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Much can be understood, considering the gravitational theory on
the background of the Lobachevsky geometry. For example, it can be
understood why, despite all the achievements of relativistic theory of
gravitation, some shortcomings in this theory can also be found. It
can be understood also how one can remove these shortcomings.

As it is known, Einstein has set up all the achievements of the
relativistic theory of gravitation, replacing in the Newton theory the
gravitational potential U with the gravitational metrics g,,dz™dz",
and replacing the gravitational connection, given in the Newton the-
ory by the symbol gradU, by the relativistic gravitational connection,
expressed by the Christoffel symbol for the tensor gp,,.

It is true that because of such a replacement the energy density
of the gravitational field has turned out to depend on the choice of
coordinate map, and the reason for this is the loss of the background
connection. Without noticing this loss, the gravitationalists declared
that the energy of the gravitational field is non-localized, thus dam-
aging the relativistic theory of gravitation. From here come all the
shortcomings in the theory.

Seemingly, such a loss has been performed under milder circum-
stances, because in the Newton theory the background connection is
primitive. But here is an intricate and subtle danger: in some coor-
dinate maps all components of primitive connection equal zero, while
in other coordinate maps the components of the same connection are
not equal to zero. Therefore, it is more reliable to deal with a non-
primitive connection: the aggregate of its components does not equal
zero in all the coordinate maps.

The Lobachevsky model [1],[2] helps to restore the background
connection in the relativistic theory of gravitation. In this model the
background connection is non-primitive, but one can again return in
the framework of Einstein theory, keeping the restored background
connection. For the purpose one has to set up to infinity the charac-
teristic length for the Lobachevsky geometry. The restored connection
in this limit will be, as in Newton model, the primitive one.

As a result of the introduction of the Lobachevsky geometry in the
background connection, during the last years some difficult questions
in gravity theory become more clear. For example, the problem about
the choice of harmonical coordinates has been clarified. The situation



is analogous to the one, which Bogoliubov [3] has solved in statistical
mechanics by applying the method of quasi-average quantities. The
role, which in Bogoliubov’s method is played by the magnetic field, in
the current case is transferred to the length measure.

I have found the following method for the restored background
connection [4].

Let us denote by T'%, the gravitational connection, by 2 the
background connection and by Pg, = I'a — T their affine defor-
mation tensor.

And let us denote by R,,, the gravitational Ricci tensor, by R
the background Ricci tensor and by Sy, = Rmn—Rmn their difference.

According to the method, on that place, where (in the pseudoscalar
Lagrangian and in the energy-momentum pseudotensor) a geometrical
object with components (—I'%,,) stands, (according to Manoff [5], it
is called a covariant affine connection) we must put the tensor P2,
and also on the place, where (in the Einstein equations of gravity) the
tensor (—Rm»,) stands, we must put the tensor Spn.

In the new equations of the gravitational field

Smn - % S mn = _8:_47 an 3 S = gmnSmn y
the background connection is given, but the gravitational connection
is to be found.

In the region, where M,,, = 0, the new equations of gravitational
field take the form S,,, = 0.

The trivial solution I'},,, = f‘fnn means that the background con-
nection is the gravitational connection in its trivial form. In this case
there is no gravitational field.

The background connection is defined by the equations of motion
for a free particle.

The gravitational connection is defined by the equations of motion
for a particle in a gravitational field , when there are no any other
forces.

The condition of harmonicity for the background connection in
respect of the gravitational field has a form ®* = 0, where

®° = g™ P2, .



I have shown in my works [6], that any physical theory is founded
on the concept of velocity space and that the geometry of this space is
the Euclidean or the Lobachevsky one. In the first case the theory is
named nonrelativistic and in the second case it is named relativistic.
It is strange, of course, but it has been named in this way.

In the first case there is no characteristic measure of velocity. In the
second case there is such a measure. It equals the light velocity ¢. The
constant c is the analogue of the length measure k. The nonrelativistic
case we shall denote by ¢ = co. The relativistic case we shall denote
by ¢ < co.

The gravitational metrics may be transformed to the following sum

gmndmmdx” — flfl + f2f2 +f3f3 _ C2 f4f4,

where f™ are linear differential forms.
If the gravitational field is absent, we put

Imndz™dz" = gmpdz™dz™ = h,,dz"dz” — * dtdt ,

where h,, do not depend on z* = t.

The quadratic form h,,dz*dz” is either the metrics of the Euclid-
ean space in the Newton model (the case kK = o), or the metrics of
the Lobachevsky space in the Lobachevsky model (the case k < 00).

For the metrics h,,dz*dz” the components of the Christoffel con-
nection we shall denote by A%,

The Ricci tensor r,, for the connection A%, equals r,, = —k~2 h,,,
in the case k < 0 and it equals zero (r,, = 0) in the case k = oo.

It is interesting, that the background connection I' ¢ » does not de-
pend on the light velocity c. Consequently it refers to the Absolute
Geometry of Bolyai in velocity space. Indeed, the equations of geo-
desical lines in the case of the metrics h,, dz*dz” — ¢* dtdt , may be
written as a0 ¥ da¥ 2t

—+h,——=0, —=0.

dr? Wodr dr dr?
But in such a form the equations of motion for a particle may be
written if Lagrangian equals

L, detdat
2 M dt dt
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Consequently, both in the relativistic case and in the nonrelativistic
case 5 5 5 5 y

re, =he, ,Ie,=0,IF =0,5,=0,I7,=0.
Accordingly, both in the relativistic and in the nonrelativistic case the

background Ricci tensor equals
Ruy =7 s Rin=0, Rua=0.

Further we consider a star at rest with its planet. As coordinates
z!, 22 23 we choose the distance p from the star, the polar angle 0
and the azimuth ¢ on a sphere p = const ; the notation z* = t we will
preserve. With such a restriction we must solve the equations

Smn = 0.
1. The Newton Model: the Case (k = o0, ¢ = o).

According to Newton, the equations of motion for a planet are:

Lp _ dod) o pdédé  aMdtdt
a2~ Pardr oV dr p? drdr
20 2dpdd dg dg
Z73_|_;E:(—i;—s1n000st9E;E—0a
Lo 2dpds o pB0dp _ L
dr?* = pdrdr CVardr 0 drr T

Here 7 is the Newton’s constant, M is a mass of the star.

From here we find the gravitational connection I'?,,, in the Newton
model. If M = 0, it coincides with the background connection. In this
case all components of the affine deformation tensor equal zero except

vM
P414 = - _/;2'— )
which equals the force, with which the star attracts the planet’s unit
mass.

It is remarkable that the Newton gravitational connection with an

arbitrary constant yM is an exact solution of Einstein equations

R,,=0.



2. The Lobachevsky Model: the Case (k < o0, ¢ = 00).

In the Lobachevsky geometry the length of a circle of radius p
equals 2nr, and the area of a sphere of the same radius equals 4772,
where r = ksinh £. Because of it Lobachevsky has shown [1, c¢. 159]
that in the new model the force, with which the star attracts the
planet’s unit mass should equal

M
P414 - ,’n—2 .
The rest components of tensor P7, must be equal zero. The force of
attraction in the Lobachevsky model has potential [2], which equals

_IM G otn®
U= k(l cothk).

In order to find the background connection in the Lobachevsky
model we must write down the equations of motion for a particle in
the case when the Lagrangian equals

Ldpdp 1 ,d0d0 1 , ., dbdd
satat T2 @ma T3 MO

From these equations we receive

Il =—k sinh—Z— cosh% , Tl =TLsin%0,

2, =k coth £ = 2, D% =—sinfcosb,

k
%, =k coth% =13, I3, =cotd=1%,

the remaining components f“,‘nn being equal to zero.
The background Ricci tensor in the coordinates p, 8, ¢, t is a
diagonal one. Its diagonal elements are

Rll = —2k_2, R22 = —2k—27'2, é33 = *‘Qk_27‘2 SiIl2 9, I:’,M =0.

The Lobachevsky gravitational connection with an arbitrary con-
stant Y M is an exact solution of the equations

Ry = —2k%h,,, Ru=Ry =0, Ru=0.



3. The Einstein-Schwarzschild-Fock Model:
the Case (k = o0, ¢ < o).

The construction of this model began Einstein, and it was con-
tinued by Schwarzschild, and completed by Fock, who insisted on the
application of the harmonicity condition.

Schwarzschild has found the solution of the equations R,,, = 0,
proposed by Einstein, in the following form:

m g n 2,9, 20002 s 2 2 2 2.2
Imndz"dz™ = (1—2a/p) dp*“+p*(df*+sin® 0 d¢ )—(1—2a/p) c“dt”
where

M
o=
o2

is the gravitational radius of mass M, p > 0.
Fock has proposed to use p + a instead of p, in order to satisfy the
harmonicity condition

di(F-IVHZ) ~2FVp=0.
P

The gravitational metrics in this case equals

ptay, g 20702 | oin2 2 PN 252
rr- (= 12
( )dp + (p + @)*(d#* + sin® 8 d¢?) ( )cd

This metrics satisfies the equations R, = 0 also. (See [7, c. 263]).
In the general case of static spherical symmetric metrics

Gmndz™dz™ = F?dp? + H*(d6® + sin® 0d¢?) — V2dt?

the components ®2, ®3, &* of anharmonicity vector equal zero.
In regard to the radial component ®1, it depends on the choice of
the background connection. In the considered case it equals

1 d
1 f— —_
A TE [dp

(FT'VH?) —2F V)] .

As a consequence of the Fock harmonicity condition the radial com-
ponent ®' equals zero. But the Fock condition does not follow from
the Einstein equations.



4. The General Model: the Case (k < o0, ¢ < o).

In the case (k < 00, ¢ < co0) we must solve the following system
of the new equations of gravity:

2 .
R = T Ryy = —2sinh’ %s (1)
R33 =2 sinh2 %sin2 0, R44 = 0,

Rmnzo, 7/f m?‘:n

In the general case of a static spherical symmetric metrics all non-
diagonal components of the tensor R, equal to zero and the diagonal
components satisfy the following equation:

R33 = R22 sin2 0. (2)

Consequentiy we must solve the following system of three equations
only:
2 .12 P
R44 = 0, Rll = —ﬁ , Rgz = —QSlnh E . (3)
The three components of tensor R,,, being under consideration have
the following form:

V d/H*dV
e 2,
FH? dp\ F dp
H 22 _dH 1 d(FV) d°H
9 (R11+V F R44) - dp FV dp - dp2 ’ (4)
1 d /fVHdH
B =1- F—v%(Td—p) '

Therefore, we must solve the following system of equations for the
three functions F, H and V:

d (H?*dV

%(7%) =0, (5)
£H_H_aH 1 dEy) o
dp* k*  dp FV dp ’



d (VHdH 2p
dp(F dp)_FVCOSh?. (7)
We shall solve this system provided that
FV = C = const . (8)
If condition (8) is fulfilled, this system is transformed to the following
one: p v
P 2 —_— _
dp (H dp ) 0, )
d dzH H
@ 2 72\ — 2 2p
e (V H)—2C coshk. (11)
It follows from (9) and (10) that
dv? B? . Pt
o I H = Pksinh T (12)

where B2, P and p are integration constants. Therefore,

B’ coth P2

2 _
V? =N — 1 coth (13)

where N is one more constant of integration. Now, it follows from

(12) and (13) that

2 2 _ 2. PP 2 ptp P+ /3
V'H -(NP ksmh—k——B cosh —— ; )ksmh : (14)

Twice differentiating this function we receive

jp (v? H?) = 2NP* cosh 2(€ + €) — 2—st1nh2(§+§) (15)

where

A
il
>
Iy
Il
ol =¥

(16)



It follows from this result and from equation (11) that the constants
of integration must satisfy the following equations:

~ 2 A
NP?%cosh2¢ — %sinh% =C?,

2

. B A
NP?sinh 26 — Tcosh2§ =0.

It follows from here that

B% = C%sinh2f, NP?=(C?cosh2f. (17)
As a result, after substituting these values into Eq.(14) we get

V2 H? = C?k?sinh(¢ + €) sinh(¢ — §) . (18)

Now, taking into consideration (8) and (12), we get the gravitational
metrics in the following form:

F2dp? + H*(d6* + sin? 0d¢?) — V2dt* =

— p2i? [E—ld§2 + sinh?(€ + €)(d6? + sin® 0d¢2)] —C*pPtzdi?, (19)

where .
inh(é —
_ sinh(6—¢) | (20)
sinh(€ + £)
On large distances from the star the gravitational metrics must
approximate the background one, i.e.

(11

k?d€* + k* sinh? € (d6? + sin® 0d¢?) — 2dt? . (21)
It follows from this that
C=c, P= exp(—é) . (22)

Taking into consideration the nonrelativistic limit we get

1. : YM  «



The background metrics (21) is the zero approximation to the
gravitational one. The first approximation is

k*d¢® + k* sinh? £ (d6? + sin® 0d¢?) — (c* + 2U)dt? , (24)
the second approximation is

k*d€? + k* sinh?® £ (d6* + sin® 8d¢?) — *dt*—

~ 2 [dg 4 K sinh? € (a0° 4+ sin® 0d6) + 7], (25)
where M
v
U= ——k—(l — coth f) . (26)

In the case (k < oo, ¢ < 00) the background connection is un-
doubtedly a harmonic one. For example, in the case under cosideration

®2 =0, > =0, ®* =0 and
1 _ 1 [i
~ VFH? ldp

(F~'VH?) — FVksinh %kfi] =0, (27)

since it follows from (8) and (18) that

d%(F‘IVHz) — FVksinh %” - (28)

= kC[;—gsinh(f +€)sinh(¢ — €) — sinh 2] =0

In the limit £ — oo the last equality makes a transition to the Fock
condition J

G -1y _
dp(F VH?) —2FVp=0.

Appendix

Let us prove the following equation:

1
Vagam(smn - 5 ngn) = (29)
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Y % Y]

= (I)mRmn + 5 gam(éaRmn + 6mb—{an - 6néam) .

As |
Vag“m(Rmn - '2_ Rgmn) =0 P

we have

1 Y 1 v
Vagam(smn - 5 ngn) = vagamRmn - § vngbmlzbm .

After transition from V, to éa we have

Vagamémn = (60. - Pa)gamém" + gamémspasn ’

vnébm — 6nébm + P»,‘:bésm + P:,fmébs 9
Vg™ Bim = ¢V Rom = ¢V Ry + 2¢°™ Ry P?

an *

As result we receive
am 1 bm D
Vag Rmn - 5 vng Rbm =

v

v 1 v o
= (Va - Pa)gamRmn - §gbmvanm =

v 1 v v v v v v
= QmRmn + 5 gam(vaRmn + Vm.}za,n - vn]-'?vam) .

Comparing (31) with (32), we receive the equation (29).
In accordance with the new gravity equations

1
Vag”m(smn - _2" ngn) =0.

It follows from (29) and (33) that

N 1 vy vy VIR,
" Ry + 3 9" (VaBmn + Vi Ran — Vi Rom) = 0.

In the case under consideration

and

11
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R, = —k7%h,, . (36)

Therefore,
k™2®"h,, =0. (37)

The consequence (37) is trivial one, if £ = oo, and it is not trivial,
if k < co. In the last case it follows from (37) that

=0, ®2=0, =0 (38)
for any solution of the new equations of gravity.
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Yepuukos H.A. E2-2000-53
YeTripe MOnEIH rpaBUTALIMOHHOTO MOJIS MMOKOALIEHCS 3BE3/bI

PaccMOTpeHBl 4eThIpe MOIENH IPaBMUTALMOHHOrO MOJA MOKOSAIUEHCS 3Be3pl
BMECTE C YPAaBHEHUSMH IBHXECHUS €€ CIyTHHULBI — IUIAHETBI.

IlepBas Momens nocrpoeHa HetotoHoM. Bropas Monens nocrpoena Jlo6aues-
ckuM. TloctpoeHune TpeTbeit Mosenu HayaTo DiHIUTeHHOM, npojoikeno LlBapu-
IIMIBAOM M 3aBepuieHo @okoM. Yersepras Mozesb MOCTPOEHA aBTOPOM AAHHOM
paboThI.

Kak B npocTpaHcTBO CKOpPOCTEii, TaK M B POCTPAHCTBO MOJIOXEHHI MaTepH-
albHOM TOUKH BBOOUTCS ['eomerpus Jlo6ayeBckoro.

B nepBoii u TpeTbell MoOIENAX IpPaBUTALMOHHOE MOJIE 3BE3Ibl TOMYMHSAETCS
ypaBHEHUAM DiiHINTelHa. Bo BTOPOIi M 4eTBEpTOil MOAENSIX IPABUTALIMOHHOE IOJIE
3BE3/Ibl MOAYUHAETCS HOBBIM YPaBHEHHSIM, MPEIJIOXKEHHBIM aBTOPOM.

PaGora BbmonHesa B JlaGopaTtopuu TEOpETHYECKOM  (PU3MKM
uM. H.H.Boromo6osa OUSIH.

Coobuwienne O6bENMHEHHOTO HHCTHTYTA SAEPHBIX MccienoBanHii. Iybna, 2000

Chernikov N.A. E2-2000-53
Four Models of the Gravitational Field of a Star at Rest

In this paper four models are being discussed, concerning the gravitational
field of a star at rest and the equations of motion of the companion planet.

The first model has been created by Newton and the second model
by Lobachevsky. The third model has been initiated by Einstein, further developed
Schwarzschild and completed by Fock. The fourth model has been created
by the author of this paper.

The Lobachevsky geometry is introduced in the velocity space and in the usual
space as well.
In the first and in the third models the gravitational field of the star obeys
the Einstein’s equations. In the second and in the fourth models the gravitational
field of the star obeys new equations, proposed by the author.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 2000
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