). Therefore, the flows Dj,,; do not actually depend on e, so € is
an artificial parameter which need not be introduced at all. The most
important fact however is that Dgtmﬂ anticommute with the fermionic
derivatives D{* (76) entering into the N = (2|2) 2DTL equation (50) by
construction, and due to this reason, they form symmetries of the N =
(2|2) 2DTL equation (50).

Although the existence of the symmetries Dj,,; (75) was established
in [3], their algebra was only conjectured by extending the algebra of a
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few first bosonic and fermionic flows explicitly derived there. Now, we are -
ready to rlgorous]y establish the algebra of all the bosonic Dy, (68) and
fermionic Dj,,,, (75) symmetries in the framework of the developed here
approach.

Our strategy comprises a few steps.

First, let us calculate the fermionic symmetry Difv, 4 (75) and its al-
gebra expressing the symmetry in terms of the fermionic flow D3y 4 (67)
and using the algebra (33). They are

Dit’UOJ = (—1)j+1Di’:’U0’j (77)
and
{D Di}'l)oj —{D Dit}’Uo,j = —ZDSZ’UOJ‘, (78)

respectively.

Second, we use the derived relation (77) in order to replace Df by Df
in the expressions both for the bosonic (68) and fermionic (75) symmetries,
then transform them to the new basis

A§c2,;z+1)ﬂE =ck(_1)(k+1)(j+1)u]£’2;t+1)i, Ag;z)i = cp(— 1)kju§c2,;’l)ia

+ . + Dt .— _ —
Dany1 = cont1Danyr, Do = C2nD2m Con = Con1 = (=1)" (79)

which is defined by a single requirement that the form of the symmetries
in this basis is as close as possible to the form of the flows D (67) of the
STL hierarchy whose algebra (33) is known. In the new basis (79), the
symmetries (68) and (75) as well the algebra (78) become

~

Dirvoy = vo (@ — )%, a5y =1,

n,j—1 0,5
DT = (=1) 00,807 + (=100 pnin@VE,  (80)
and
{DF , DF} = 2Df, (81)

respectively. When deriving the second line of egs. (80), we have first acted
by the fermionic derivative D on both sides of the second line of egs. (68)
and (75) and then used the latter once more together with eqs. (77-79) and
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(81). A simple comparison allows one to immediately observe that (80) and -
(81) coincide with the expressions for the flows DX (67) and the algebra
of the derivatives Df (78), respectively, where, however the evolution
derivatives DF are replaced by D* The obvious, important consequence
from this observation is that the algebra of the evolution derivatives D
has also to reproduce the algebra of the evolution derivatives DF (33).
Thus, we are led to the following formulae for both this algebra and the
algebras (78), (57) as well as (76) transformed to the basis (79)

[D } [Di ﬁ;‘;] = 0’ {D2n+1 ’ $+1} - 21)§l:(71-|—l+1) (82)

and

{DT ) Dl_} =0, {Dit ) Dil:} = _2733:’
[Df, Dy} =Dy, D} =0. (83)

By construction, the algebra (82) forms a symmetry algebra of the

= (2]2) 2DTL equation (50) However, one can easily understand that

the fermionic symmetries D, +1 (75) are also symmetries of the bosonic

flows D%, (68) of the STL hierarchy because of the following commutation
relations:

[D;;L+1 ) D ] = [D2n+1 ) étt] =0 (84)

resulting from the algebra (82) and the relations (79).

Let us also point out that bosonic and fermionic symmetries of the
one-dimensional reduction of the N = (2|2) 2DTL hierarchy — the N = 4
supersymmetric Toda chain hierarchy — were analyzed in detail in [19, 20).

The existence of the fermionic symmetries D, ,; (75) means that the
Lax pair equations (30), we started with in this section, are not complete
because they do not contain fermionic flows which would correspond to
these symmetries. Therefore, the new problem arises: it would be interest-
ing to construct both additional evolution equations for the Lax operators
L* (31) generated by the fermionic symmetries Dj,., (75) and commuta-
tion relations between the latter and the fermionic flows D, (67) of the
STL hierarchy. The detailed analysis of this rather nontrivial problem is
beyond the scope of the present paper and will be considered elsewhere.

18



Let us only mention that a similar task has partly been discussed in [21] -
in a slightly different context.

To close this section, let us briefly discuss one of the consequences of
the results derived in this subsection which is important in the context of
the problem of constructing an N = (2|2) superfield formulation of the
bosonic flows D, (68) of the STL hierarchy. Quite recently this problem
was considered in [16] basing on the conjecture partly proved there (for
more details, see ref. [16]). In terms of the objects introduced in the
present paper this conjecture can be reformulated as a conjecture about
the validity of the following constraints:

(DiF + DT)D;’; vo,25 = 0, (DiIE - Df)Dgil V02541 = 0, (85)

(Dit -+ D?:)Dgi ’U072j = 0, (Dil: - Dit)Dgi U0,2j+1 =0. (86)

The proof that the constraints (85) are in fact satisfied is given in [16].
As concerns the remaining constraints (86), only evidence in their favour
was presented there by confirming them (and (85)) explicitly for the first
three bosonic flows D, (n = 1,2,3) from the set (68). Here, we are ready
to prove this conjecture. Thus, using the relations (77) represented in the
equivalent form

(DiF + D;F)UO’QJ' = O, (DT - D;F)’UO,Zj+1 = Ov (87)

the constraints (85-86) can identically be rewritten in the following form
more convenient for a further analysis:

[DF + Df , Dyl voa; =0, [DFf—DF, Di]vogjs1 =0, (88)

[DF + Dff , D] voz; =0, [Df— DY, DE)vogii=0. (89)
It is a simple exercise now to verify that the correctness of the conjecture

in the form of equations (88-89) is a direct consequence of the algebras
(57) and (84).
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4 N=(0|2) supersymmetric 2DTL hierarchy -

In this section we propose the new, N = (0|2) supersymmetric 2DTL
hierarchy which includes the N = (0|2) superconformal 2DTL equation
derived in [4] and construct both bosonic and fermionic symmetries of the
latter.

4.1 Lax pair representation and flows

Let us start with the following set of the consistent Lax pair equations:

Dy Lt = (=1)"(((L*))+)"L* = (L) ™ (L))
+ (1= (=1)")(L),

DyL™ = ((L*)})+L™ - (L')*(")((L+)1‘)+,

D3 LF = ((L7)")-)"L* = (LH)((L))-,

D;, L™ =[((L ))_,L], n €N, (90)
= i uk,je(l“k)a, L™ = i vk,je(k”ma, (91)

k=0 k=0

Up; = 1, Vo,2j+1 = 0, Vo,25 75 0 (92)

generating the non-abelian algebra of the flows

[D: ) Dgi] = [D2_n ’ D2_l] = 07 {D;n—t-l ) D;}+1} = 2D;-(n+l+1) (93)

which may be realized in the superspace {t},15,}
" o]
Dg:n = 8271’ D;—n+1 = 3;;z+1 + Z t;_l—la;(kﬂ)’ (94)
=1

where D, and t3, (D3,,, and t§,.,) are bosonic (fermionic) evolution
derivatives and times, respectively; ug ;({t;}, 12, }) and vor ; ({t, 5, })
(uokt1,5({th t2n}) and oy ({t},¢5,}) ) are bosonic (fermionic) lattice
fields.
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In what follows we will show that the N = (0/2) 2DTL equation [4] -
belongs to the set of equations (90) and due to this reason we call it the
= (0]2) supersymmetric 2DTL hierarchy.

Let us introduce the following useful notation:
o0 o0
L+)m — Z u%)e(m—k)a’ (L—)m = Z vl(cf’f;)e(k—Zm)a (95)

which will be used in this section. Here, {u%], Uzk)} and {u2k+m, v2k+1 gt

1
Y = Ug, o) = vg,;) are bosonic and fermionic functionals of the
k,j Jr Yk,g J

original fields {u;, wvk;} whose explicit form is not important for the
further consideration but the explicit form of the following functionals:

gy =1, 5 =0, vy #0 (96)

which can easily be found using eqs. (92).
One important remark is in order: the Lax pair representation (90-91)
supplied by the constraints (92) cannot be obtained by reducting the Lax
pair representation (30-32) of the N = (2|2) 2DTL hierarchy. Indeed, if it

would be the case, then the Lax operator L~ (91) had the square root of
the form

L) = (@ EOh @)r =L ufet o)
which reproduces the original Lax operator (31) of the N = (2|2) 2DTL
hierarchy, and as a consequence of eqs. (97), the field vy ; admits the
following representation:

3 (3)
voy = usP i) . (98)

However, the latter is inconsistent with the conditions (92); so we come to
the contradiction. Therefore, the conclusion is that the N = (2|2) 2DTL
hierarchy cannot be reduced to the N = (0|2) 2DTL hierarchy.

The following operator equations:
Dy (L)} = (-1 )"’”(((L+)") ) (L

= (L)L + (1 —( ML),
Dy (L7)™ = ((L*))+(L7)™ = (L)™' ™ (LF)2)+,
Dy (LF)7 = (((L7)™)=) (L) = (LML) -,
Do, (L7)™ = [((L7)™)-, (L_)m]v n,meN (99)
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are identically satisfied on the shell of the original equations (90), and the

corresponding flows for the functionals {ufc'f;-), v,(:;)} are

n

2 n 2

_p+n7j_p+n
p=0
— (—1)\@+n)(k=p+n), () (2m)
( ]') up,j—k+p—n+2muk—p+n,j) )
@m+1) (2n) (2m+1)
+ m _ _1\p,,(2n m
Dayu " = > ((-1) Up,j " Uk—p+2n,j—p+2n
p=0
_(_ p(k—p) (271) (2m+1)
( 1) up,j—k+p—2n+2m+1ulc—p+2n,j)7

k
+ (2m+1) _ p+1, (2n+1) (2m+1)
D2n+1uk,j - Z((_l) Upron+1,jUk—p,j—p
=1

_1\p(k-p), (2n+1) (2m-+1)
+(-1) Uptantj—ktptam+1U-p )

2n—1

Dy = 3 (=1l

D,J uk+p—2n,j+p—2n
p=0

_ (_1)p(k+p)”;(:?—k—p+2n+mu§$;—2n,j),

n

Doy = Y (4o npin

p=0
- (_1)(p+n)(k+p_n)u;’i?+k+p—n—2mvl(c7—t;)—n,j)7
(m) _ =, (), (m)
—_ m n m
Dy = Z (Vp,j Ve—p+2n,j+p—2n
p=0

- (_ 1 )p(k—p) Uz(ar,lj)—f-k—p+2n—2mvk7—r—l;+2n,j) ’

(m)  (m

(100)

(101)

(102)

(103)

(104)

(105)

where all fields {u; vk’j)} in the right-hand side should be put equal to

zero at k < 0.
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4.2 Bosonic symmetries of N = (0|2) 2DTL equation
Now, let us demonstrate how the N = (0|2) 2DTL equation and its sym-
metries originate from this background.

With this goal in mind, let us consider eqs. (104) and (105) at {m =
1,k=0} and {m =k =1},

Difvo5 = +uo,05(ullh; — ul i), (106)
Dyivi5 = —v0,0;u8”, ;1) — (=1) 0125w,y — uld,),

Dyvg41 = +UO»2(j+1)ufz7?1,2j+1 = (=) 01,2511 (ul; — ul;1) (107)

and
D v0,2j = —0,2i (050 — o™, 108
2n00,2j Y0,2j\V2n,2j = Vop 2(j-1))> (108)
Dipv1; = U0,2JU§Z)+1,2(J‘—1) + ”1,23'(”52?2]'—1 - Uéﬁ?%),
Dy v1 2541 = “”0,2(j+1)U£Z)+1,2]‘+1 + U1,21+1(U£Z?2j - véﬁfzm), (109)

respectively, which involve the two fields, vos; and v; ;. When deriving
these equations we have used the conditions (92) and the relation

k

Z(”z(vtlj)vk—p,jﬂ—% - Uk—Pijz(:j)+k—p—2) =0 (110)
p=0

at k = 2n and k = 2n + 1 which is a direct consequence of the identitity
(L7)"L™ — L=(L™)" = 0. Equations (106-109) can further be simplified
if one introduces the new basis {vog; , vig; , vigj-1} = {g;, F}, F;},
according to the formulae

Vo = 92i92j-1, V125 = 92;Fj, vigj-1 = goj1F, (111)

where Fj, F'; (g;) are new fermionic (bosonic) fields. Then eqs. (106-109)
become
Dflng; = u;"]) — uﬁf}_l, (112)
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Dy Fy = "921'—1“5:1)1,2(3‘-1)’ D:Fj = +g2j“gl—)1,2j—1 (113)

and
Dy, Ing; = —o§? o). (114)
Dy, F = +92j—1véz)+1,2(j—1)» Dy, F; = _g2jU§Z)+1,2j—1- (115)

Now, using eqs. (96) one can resolve eqs. (113) at n = 1 and express the
field g; in terms of the fields F}, F;,

92j-1 = —D{Fj, g¢o; = +D{F;. (116)

Finally, eliminating g; (116) from egs. (112) and (114) we obtain the
following set of equations for the fields F}, F;:

DfInDfF; = u,(lngj - ufzgj_l, D} InDf F; = uﬁ[f%j_l - Ufﬁ;(]’_n (117)
and
D;, In DfF; = —v%j + véﬁfzj_l,
D3, In D Fj = _Ugnl32j—1 + véﬁfz(,'_n' (118)

Alternatively, substituting g; from egs. (116) into egs. (113) and (115) we
have

D:FJ = (Di{—Fj)uSi)l,z(j—l)’ D:{FJ = (Drﬁj)“%n—)l,zjq (119)
and
Dy, Fj = *(DTF})UQZL1,2(j—1)a
D3 Fj = =(D Tl i (120)
Now, it is necessary to express the functionals ui"]) and v,ﬁi’} entering
into the right-hand sides of egs. (117-118) (or egs. (119-120) ) in terms of

the fields {F}, F';} in order to have a closed set of equations for the latter.
With this goal in mind, let us consider egs. (103) and egs. (104) at n = 1,

—,(m) _ (m) (m)
Dy uy; = Vo,jUk—2,5—2 — V0,j—k+m+2Ug_3 ;

+ (=)™ ul™ o+ (—1)*v1jrmerul™) (121)
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and
DF (m) _ (_1 k (m) L . _ .,(m) . -1 k, (m) 122
1 Vkj ) Uk, (V15 — Urjth-2m) = Vg-1,441 T (-1) Uk—1,55 (122)

where vg,; and vy,; should be expressed in terms of { F}, F;} using egs. (92),
(111) and (116),

vo,2i+1 = 0, vo2; = — (DY F) DY F,
vigj = FiD{Fj, wvigj-1 = —(Dy Fy)F;. (123)
Substituting
2m—k
U1,j — UL, j+k—2m = +Di" In H Gj+k—2m4n, 2m > k, (124)
n=1

obtained from eq. (112) at n =1, into eq. (122) and introducing the new

basis v,(c?;-) = 5,(!3),
m) _=m) m) _ —(m) 0
m ~(m m ~(m
U?m,j = U2m,j7 vk:,j = vk,j H Gj+k—2m+n, 2m >k (125)
n=1

eq. (122) becomes simpler

D5 = i1 i + (—1)¥gjak-2mBy s 2m >k,  (126)

where g; is given in terms of {F}, F;} by eqs. (116).

The equations (121) and (126) derived represent recurrent relations
connecting the functional ug"; and 17,(;3 with {ufc"_)“ , ug'i)?,i} and 17,(6"_)1’1-,
respectively. Being iterated with the starting values {u(_"l)J =0, uf)’fj) =1}
(96) and 5(({}) = 1, respectively, they allow one to express the functionals

u;"J) and véﬁ?j = ~§Z) in terms of {Fj, F;} after the n-th and 2n-th steps of

the iteration procedure, respectively . The latter yield the flows D} and
D3, of the fields F; and F'; via egs. (117) and (118).

For illustration, we present explicitly the flows D} (117)atn =1,n =2
and n = 4 constructed by the above-described algorithmic procedure which
allows one to pass step by step,

Dy Df In DY Fjy = +F;Df F; — F; 11 Df Fj,
D; Df n DfFj = —(D{ Fj)F; + (Df Fj11)F i, (127)
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DjF; = (D{)’F;, DiF;=(D})’F (128)

+2((DY)*Fy) (D7)~ (DA (FF)
D{F; = +(D{)'F; + 2(D{ F;)(Dy) (D} )*((Df F;)F;)
+2((D1)*F;)(D3) ™1 (DY) (F5F5). (129)

When deriving egs. (128-129) we have used eqs. (127) in order to express
the fields {F}; , F'ji:}, appearing at different lattice points j +1, in terms
of the fields {F; , F,} at the lattice point j.

Equations (127) reproduce the N = (1]1) superfield form of the
N = (0]2) superconformal 2DTL equation [4] which is the minimal su-
persymmetrization of the 2DTL equation (13). Let us discuss this point
in more detail. Thus, in terms of the superfield components

V;=D{Fy|, Y;=F,, Uj=DiFl, ¥;=Fl  (130)

where U;, V; (¥;, ¥;) are bosonic (fermionic) fields and | means the & — 0
limit, egs. (127) become

0F (05 Wm(UVj—1) = 0, + ;. T;,) =0,

1
9, (U
82 ( a+\1’ ) - J+1\I]]+1 -U; \Il,],

03 W;) = Vi1, — V3,

0 0 1HVJ = Ujt1Vir1 = UjVj + (05 011)Tj10 — (859,) T, (131)

The first equation of system (131) has the form of a conservation law with
respect to the coordinate tJ. Resolving this equation in the form

05 In(U;Vjo1) = O30, 4+ ;1 W5y = 0, In(n;—1(t7)/n;(t5))  (132)

and rescaling the fields

l

V. _ .
uj = n;U5,  vj= n_J.’ Vi =y Y= 77_; (153
J
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we rewrite equations (131) in an equivalent component

05 In(ujvj_1) = jib; — Yj_19;_4,

35('3;35’%) = V191 — V¢,

05 (- 05)) = wysr¥yn — 0¥

03 05 Inw; = uj1vjn — vy + O i) b0 — (OF )%,  (134)
and superfield

Dy In((Df Fj1)(D}F)) = =F;F; + FjFj,
D; Df n D{F; = —(Dy Fy)F; + (DY Fj41)Fjn  (135)

form where an arbitrary function n;(ty), introduced in eq. (132), com-
pletely disappears. The equations (134) reproduce the component form
of the N = (0[2) 2DTL equation [4] which can be reduced to the one-
dimensional N = 2 supersymmetric Toda chain equations [22] by the
reduction constraint 85 = 0;. Let us also point out that bosonic and
fermionic symmetries of this reduction were analyzed in detail in [23]. In
the bosonic limit, when all fermionic fields are set to zero, equations (134)
become

0y In(ujvi_1) =0, 0705 Inv; = ujp1vj41 — ;04 (136)
and the equation, resulting obviously from them, for the function b; =
—U;Uj

0705 Inb; = —bji1 + 2b; — bj_, (137)
reproduces the 2DTL equation (13).

As concerns egs. (129), they represent minimal supersymmetrization
of the Davey-Stewartson equation [24] which is the (2 + 1)-dimensional
generalization of the (1+ 1)-dimensional Nonlinear Schroedinger equation.

Let us remark that the NV = (0/|2) 2DTL equation (127) as well as the
equations (128-129) possess the following involution:

(Fy)* = E—j, (E—j)* = F;_;, (138)
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where ¢ € Z is an arbitrary fixed number.

From the algebra (93) we learn that only bosonic flows D, of the
N = (0]2) 2DTL hierarchy commute simultaneously with the derivatives
Df and Dy entering into the N = (0|2) 2DTL equation (127),

[Di}— ) Dg:n] = [D2_ ) Dg:n] =0, (139)

while the fermionic flows D3, ,; do not. Due to this reason the bosonic
flows D3, (117-118) form symmetries of the N = (0]2) 2DTL equation
(127), while the fermionic flows Dy, do not. Conversely, the N = (0|2)
2DTL equation (127) forms the infinite-dimensional group of the discrete
Darboux-Baeklund symmetries for the hierarchy of the bosonic flows Dj,
(117-118) (particularly, eqs. (128-129) ). In other words, if the set
{F; , F;} is a solution of this hierarchy, then the set {Fjs1, Fin},
related to the former by egs. (127), is a solution of the hierarchy as well.

4.3 Fermionic symmetries of N = (0|2) 2DTL equa-
tion

In this subsection we construct fermionic symmetries of the N = (0|2)
2DTL equation (127) and their algebra. This construction is similar to the
construction of fermionic symmetries of the STL hierarchy considered in
the subsection 3.3. This permits one to present here its main steps in a
telegraphic style and refer the reader to the subsection 3.3 for more details.

First, let us consider egs. (100) at n =1,
2n 2
DFuy) 4 (~1)Muy (unpsom — w1g) = ulT) o0 + (~1)*u) . (140)
Substituting
Uy jokion — U1 = (D7) (o1 + v1j41 — V1j—k+2n = V1j—kt2ont1) (141)

derived from eqgs. (121), into eqs. (140) the latter become

Dy w4+ (—1)ul (D7) "M (1 + V141 — V1j—kran — V1 ksnsn)

n 2
= ul(92+1)y+1 + (= 1)ku§c—:~ll),j’ (142)
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where vy; should be expressed in terms of {F}, F';} via egs. (123) The -

derived system of equations (121) and (142) for the functionals u;;; @n) can
be treated as the result of the application of the recursive chain of the
substitutions (121) to the symmetry equation corresponding to the sym-
metries Dy, (117) of the N = (02) 2DTL equation (127). Equivalently,
this system represents the consistency condition for the algebra (139) re-
alized on the shell of the N = (0|2) 2DTL equation (127). Therefore, one
can construct the relevant, for the problem under consideration, solutions
of equations (121) and (142) forgetting about both the way how they were
actually derived and their relation to the N = (0|2) hierarchy.

It is a matter of simple direct calculations to verify that eqs. (121) and
(142) possess both bosonic
uf =1, WM =0, 1<0 (143)
and fermionic
u®) = (~1)*e, W =0, I<-1 (144)
solutions where € is a dimensionless fermionic constant.

The bosonic solution (143) corresponds to the bosonic symmetries Dy,
(117) of the N = (0|2) 2DTL equation (127) discussed in the previous
subsection (see the paragraph after eq. (126)).

Now, we would like to concentrate on the fermionic solution (144) aim-
ing to elaborate the corresponding fermionic symmetries we are looking
for. Let us represent the bosonic time derivative Dj, corresponding to the

solution (144) and the functionals u( ") entering into egs. (117), (121),
(144) and (139) in the following form

2 2n-+1
D;n = epé’_n—f—l? ul(c? = €u]£+14_-7 ) (145)

defining a new fermionic evolution derivative Dj,,, and functionals

Uk2]"+1). Then the fermionic constant e enters linearly into both sides of
egs. (117), (121), (144) and (139) which now become

1) 2n
D;‘t+1 In Di’_F u2(72:l-41- 25 Z/{2(n-+--’1~12)‘7 1
1) 2n+1

n+1,2(j-1)°
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(2n+1) (2n+1) +1)
Dyt ™ = vo U5y — vo s kpanssthy

- 'Uldukznl—zl)l + ( 1) 'Ul,] k+2n+2uk 1_‘;1), (147)
and
{Df, Dhn}=1[D;, D}l =0, (149)

respectively. From these equations we see that the fermionic flows D3, 41
actually do not depend on e and anticommute (commute) with the
fermionic (bosonic) derivative Df (D) (149) entering into the N = (0]2)
2DTL equation (127); so Dj.,,; form fermionic symmetries of the latter.

Now, let us establish the algebra of the fermionic symmetries D3, ,,
(146-148).

First using eqs. (146) and (149) we calculate the fermionic symmetry
Df

DY F; = —-D{F;, D}F;= D;yF; (150)
and its algebra
{Df , D} =—{Df, Df}=-2D5. (151)

Then, we use eqs. (150) in order to replace Di” by D in the expressions for
both the bosonic Dj;, (117-118) and fermionic Dj, ,; (146-148) symmetries
transforming them into the new basis

plen+l) . ck(—1)<’“+1)(j+1>u,§?;7+“, g . e l)k]u(m)

k,j kg - kg o
v,(c";) = (—1)’“17,(973), Con = Cont1 = (—1)7,
D2n+1 = C2n+1D;n+1; D;;L = chD;n’ D2_n = D2—n (152)

which is defined by a single requirement that the form of the symmetries
in this basis is as close as possible to the form of the flows D} and D;,
(117-118) of the N = (0|2) 2DTL hierarchy whose algebra (93) is known.
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In the new basis (152) the symmetries D, ,, (146-148) and D, (117-118)
as well as the algebra (151) become

St BEE. o) ()
Dn In Dl Fj = Up,25 — Up2j-1,

Nin DR — 7™ =(n)
A—nn) _ =0 ~(n)
Dy, 5 = Vo,jUk—2,j—2 — V0,j—k+n+2Uk "2 ;

+ (=) o807 5+ (1P,

ar =1, aE =y, (153)
and
132_71 In ZA)IL—F—J = —17%),2;‘ + 175?32]'—1,
ﬁz—n In ﬁer = _ﬁ§232j—1 + ﬁéz),z(j_l)’
DIOyy = g jun + (— 1) giaamdiy BT =1 (154)
as well as

{DT , Df} = 207, (155)
respectively, where

g2j-1 = —ﬁfFj’ goj = +ﬁfLFj»

vo,2j+1 = 0, vo,25 = — (DY F;)D{ F,

vip; = FyDIF;,  wig1 = —(Df Fy)F;. (156)
The relations (153-156) completely reproduce the corresponding relations
(117-118), (121-122), (151), (116) and (123) for the flows of the N = (0|2)
2DTL hierarchy where, however, the evolution derivatives Dy, and Dj, 1
are replaced by ﬁ;tn and ﬁ{n 41, respectively. Therefore, one can conclude
that the algebra of the evolution derivatives D, and 23;,1 +1 have also to
reproduce the algebra of the evolution derivatives Dy, and D3, ; (93).

Thus, we are led to the following formulae for both this algebra and the
algebras (139), (149) as well as (151) transformed to the basis (152)

{Di‘rv D;}:O» {Dil_’ Di‘-}=—2ﬁ;‘,
{Di‘- ’ Dzin] = {DT ) D;n-H} = {D2- ) Dg:n] = [D; ) D;-n+1} = 07
[D: ) Dg;] = [D2_n ’ Dz_l] = O’ {’D;n+1 ’ D;;+1} = 2'D;-(n+l+1)‘ (157)
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The symmetries D3, (146-148) of the N = (2|2) 2DTL equation (127) -
are actually also symmetries of all the bosonic flows D3 (117-118) of the
N = (2|2) 2DTL hierarchy because of the commutation relations

[D;n+1 ) Dzit] =0 (158)

following from the algebra (157) and relations (152).

The existence of the fermionic symmetries D3, ; (146-148) creates a
new interesting problem of constructing both additional evolution equa-
tions for the Lax operators L* (91) generated by Dy, and commutation
relations between the latter and the fermionic flows D3, ., (117) of the
N = (0]2) 2DTL hierarchy. We hope to return to this problem in future.

To close this section, let us point out that the N = (0|2) supersymmetry
and N = (0]2) superfield formulation of both the N = (0/2) 2DTL equation
(127) and the bosonic flows D3 (117-118) of the N = (0|2) 2DTL hierarchy
can easily be uncovered from the approach and formulae of this subsection.
In order to see that, it is enough only to introduce a new, N = 2 basis
{Dy, D.} in the space of the fermionic evolution derivatives {Dj, Dj},
namely:

1 — 1
D, = §(DT +Df), Dy:= §(Dfr - DY) (159)
which form the algebra of the N = 2 supersymmetry
D? =D =0, {D,,D,}=0,, (160)

where we have introduced the notation (Di)? = 85 := .. Then, relations
(150) become

D.F;=0, D,F;=0 (161)

and have the form of the N = (0|2) chirality constraints for the chiral and
antichiral N = (0|2) superfields F; and Fj, respectively. For illustration,
we present the N = (0|2) 2DTL equation (135) and the supersymmetric
generalization of the Davey-Stewartson equation (129) identically rewritten
to this basis

0-In((D+Fj41)(D4yF)) = —FjF; + FyyFin (162)
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and
D Fy = 0% F; + 2D, (D1 Fj)d=' 0, (F;Fy)),
D{F; = +07F; + 2D, ((D4F;)0- 0, (F;Fy)), (163)

respectively which possess both manifest N = (0|2) supersymmetry and
= (0]2) superfield form.

5 Generalizations

In this section, we briefly describe generalizations of the supersymmetric
= (0]2) 2DTL hierarchy discussed in the preceding section.

We propose the following set of the consistent operator equations:

DILY = (=1)M((L*)1)4) LY = (L) ™ (L))
+ (1= (=",
DyL™ = ((L*))+L™ - (L (L)),
Doy LT = ((L7)™)- ) — (LHL)™)-,
Dopn L™ = [((L7)™)-, ] n €N, (164)
+t = i up e LT = i vy, jek=2MIP (165)
k=0 k=0

Ug,; = 1, Vo,2Mj+1 = 0, Vo,2Mj+a 7é 0, a = 2, 3, ey 2M (166)

generating the non-abelian algebra of the flows

[D:a D2_Ml]=[ 2n 2l _[D2Mnﬂ D2Ml]_0
{D;n-i-l ) D;}_H} - 2D2(n+l+1) (167)

which may be realized in the superspace {t}, 5./, }
n o0
D = Oagns Dy = Oy + Ztg'lqaz-?kﬂ), (168)
=1
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where M € N is a fixed number and t3, ,%5, (t4,.1) are bosonic -
(fermionic) evolution times. At M = 1 eqs. (164-168) reproduce the
Lax pair representation of the N = (0|2) 2DTL hierarchy.

At different values M equations (164-168) generate non-equivalent su-
persymmetric hierarchies. Nevertheless, any hierarchy with M = M; can
be produced by reduction of the hierarchy with M = nM; (n € N) if
the latter is provided by the following additional reduction constraints:
vo.2m;j+1 = 0 which are obviously consistent with the original constraints
Vo,2nMj+1 = 0 entering into the definition (166) of the latter hierarchy.

A detailed analysis of the generalizations proposed here is under way.

6 Conclusion

In this paper, we have clarified the origin of fermionic and bosonic solu-
tions [1, 2, 3] to the symmetry equations corresponding to the 2DTL and
N = (2/2) supersymmetric 2DTL equations and established the algebras
of the corresponding symmetries. As a byproduct we have also proved the
conjecture, proposed in [16], regarding an N = (2|2) superfield formulation
of the STL hierarchy. Then, we have proposed the new, N = (0|2) super-
symmetric 2DTL hierarchy. Furthermore, we have constructed bosonic
and fermionic symmetries of the N = (0|2) 2DTL equation belonging the
hierarchy and their algebra to our knowledge for the first time. We have
also discussed an N = (0|2) superfield formulation of the N = (0/2) 2DTL
hierarchy. Finally, we have generalized the approach developed for the
case of the N = (0|2) 2DTL hierarchy and proposed an infinite class of
new supersymmetric Toda type hierarchies.
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Kappnmesckuit B.I'., Copun A.C. E2-2000-270
CynepcuMMeTpUYHbIE peleToYHble Hepapxuu Tomsl

YCTaHOBNIEHO IPOMCXOXACHHUE ITOCTPOESHHBIX B [1,2,3] 6030HHBIX U (hepMHOH-
HbIX pEIUCHUH ypaBHEHMI CHMMETDHIi, COOTBETCTBYIOLIMX AByMEPHbIM GO30HHOM
u N =(212) cynepcuMMeTpuyHOM peuieTkaM Tofpl, 1 NOMydeHbl areOphbl COOTBET-
CTBYIOIUMX CHMMeTpHii. Jloka3aHa BeIIBUHYyTas B pabore [16] rumoresa oTHOCH-
tensHO N =(212) cynepnonepoit opmymuposku N =(212) cynepcuMMeTpU4HON
pewerouHoit uepapxuu Tomsl. Ilpemnoxena nsymepHas N =(012) cynepcumme-
Tpu4Has perueroyHas uepapxusd Tomel u obcyxneHa ee N =(012) cynepnonesas
topmynuposka. IToctpoeHs! 6030HHBIE U (DePMUOHHBIE PEIICHUS YPABHEHHS CHM-
MerpuH, cootsercTylomero N =(012) cynepcuMMETpHYHOMY PEIIETOYHOMY YpaB-
Henuo Tomsl, u ux anrebpa. O6cyxneH 6eCKOHEYHbI KJIacC HOBBIX HIBYMEPHbIX
CYIepCUMMETPUYHBIX ME€PapXUil TOXOBCKOTO THUIIA.

Pa6ora BrmonHena B Jlabopatopuun teoperuyeckod ¢usuku um. H.H.Boro-
mo6osa OUSIN.

Ipenpunt OGBEXNHEHHOTO HHCTHTYTA SNEPHBIX HccnenoBanuid. dybHa, 2000

Kadyshevsky V.G., Sorin A.S. E2-2000-270
Supersymmetric Toda Lattice Hierarchies

The origin of the bosonic and fermionic solutions, constructed in [1,2,3],
to the symmetry equations corresponding to the two-dimensional bosonic and
N =(212) supersymmetric Toda lattices is established, and algebras of the corre-
sponding symmetries are derived. The conjecture regarding an N =(212) super-
field formulation of the N =(212) supersymmetric Toda lattice hierarchy, proposed
in [16], is proved. The two-dimensional N =(012) supersymmetric Toda lattice hi-
erarchy is proposed and its N =(012) superfield formulation is discussed. Bosonic
and fermionic solutions to the symmetry equation corresponding to the two-di-
mensional N =(012) supersymmetric Toda lattice equation and their algebra are
constructed. An infinite class of new two-dimensional supersymmetric Toda-type
hierarchies is discussed.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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