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1 Introduction

The item of the low energy behavior of a strong interaction attracts more
and more interest along with the further experimental data accumulation.
In the perturbative quantum chromodynamics (pQCD) this behavior is
spoiled by unphysical singularities associated with the scale parameter
A =~ 300 MeV. In the “small energy” and “small momentum transfer”
regions (/s, @ < 3A) these singularities violate the weak coupling regime
and complicate theoretical interpretation of data. On the other hand, their
existence contradicts some general statements of the local QFT.

Meanwhile, this issue has a rather elegant solution. As it has recently
been shown [1, 2] (see, also recent review [3]), by combining spectral rep-
resentations of Kallen-Lehmann — and Jost-Lehmann-Dyson — type
(which follows from general principles of local QFT like causality, uni-
tarity, Poincaré invariance and spectrality) with renormalizability (that is
with renormalization-group invariance), it is possible to formulate an In-
variant Analytic Approach (IAA) for invariant coupling and observables of
pQCD which obeys several remarkable properties:

— It enables one to get rid of unphysical singularities, poles and cuts,
producing smooth expressions with the behavior correlated in spacelike
and timelike domains.

— In particular, the IAA results in modified ghost-free expressions
for invariant QCD coupling in spacelike a.n(Q?) and timelike &(s) re-
gions which obey reduced higher-loops and renormalization-scheme sensi-
tivity [2] - [8].

— Then, it yields changing the structure of perturbation expansion for
observables — instead of common power series, as a result of its integral
transformation, there appears asymptotic series [9] @ la Erdélyi over the
set of oscillating functions Ax(Q?) and RAx(s). These functions, at small
and moderate argument values, diminish with the k£ growth much quicker
than the corresponding powers of (Q?) and G*(s), thus improving the
expansion convergence.

1.1 Early attempts: pluses and minuses

It is worth noting that sporadic attempts to define the effective coupling
a(s) in the timelike domain were made in late 70s. Omitting an early



simple-minded trick with “mirror reflection”

as(Q% f) = a(s; f) = |as(—s; f)],

we mention here the practically simultaneous results of Radyushkin [10]
and Krasnikov and Pivovarov [11]. In both the papers, the integral trans-
formation &(s; f) = R[a,(Q% f)] reverse to “dipole representation” for the
Adler function R = D!

D@ =L [* L k) =D (i) )
= — ————R(s) = s
m Jo (s+Q?)?
in terms of an observable R(s) in the timelike region has been used.
In [10, 11], as a starting point for observables in the spacelike domain
Q? > 0, the perturbation series

Dt(Q%) = 14> diak(Q% f) (2)

k>1

has been assumed. It contains powers of usual, RG summed, invariant
coupling a,(Q?; f) that obeys unphysical singularities in the infrared (IR)
region around Q2 ~ A3,

By using the reverse transformation

i s+ie P
R(s) / d? Dpi(=2) =R [Dpt(Qz)] (3)

2m —1e

these authors arrived at the “R-transformed” expansion that, in our no-
tation, reads

Ro(s) =1+ Y difli(si )5 We(s; f) = R [G5(Q% )] - (4)
k>1

For example, one has!

1] 1 1 Ly L _ s\
R{l—;:l—§—;arctan7, lf—ln/—\?, Lf—ln(A—}),

IFor the first of these expressions we use the form equivalent to that one first found
in [12]. In old papers [10, 13] it was given in another form, nonadequate at Ly <0.
Quite recently, these expressions were rediscovered [14] without proper reference to the
precursors.
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[ L% 4 w2
At the two-loop case with By = (33 — 2f)/127, B = (102 — 38f)/12m,
]. h]lf /j
B[f]a (Q f)= 1—2, ﬂ[f]E/BO?b:_;a
f f 0

by combining R [1/{;] — bR[Inl;/I3] we obtain explicit expression for

Bina(s; f) = Bo AP (s; ).

Higher terms 2l could be explicitely constucted in the analogous way.
Here the iterative relation

kR [1/15%1] = ——R [1/15]

turns out to be useful.

The positive feature of this construction was an automatic summation
of the so—called “m? - terms” and observed [10] property

(R[af]) ) < (R [a])

that improves the convergence of perturbation series.

However, there was one essential drawback. The dipole transformation
(1), that is supposed to be reverse to R, being applied to (4) does not
return us to the input (2)

D {f(s)} = DAR[Dpl} # Dp(Q®) = D -R#I,

as far as the unphysical singularities of &,(Q?; f) and of its powers are
incompatible with analytic properties in the complex Q? plane of the
integral in the r.h.s. of (1).

Resolution of this issue came 15 years later with the IAA. The “missing
link” is the

1.2 Analyticization transformation

F(Q%) = Fan(Q) = A F(Q%) (5)



first introduced [1] in terms of the Kéllén-Lehmann representation that fol-
lows from general statements of local QFT and reflects analytic properties
of the Adler function contained in eq.(1).

Generally, this transformation is defined for a function F' that should
be analytic in the @* complex plane with a cut along the negative part of
the real axis. In our case, this function could be either invariant coupling
&, itself ? or its power, or some series in its powers.

Operation A consists of two elements

o0

. do
Ful@) =1 [ =g omlo) ad o) =S P-0). (6

™
0

A couple of comments are in order.

e Operation A, being applied to the usual coupling® F = a,(Q?; f),
results in the analyticized coupling

Ooda
ol @if) = 1 [ ZEmeleil); ploif) = Sa(-of) (1)

free of unphysical singularities, with a finite value at the origin
aan(0; f) = 1/By = 1.4

which is remarkably independent of higher loop contributions.
Here, p is defined as an imaginary part of the usual, RG invariant,

effective coupling a, continued on the physical cut.

e Operation A, applied to power perturbation series (2) for an observ-
able Dp(Q?) produces, a nonpower perturbation series

Dan(@% ) =14 Y de A(Q% )5 can(Q%f) = AQ% ) (8)

k>1

2As it has been explained in detail in the first papers [1, 2] on the IAA, the QCD
invariant coupling, according to general properties of local QFT, should satisfy the
Kallén-Lehmann spectral representation.

3For the time being, we consider the massless case with a fixed number [ of effective
quark flavours in the MS scheme. For the transition between the regions with different
f values, see Section 2.3.



with
o0

e )=+ [ ST mloi )i poi ) =S [a -0 n] . )

0

Properties of the functions Aj and nonpower expansion (8) have been
discussed in papers [9]. They are quite similar to those for 2l and expan-
sion (4) — see below.

1.3 Summary of the IAA

Here, we repeat in brief basic definitions of the Invariant Analytic Ap-
proach.
First, one has to transform the usual singular invariant coupling

O75(622; ]L) — aan(Q2; f) = A : ds(Qza f)
into the analyticized one, free of ghost singularities in the spacelike region.
Second, with the help of the operation R, one defines[12] invariant
coupling &(s; f) in the timelike domain

aan(Q2§ f)— d(SE f) =R [O‘an} = / %zp(o':/ f)

S

Here, we have a possibility of reconstructing the Q*-channel coupling
Qan(Q?; f) from the s—channel one &(s; f) by the dipole representation

% —Q—Z OO_CZS a(s; f) = a(s; '
ow(@if) = % [ —ma(ss) =Dl Y. (0)

As it has been shown in [2, 3, 4], relations parallel to eqs.(7) and (10)
are valid for powers of the pQCD invariant coupling. This can be resumed
in the form of a self-consistent scheme.

2 Basic relations

2.1 Self-consistent scheme for observables.

First, one has to transform usual power perturbation series (2) of the (?
domain

L DplQ) — Dan(Q*) = A - Dpi(Q?)
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into the nonpower one (8).
Second, with the help of the operation R,

IL  Dan(Q?) — Re(s) = R [Dan(Q%)]

one introduces the s—channel nonpower expansion R.(s) (4) and

As) = [ Zouo)s pilo) = S[at(o)] (11)

S

The third element is the closure of the scheme that is provided by the
operation (10)

I1L. R:(3) = Dan(Q%) = D {R,(s)}

reverse to II.

In other words, to enjoy self-consistency R-D = D-R = 1, one has to
abandon completely the usual power series D, , eq.(2), applying operations
R and D = R! only to nonpower expansions D,, and R, .

2.2 Expansion of observables over nonpower sets

Nonpower sets of the functions {4} and {A}. To realize the effect of tran-
sition from expansion over the “traditional” power set

_k _ . K
{a5(@Y)} = a(@Q?), a2, ...ab ...
to expansions over non—power sets in the spacelike and timelike domains

{AQM)} = can(@?), A2Q%), As... 5 {2i(s)} = &(s), An(s), As... ,

it 1s instructive to learn properties of the latters.

In a sense, both nonpower sets are similar:

— They consist of functions that are free of unphysical singularities.

— The first functions, the new effective couplings, A; = v, and A, =
& are monotonously decreasing. They are finite and equal @,,(0) = &(0) =
1.4 with the same infinite derivatives in the IR limit. Both have the same
leading term ~ 1/Ina in the UV limit.



— All other functions (“effective coupling powers”) of both the sets
start from the zero IR values A;>,(0) = i>2(0) = 0 and obey the UV
behavior ~ 1/(Inz)* corresponding to a*(z). They are no longer monoto-
nous. The second functions A; and 2, are positive with maximum around
s5,Q* ~ A%, Higher functions A>3 and k>3 oscillate in the region of low
argument values and obey precisely k — 2 zeroes.

Remarkably enough, the mechanism of liberation of ghost singularities
is quite different. While in the spacelike domain it involves nonpertur-
bative, power in @*, structures, in the timelike region, it is based only
upon resummation of the “r* terms”. Figuratively, (nonperturbative) an-
alyticization in the Q*~channel can be treated as a quantitavely distorted
reflection (under @* — s = —Q?) of (perturbative) “pipization” in the
s—channel.

Nonpower expansions for observables. Summarise the main results es-
sential for data analysis. Instead of the power perturbative series in the
spacelike

Dpe(@%) = 14 dpi(Q%) 5 dpi(Q*) =Y di65(Q% f) (2a)

k>1

and timelike regions

T3
Rpi(s) = 1+ rpe(s); mpe(s) = ZT’k &k(s; )i (e =dig,rs =ds— %)

k>1

)

one has to use asymptotic expansions

dan(Q) =Y de A(QY)5 ral(s) = Y di Us(s)

k>1 k>1

with the same coefficients d; over nonpower sets of functions { A} and {}.

2.3 Global formulation

To apply the new scheme for analysis of QCD processes, one has to formu-
late it “globally”, in the whole experimental domain, i.e., for regions with
different values of a number f of active quarks. For this goal, we revise
the issue of the threshold crossing.



Threshold matching. In areal calculation, the procedure of the threshold
matching is in use. One of the simplest is the matching condition in the
massless MS scheme

a,(Q* = M7 f —1) = a,(Q* = M}; f) (12)

related* to the mass squared M? of the f-th quark.
This condition allows one to define a function &,(Q?) which consists
of the smooth parts

a,(Q%) = a,(Q% f) at M}, <Q*< M} (13)

and is continuous in the whole spacelike interval of positive @Q? values
with discontinuity of derivatives at the matching points. We call it the
spline—continuous function.

At first sight, any massless matching, yielding the spline-type function,
violates the analyticity in the Q* variable, thus disturbing the relation
between the s— and Q% -channels®.

However, in the IAA, the original power perturbation series (2) with
its unphysical singularities and possible threshold nonanalyticity has no
direct relation to data, being a sort of a “raw material” for defining spectral
density. Meanwhile, the discontinuous density is not dangerous. Indeed,
expression of the form

pe(0) = pe(033) + > 0(c — MP) {pe(o; f) — pe(0:3)}  (14)

f24
with pp(o; f) = S@¥(—o, f) defines, according to (9) and (11), the smooth
global

do
o+

Ak(Qg) = /

0

~ Pi(0) (15)

4The matching point in the MS scheme is just M? | instead of a “more natural”
(mirror reflection of) threshold value 4M?.

5Any massless scheme is an approximation that can be controlled by the related
mass—dependent scheme [15]. Using such a scheme, one can devise [16] a smooth transi-
tion across the heavy quark threshold. Nethertheless, from the practical point of view,
it is sufficient (besides the case of data lying in close vicinity of the threshold) to use
the spline-type matching (12) and forget about the smooth threshold crossing.



and spline—continuous

mw:/@mm (16)

g
s

functions ©.

This means that the role of the input perturbative invariant coupling
&s(Q?) is twofold. It provides us not only with spectral density (14) but
with matching conditions relating Ay with Ay, as well.

Note that the matching condition (12) is tightly related [17, 16] to
the renormalization procedure. Just for this profound reason we keep it
untouched (compare with Ref. [6]).

Shift constants. As a practical result, we now observe that the “global”
s—channel coupling &(s) and other functions x(s), generally, differs of
effective coupling with fixed flavour number f value &(s; f) and Ax(s; f)
by a constants. For example, at M2 < s < M¢

2
o0 MG

do do T do
ats) = [ Zoto) = [ Totois) + [ Toti0) = a(si5) +c(5).
s s Mz
Generally,
a(s) =a(s; f) +c(f) at M} <s< Mji, (17)

which can be easily calculated in terms of integrals over p(o; f+n) n > 1
with additional reservation related to the asymptotic freedom condition.
More specifically,

c(6) =0, of—1)=a(M};f)—a(Mf;f—1)+c(f).

These shift constants reflect the &(s) continuity at the matching points
Analogous shift constants

Ar(s) = An(s; f) +al(f) at M} <s< Mj, (18)

are responsible for continuity of higher expansion functions. In particular,
¢2(f) describes the discontinuities of the “main” spectral function (14).

Here, by eqgs.(13),(15) and (16) we introduced new “global” effective couplings and
higher functions different from the previous ones with fixed f value.

9



The one-loop estimate with Biaplo; f) = {an(U/Af,) + 7r2}—1 ,
1 s 1 T 17— f

arctan - arctan — ag(M3)
i In ¥ By In L 54
7 71

Cf_1 — Cf =

and traditional values of the scale parameter Az, Ay ~ 300 — 250 MeV
reveals that these constants ¢(5) ~ 3.10-4 poc(4) >~ 3.107%; ¢(3) ~
0.01, c2(4) =~ 0.02 and ¢;(3) ~ —0.02 are essential at a few per cent
level for & and at ca 10% level for the Ay .

At the same time, if one takes into account some increasing in A,,
values due to the nonpower structure of the modified IAA expansion (see,
the following section), then the shift constant ¢(3) could reach the level of
0.02. This means that the quantitative analysis of all s—channel events at
moderate energies like, e.g., e*e~ annihilation (3], 7-lepton decay [4] and
charmonium width [11] should be influenced by these constants.

The spacelike region. On the other hand, in the Q?-channel, instead of
the spline-type function a5(Q?), eq.(13), we have now continuous, analytic
in the whole Q% > 0 domain, invariant coupling a,,(Q?) defined via the
spectral integral

(@)= - [ = pfo) (19)

with the discontinuous density p(o) (14).

Unhappily, here, unlike for the timelike region, there is no possibility
of enjoying any more explicit expressions for @an(@?) even in the one-loop
case. Moreover, the ()?—channel functions a,, and Ay , being considered
in the particular region M;_ , <@*< M? , do depend on all Az, ..., Ag
values simultaneously.

Nevertheless, the real difference from the f =3 case, numerially, is not
big and, for practical reasons, one can use an approximate formula’

ME +Q?

a r 2 . ¢
A" (Q%) = @an(Q?;3) 4 0.021n MEE 07 (20)

valid in the whole Q? domain.

"This and some other numerical estimates are based upon analytic calculation with
exact two-loop solution expressed in terms of the Lambert function — see refs.[22,
23, 24]. Details of these calculations will be published elswhere. The assistance of D.S.
Kurashev, B. Magradze and A.V. Nesterenko in calculations with the Lambert functions
is gratefully acknowledged.
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3 Correlation of experiments

Another quantitative effect stems from the nonpower structure of the IAA
perturbative expansion. It is more emphasized at the few GeV region.

3.1 The s—channel

To illustrate the qualitative difference between our global scheme and usual
practice of data analysis, we first consider the f = 3 region.

Inclusive 7 decay. The IAA scheme was used in Ref. [4] for analysis of
the inclusive 7-decay. Here, the observed quantity, the 7 lepton time of
half-decay, depends on the integral of the s—channel matrix element over
the region 0 < s < M2. As a result of the 2-loop TAA analysis of the
experimental input R, = 3.633 [18], the value & (M?) = 0.378 has been

obtained that has to be compared with related result of usual analysis
&ﬁ?’)(Mf) = 0.337. This shift Aa ~ 0.04 resulted in a rather big change
in the extracted A value. Meanwhile, an essential part of this shift can be
“absorbed” by the shift constant ¢(3) ~ 0.01 — 0.02.

The process of Inclusive e*e~ hadron annihilation provides us with an
important piece of information on the QCD parameters. In the usual
treatment, (see, e.g., Refs.[18, 19]) the basic relation looks like

R(s) , _ as(s)
Ro = L+r(s); r(s)= -

+ 1y 073(5) + rs &f(s) ) (21)

Here, the numerical coefficients r; = I/m = 0318, ry = 0.142, r; =
—0.413 (related to the f = 5 case) are not diminishing. However, a rather
big negative r3 value comes mainly from the —r17r2,8[24]/3 contribution equal
to —0.456. Instead of (21), with due account of (4), we now have

r(s) =1+ éﬁri) + da RAy(s) + ds Az(s) ; (22)

with rapidly decreasing coefficients d; = 0.318; dy = 0.142; dy = 0.043,
the mentioned 72 term of ¢; being “swallowed” by a(s).

Now, the main difference of the last expression from (21) is due to
the term d, A, standing in the place of dy &2, The difference can be
approximated by adding into (21) the structure c; a* with cq = dy ﬂ[i]ﬂ'Q ~
—0.62. This effect could be essential in the region of &(s) ~ 0.20 — 0.25.

11



3.2 The Q?-channel
The Q*-channel: Bjorken and GLS sum rules. In the paper [5], the TAA

has been applied to the Bjorken sum rules. Here, one has to deal with
the @*~channel at small transfer momentum squared * < 10GeV?. Due
to some controversy of experimental data, we give here only a part of
the results of [5]. TFor instance, using data of the SMC Collaboration
[20] for QF = 10 GeV? the authors obtained a;@(@é) = 0.301 instead of
al(Q2) = 0.275.

In the Q?-channel, instead of power expansion like (2), we typically

have )
Qan(Q?)
T

d(Q*) = +d Ay (Q%) + ds A3(Q%) . (23)

Here, the modification is related to nonperturbative power structures be-
having like A%2/Q? at Q? > A%. These corrections are essential only in a
few GeV region. To estimate the effect of transition from a.n(Q?; f) to our
global aan(Q?) defined by eq.(19), we use the approximation (20). This
gives Aa = aan(QF) — aan(Q2;3) = 0.02.

The same comment could be made with respect to analysis of the
Gross-Llywellin-Smith sum rules of [7].

Some lessons. Few comments are in order:

o We see that, generally, the extracted values of Qan and of & are both
slightly greater (by about 10 % in a few GeV region) than the relevant
values of @&, for the same experimental input. This corresponds to the
above-mentioned nonpower character of new asymptotic expansions
with a suppressed higher-loop contribution.

e At the same time, for equal values of ®an(T4) = G&(7.) = a,(z.), the
analytic scale parameter Aan values extracted from Qan and & are
a bit greater than that one taken from @;. This feature is related to
a “smoother” behavior of both the regular functions a,, and & as
compared to the singular .

3.3 Conclusion

'To summarize, we repeat once more our majn points.

12



e We have discussed the self-consistent scheme for analysing data both
in the spacelike and timelike regions. The fundamental equation con-
necting these regions is the dipole spectral relation (1) between renor-
malization-group invariant nonpower expansions Dan(Q?) and R, (s).

Just this equation (1), equivalent to the Killen-Lehmann represen-
tation, is responsible for nonperturbative terms in the Q?-channel
involved into nonpower expansion functions {Ak(s)}. These terms,
nonanalytic in the coupling constant &, are a counterpart to the per-
fectly perturbative m2-terms effectively summed in the s—channel
expressions {2 (s)}.

An operant algorithm is based upon the Kallen-Lehmann spectral
density p(o) (14) for an invariant coupling and nonpower expansion
for an observable.

¢ The second issue relates to the correlation between regions with dif-
ferent values of the effective flavour number f. Dealing with the
massless MS renormalization scheme, we argue that the usual pertur-
bative QCD expansion provides our scheme with step-discontinuous
spectral density (14) depending simultaneously on different scale pa-
rameters Ay; f =3,4,5 connected by usual matching relations.

This step-discontinuous spectral density yields, on the one hand,
smooth analytic coupling @a,(Q?) and higher functions Ai(Q?) in the
spacelike region — eq.(15). On the other hand, it produces the spline—
continuous invariant coupling &(s) and expansion functions {RAk(s)} in
the time-like region. — eq.(16).

As aresult, our “global” expansion functions {AL(Q%)} and {RAx(s)}
differ from the corresponding ones {AQ% 1)}, {i(s; )} with a

fixed value of a flavour number.

e Thus, our global self-consistent scheme uses the popular perturba-
tive invariant coupling a,(Q?2, f), together with the usual matching
relations, only as an input. Practical calculation for an observable
now involves expansions over the sets {AK(Q*)} and {Ay(s)}, that
Is nonpower series with usual numerical coefficients dy obtained by
calculation of the relevant Feynman diagrams.

® This means that, generally, one should check the accuracy of the
bulk of extractions of the QCD parameters from diverse experimental

13



data. Our preliminary estimate shows that such a revision could
influence the rate of their corellation.
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IIupkos 1.B. E2-2000-46
K xoppenuposanHOMy aHa1u3y HabnomaeMbix nepTyp6atuBHOH KX]T

KoMOuHauus npuema ¢ NOACYMMHPOBAHHEM T°-UIEHOB B WHBAPMAHTHOM
cyHkuuy cBsa3u M Habmonaembix KXJI Bo BpeMeHU-Mono6GHOI 061aCTH CO CBEXH-
MH pe3y/IbTaTaMH 110 «aHATUHTH3HPOBAHHBIM» o, (Q?) 1 Hab/II0IAEMBIM B IPOCTpPaH-
CTBEHHO-NMOROOHOH 0GJIaCTH NMPUBONUT X CAMOCOMIACOBAHHOM cXxeMe, CBOGOAHOM
OT He(U3HYECKUX CHHIyIspHOcTeil. LleHTpanbHbIM MeCTOM 3TOH  eIMHOIM
KOHCTPYKLIMH SBJISETCS «IUNOJIBHOE CIIEKTPATbHOE NPEACTABICHUES», BBITEKAIOLIEE
u3 akchom nokansHo KTIL

Mb1 paccMaTpuBaeM BOIPOC O MOPOrax TSXeENbIX KBapKoB U (hOpPMYNTHpYeEM
MOAMGULHMPOBAHHYIO DIOCATBHYIO CXeMY IUIS aHaIM3a OMBITHBIX JaHHBIX BO BCEX
JNOCTYIIHBIX NPOCTPAHCTBEHHO- U BPEMEHHU-NOR0OHBIX obnactsax. Takue naHHbie
IPeCTaB/SI0TCA B (POPME HECTEIIEHHBIX Pa3IOXEHUH ¢ YTydYlleHHbIMH CBOMCTBA-
MH CXOIUMOCTH.

IpenBapurenpHble YUCICHHBIE OLIEHKM MOKA3bIBAIOT, YTO HOBas robGaibHasd
cXeMa NpHBOIMT K PE3y/bTaTaM, KOTOpble — Ha YPOBHE HECKOJIBKHMX IPOLIEHTOB
A4 Os — MOIYT OTJIMYAThC OT OOBIYHBIX, MOOUGULIMPYS TaKuM 06pa3oM oOiiyto
KapTUHY Koppensuuu napameTpoB KX]I.

Pa6ora BemmonHeHa B Jlaboparopun teoperuueckoit ¢usuxku uM. H.H.Boro-
mobosa OMSN.

IMpenpunt O6BeOMHEHHOrO MHCTHTYTA SAEepHBIX HecnenoBanuid. HyGua, 2000

Shirkov D.V. E2-2000-46
Towards the Correlated Analysis of Perturbative QCD Observables

Combining the trick of resummation of the n*-terms for the invariant QCD
coupling and observables in the timelike region with fresh results on the «analyti-
cized» a,,(Q?% and observables in the spacelike domain yields a self-consistent
scheme, free of ghost troubles. The basic point of this joint construction is the «di-
pole spectral relation» emerging from axioms of local QFT.

We consider the issue of the heavy quark thresholds and devise a modified
global IAA scheme for the experimental data analyses in the whole accessible
spacelike and timelike domain. Such data in both the regions are presented in a
form of nonpower perturbation series with improved convergence properties.

Preliminary numerical estimates indicate that this global IAA scheme produces
results a bit different — on a few per cent level for ooy — from the usual one, thus
influencing the total picture of the QCD parameters correlation.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2000
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