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1. Introduction

”Big Bang” as the beginning of the Hubble evolution of a universe is described as
a pure classical phenomenon on the basic of particular solutions of the Einstein
equations in general relativity in the homogeneous approximation. A strange
situation consists in that the highest level of the theory, i.e., the Faddeev-
Popov-DeWitt generating functional for unitary S-matrix [1, 2], neglects the
questions about the evolution of a universe which are in the competence of the
simplest classical approximation. There is an opinion that the solution of the
"Big Bang” problem in quantum theory goes beyond the scope of the unitary
perturbation theory and even of general relativity. To answer these questions,
we need a more general theory of the type of superstring [3].

According to another point of view, the reason of theoretical difficulties in
understanding the ”Big Bang” phenomenon is not the Einstein theory, but the
non-invariant method of its quantization. In particular, for the Faddeev-Popov-
DeWitt unitary S-matrix the non-invariant coordinate time is considered as the
time of evolution, whereas an observer in a universe can observe and measure
only invariants of group of diffeomorphisms of the Hamiltonian dynamics, which
includes reparametrizations of the coordinate time [4, 5, 6, 7].

In the present paper we try to construct the unitary S-matrix for general
relativity in a finite space-time in terms of the reparametrization-invariant evo-
lution parameter, and to answer the questions: What do Quantum Universe
and Quantum Gravity mean? What is the status of the ”Big Bang” evolution
in quantum theory? What does creation of Quantum Universe mean? on the
level of perturbation theory, using the scheme of the time-reparametrization-
invariant Hamiltonian reduction [5].

In the context of the Dirac generalized Hamiltonian theory for constrained
systems [8, 9, 10, 11], this scheme means the explicit resolving of the first
class constraints to determine the constraint-shell action directly in terms of
invariants. In other words, we use the invariant reduction of the action instead
of the generally accepted non-invariant reduction of the phase space by fixing
gauges [1, 2, 12].

The example of the application of such an invariant reduction of the action
is the Dirac formulation of QED [13] directly in terms of the gauge-invariant
(dressed) fields as the proof of the adequateness of the Coulomb gauge to the
invariant content of the classical equations. Recall that the invariant reduction
of the action is the way to obtain the unconstrained Feynman integral [14]
for the foundation of the intuitive Faddeev-Popov functional integral in gauges
theories [12] and to reveal collective excitations of the gauge fields in the form
of zero-modes of the first class constraints [15].



A constructive idea of the considered invariant Hamiltonian reduction of
general relativity is to introduce the dynamic evolution parameter (i.e.,dynamic
time) as the zero-mode collective excitation of metric [4, 5, 6, 7, 16, 17, 18, 19].
This dynamic time can be identified with the zero-Fourier harmonic of the space-
metric determinant [5, 6] (treated in cosmology as the cosmic scale factor),
whereas its conjugate momentum, i.e, the second (external) form, plays the
role of the localizable Hamiltonian of evolution.

The separation of this zero-mode evolution parameter on the level of the
action allows us to determine also the invariant geometrical time formed by
averaging the time-like component of a metric over the space coordinates [5].

In a universe, an observer is always in the comoving frame, and he reveals the
evolution of the universe (with ”Big Bang”) as the dependence of the dynamic
time (i.e. cosmic scale factor) on the geometric one (i.e., the world proper time),
in contrast with an observer of a relativistic particle in special relativity where
the dynamic and geometrical times belong to different frames of reference: the
rest and comoving ones, respectively.

The consistent description of the evolution of a quantum universe in terms of
the proper time is based on the canonical transformations [20, 21, 22] to a new
set of variables for which the total energy constraint becomes a new momentum,
and its conjugate variable (i.e., a new dynamic time) coincides with the proper
time.

The content of the paper is the following. In Section 2, we define the invariant
Hamiltonian reduction using a relativistic particle as example. Section 3 is
devoted to the reparametrization-invariant Hamiltonian reduction of general
relativity to construct the generating functional for the unitary perturbation
theory which includes "Big Bang” and Hubble evolution. In Section 4, "Big
Bang” and Hubble evolution are reproduced in lowest order of perturbation
theory. In Section 5, we research the conditions of validity of the conventional
quantum field theory in the infinite space-time limit. Section 6 is devoted to
the conformal generalization of general relativity.

2. Reparametrization-invariant Hamiltonian reduction

2.1. Special relativity: statement of problem

To answer the question: Why is the reparametrization-invariant Hamiltonian
reduction needed?, let us consider relativistic mechanics [5] in the Hamiltonian
form

N

W = [ dr[-P, X" -
T[T[ # 2m

(P2 4+m?)] . (1)



This action is invariant with respect to reparametrizations of the coordinate
time

T 7 =7(7), N'dr' = Ndr (2)

given in the one-dimensional space with the invariant interval
dT := Ndr, T = [d7N(7) (3)
0

In special relativity, a similar invariant interval (we call this interval the geo-
metric time) is identified with the proper time T' measured by the watch of
an observer in the comoving frame [5]; whereas the dynamic variable X (with
a negative contribution in the constraint) is dynamic time measured by the
watch of an observer in the rest frame. The reparametrization- noninvariant
coordinate time (7) and the lapse-function N(7) are not observable. In the rel-
ativistic mechanics, two invariant times (the geometric and dynamic ones) do
not coincide, and they are measured by two different observers in two different
frames: the comoving and rest ones, respectively.

The problem is to obtain the equivalent unconstrained theories directly in
terms of the measurable times Xy or T" with the measurable Hamiltonians of
evolution with respect to these times. The solution of this problem is called the
dynamic (for Xj), or geometric (for T') reparametrization-invariant Hamiltonian
reductions.

2.2. Dynamic reduction of the action

The dynamic reduction of the extended system (1) is the substitution, into it,
of the explicit resolving of the energy constraint (—Pj + m?) = 0 with respect
to the momentum Fy with a negative contribution

oW

— =0 = Py=+ym?+ P2 4
In accordance with the two signs of the solution (4), after the substitution of (4)
into (1), we have two branches of the dynamic unconstrained system

) XU(TZ):XO(?) dX—
W (constraint) = W2 = / dXy [Pi d_‘X'l Fym?+ Pf} . (5)
Xo(r)=Xo(1) 0

The role of the time of evolution, in this action, is played by the variable X
which abandons the Dirac sector of ”"observables” P;, X;, but not the sector of
"measurable” quantities, as Xy is measured by the watch of an observer in the
rest frame. At the same time, its conjugate momentum Py converts into the



corresponding Hamiltonian of evolution, values of which are the energy of a
particle measured by an observer in the rest frame.

This invariant reduction of the action gives the "equivalent” unconstrained
system together with definition of the invariant evolution parameter (i.e., dy-
namic time) measured by the watch of an observer and corresponding to a
non-zero Hamiltonian. We call all invariant dynamic variables (P, X;| Py, Xo)
by the sector of measurable quantities including the measurable time (as one
of the dynamic variables) and the measurable Hamiltonian (as the conjugate
momentum of this variable). Thus, we need the reparametrization-invariant
Hamiltonian reduction to determine the measurable time and its measurable
Hamiltonian for reparametrization-invariant systems.

The description of the ”Big Bang” in general relativity is based on the asser-
tion that the measurable time in general relativity is one of variables of extended
phase space, but not the coordinate time.

In quantum relativistic theory we got two Schrodinger equations

. d
Z—\I](i) ()(

dXO P) = :f: m2+P12\IJ(i)(X|P) 5 (6)

with positive and negative values of /4 and normalized wave functions

U, (X|P)= —A—}%ﬂﬂexp(—ip X*) ([A“ Ab] =8P - P-’)) (7
(27)3/2\/2 Py pem o prtp ! v
The coefficient A}, in the secondary quantization, is treated as the operator
of creation of a particle with positive energy; and the coefficient Ap, as the
operator of annihilation of a particle also with positive energy. The physical
states are formed by action of these operators on the vacuum < 0},|0 > in
the form of out-state ( |P >= Af|0 > ) with positive frequencies and in-state
( < P| =< 0]Ap ) with negative frequencies. This treatment means that
positive frequencies propagate forward; and negative frequencies, rearwards, so
that the negative values of energy are excluded from the spectrum, to provide
the stability of the quantum system in QFT [23]. In other words, instead of
changing the sign of energy, we change that of time, which leads to the causal
Green function with the arrow of time
4

G(X) = G4 (X)O(X0) + G (X)0(~Xo) = [ % exp(~iPX) 7

—m? — i€’
where G4 (X) = G_(—X) is the "commutative” Green function [23]

(8)

Go(X)= [ (ZTZ;exp(—iPX)(S(PQ —m2)8(Py) = 9)



%/#Pﬁp' < 0[T_(X|P)T,(0|P)|0 > .

These Green functions evidence the peculiarity of reparametrization-invariant
theories; this peculiarity highly distinguishes them from the conventional gauge
theories: in the reparametrization-invariant theories, there is a superfluous vari-
able that is excluded by a constraint and abandons the Dirac sector of ”observ-
ables”, but not the sector of measurable quantities [4, 5, 7], as the dynamic
time is measured by the watch of an observer in the rest frame.

2.3. The reparametrization-invariant functional integral

To obtain the reparametrization-invariant form of the functional integral ad-
equate to the considered gauge-less reduction (5) and the causal Green func-
tion (8), we use the version of composition law for the commutative Green
function with the integration over the whole measurable sector X,

Gi(X) = [GX-1[AG ()] (=X, d=dX, G= ), (10)

2m6(0)

where 6(0) = [ dN is the infinite volume of the group of reparametrizations of
the coordinate time. The continual limit of the multiple integral

Go(0X) = [ Go(X = 1) | T G = (b 1) (b= X, X =0) (1)

can be defined as the functional integral

X(Tz):XdN(Tg)d4P(T2) N dP,(1)dX,(7) ]
c _ AN(72)d"P(1) AN (+ TR IV Y exp(id
+(X) X(Tl/):O (271')3 Tl§1;[<1'2 { N( ) I;[ ( 2 > } p( I/V)

(12)
where N = N/27(0), and W is the initial extended action (1).
This functional integral has the form of the average over the group of repara-
metrization of the integral over the sector of "measurable” variables P,, X ,.

2.4. Geometric reduction

The third point (besides of the introduction of the dynamic time and the
reparametrization-invariant form of the functional integral) on the way of the
explanation of ”Big Bang” as the pure relativistic and quantum phenomenon
is the fact that an observer in a universe reveals its evolution in terms of the
geometric time measured in the comoving frame (an observer in a universe is
always in the comoving frame). The change of a frame can be described in the



form of the change of variables, in particular, there are the variables for which
the dynamic time coincides with the geometric one.

A correct description of the initial conditions in the comoving frame is based
on the canonical Levi-Civita - type transformation [20, 21, 22|

(P/la‘Y/i) = (Hanu) (13)
to the variables (II,, (),) for which one of equations identifies )y with the proper
time T. This transformation [20] converts the constraint into a new momentum

1 P,

. . m i
= %[Poz - PZ.Z], 1I; = P, QO = Xo—, Qz‘ =X, - X (14)

I,
2 P,

and has the inverted form

- v/ 2mlIl 12 II;
&:iwmm+nﬁaznhXmﬁﬂwi%%ii,szmQr<
m

(15)
After transformation (14) the action (1) takes the form
; 7 o1 7 m d le le
W :Z dr | ~IL,Q" = N(=Iy+ 5) = =5, 8= (Qollo) ~ (16)
The invariant reduction is the resolving of the constraint IIy = m/2 which

determines a new Hamiltonian of evolution with respect to the new dynamic
time )y, whereas the equation of motion for this momentum Il identifies the
dynamic time )y with the geometric one T (()g = T). The substitution of
these solutions into the action (16) leads to the reduced action of a geometric
unconstrained system

Ty
W (constraint) = W% = /dT <H£l9—l L Edf(SlC)> (8" =Qo7) (17)

where variables II;, @; are cyclic ones and have the meaning of initial conditions
in the comoving frame

oW d@; ©) oW dlIl; (0)
_— = =0 ] IR = — = i = i
oL~ dr = Qi =Q; 50, = dr 0= IL=1 (18)
The substitution of all geometric solutions
m
Q=T My=7, W=M" =P, Q=q/ (19)

into the inverted Levi-Civita transformation (15) leads to the conventional rel-
ativistic solution for the rest frame

P P;
P=xym2+ P2, P=1", XyT)=7=2, X{T)=x"+17=. (20)
m

m
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The Schrodinger equation for the wave function

d e m e
W‘I’l (T,Q:|;) = 5‘111 (T, Qi|1L;), (21)
(T, Qi|IL) = exp(—iT%) exp(illl"Q;)

contains only one eigenvalue m/2 degenerated with respect to the cyclic momen-
tum II;. We see that there are differences between the dynamic and geometric
descriptions. The dynamic time is given in the whole region —oo < Xy < 400,
whereas the geometric one is only positive 0 < T < 400, as it follows from the
properties of the causal Green function (8) after the Levi-Civita transforma-
tion (14)

exp(1Q"TL,,) 3*(Q) -
GH(Qu) = / a1l ”Zm( pm/? —ie/2m)  2m oT), T'=6.

For an observer in the comoving frame two branches of solution of the constraint
(a particle and antiparticle) coincide.

3. Reparametrization-invariant reduction of GR

3.1. Action and variables

General relativity (GR) is given by the Einstein-Hilbert action with the matter
fields

WEl) = [atov TR + 2] (4= M ) (2
and by a measurable interval
(ds)? = gopdada” . (23)
They are invariant with respect to general coordinate transformations
2y =z, = 1, (20, T1, T, L3). (24)

The Hamiltonian description of GR means the choice of the Dirac-ADM 3 + 1
parametrization of metric components [24]

ds)? = g, dztda’ = N?dt? — O g, da'da’ de’ = da' + N'dt) 25
€ H J

with the lapse function N, three shift vectors N, and six space components
(S)gi]-. This parametrization describes a set of the three-dimensional space-
like hyperspaces (25) enumerated by the time-like coordinate ¢ in the four-
dimensional manifold of the world events. The Hamiltonian dynamics is de-
fined within transformations of a kinemetric subgroup of the group of general

7



coordinate transformations (24) [25, 5, 6, 7]
t—t'=1(t); =it 5,00, 13), (26)

which includes one global function (the time reparametrizations ¢ (¢)) and three
local ones (z}(t,z)). This is the group of diffeomorphisms of a set of Einstein’s
observers with the equivalent Hamiltonian dynamics. This continuum of ”"ob-
servers” with the diffeomorphism group (26) is called the kinemetric frame of
reference [25].

The reparametrization invariance (26) (as we have seen in the previous Sec-
tion) means that the coordinate time (¢) is not measurable. To apply the
reparametrization-invariant reduction discussed before, we should also answer
the question : What are measurable dynamic time and the measurable Hamil-
tonian of evolution with respect to this time? The dynamic time is one of
dynamic components of the space metric (3)_%- with a negative contribution to
the energy constraint. We choose this dynamic time as the zero Fourier har-
monic ¢g(t) of the space metric determinant logarithm [4, 5]. This evolution
parameter can be separated by the conformal-type transformation of the metric

Gus(t,2) = <§“if 20l o5 (8, ). (27)

with respect to the trans-

)
5]

The transformational properties of the curvature R(yg
formations (27) lead to the action (22) in the form [

; _ \%
W (gln) = W (gleo) - / dtoo— “’;; ), (28)

where N is the average of the lapse function N in the metric § over the kine-
metric invariant space volume

/ N , g = det(Wg) | b= [d's (29)

and Vj is a free parameter which in the perturbation theory has the meaning of
a finite volume of the free coordinate space. The geometric foundation of the
introduction of this global variable in GR was given in [19] in the form of the
theorems about the nonzero-value of the second form in the whole space. In
the opposite case of the zero-value of the second form in the whole space, the
positive contributions of the particle-like excitations in the energy constraint
can be compensated by only by the Newton interaction term given in the class
of functions with the nonzero Fourier harmonics. Therefore, the zero Fourier
harmonic of the energy constraint looses all negative contributions and becomes
contradictory (if we, following Dirac [9], remove the contribution of the second

8



form imposing it to be equal to zero). Thus, the Einstein theory needs the
zero-mode (27) to escape this contradiction. If this zero harmonic ¢y(t) with
its conjugate momentum Fy are taken into account, then the action (28) takes
the Dirac-Bergmann Hamiltonian form [5, 6]

ia o 5
: A ‘ , _ NP 1
Wk = /dt (/ &2[>° PrF — N;H = N'P;] — oo Py + 40V° + §8t(P0¢0)> ,
i | F 0
(30)
where . . B
I & (31)
¥ f
6 .. 2 1/2

H(po) = %quqkl[ﬂiﬂjl — i) + @Og CR+H; , (32)
Pi = 2[Vi(¢"'m) = V(" m)] + Pis (33)

the densities of the local excitations and Hy, P are contributions of the matter
fields, and we choose here the Dirac harmonical variables [8]

. ) _ 1 ,d%z 1
ik _ ——ik T ——1/2 .
¢* =gg", N,=Ng = =1 (34)
1 (VOVO N, ]VU)

and the Lichnerowich conformal variables [26] for matter fields f with the con-
formal weight (n) fixed by the definition of the tensor field (27)

() = ) (ﬂ*)) 7 (35)
I

where § = g., and n = 2,0,—-3/2,—1 for the tensor, vector, spinor, and scalar
fields, respectively. In this case, the Planck constant p in the Einstein equations
is replaced by the dynamic time ¢g. The metric (25) takes the form
£)? vy g
(ds)? = @qlﬂ < Nq?dt2 - gijda’da? ) , (¢ = det(q")). (36)
7
The local part of the momentum of the space metric determinant

_4ijDig? _ Dylogq

m(t,z) = ¢Vmy; = N, N, 81)
is given in the class of functions with the non-zero Fourier harmonics, so that
D, lo
3 _ [ 3. Hio8q
/d zw(t,x) = /d T N, " 0, (38)

and we have the same number of variables.
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There is a direct correspondence between the Einstein theory (30) with
the separated zero-mode of the space metric ¢y and a particle in special rel-
ativity (1): the unobservable coordinate times (7 — ¢);  the dynamic
time (X — ¢p); the Dirac reduced phase space variables

F, X; — ( Promij, f.q7 ):=DPp, F (39)

and the geometric time (dI' = Ndr — dT = Nydt) determined by the global
lapse function (29)

dT = Nydt . (40)
We call the set of dynamic variables (Pg, F|Fy, ¢g) (where Pp, F are the local
excitations) the "relativistic universe”, like the set of variables (P, X;| Py, X))
in SR is called a ”relativistic particle”.

3.2. Reparametrization-invariant reduction

The physical meaning of the dynamic time and its momentum is given the
explicit resolving of the zero-Fourier harmonic of the energy constraint

e 5 2
ow /(13 W P CH=0. (41)

f_410

where

- Ny(t,z) 1 ,d*x
— 3 [ [ = g — — =
H= /d aNH, N(t, z) AOR (%‘{ % 1) (42)

is the total Hamiltonian of the local excitations P, F' (39), and the local com-
ponent of the lapse function (34), respectively.
This constraint has two solutions for the global momentum P,

(Py)x = +2/VoH = +H", (43)

They are the generators of evolution of the Dirac sector (39) with respect to
the dynamic evolution parameter o for its positive and negative values, in the
correspondence with the relativistic causality, which excludes negative energies
of a "relativistic universe” in the Dirac sector of "observables” (39).

The equation of motion for this global momentum P, takes the form

SWE <d99> _ (P

Coo (% JdeH  H
iFy dT ).~ 2V B

= j: : = - .
plpo); p 7 T

(44)

In the Friedmann-Robertson-Walker cosmology, this type of equations is used
in the homogeneous approximation to describe evolution of a universe for an

10



observer in the comoving frame who reveals this evolution as the dependence of
the geometric time (in cosmology treated as the conformal time) on the dynamic
time (in cosmology treated as the cosmic scale factor (g/p). The integral form
of the last equation

T(e0) = [ dor™ (). (43

is in cosmology well-known as the Friedmann-Hubble law. This equation gives
the relation between the present-day value of the dynamic time ¢y(75) and cos-
mological observations, i.e., the density of matter p and the Hubble parameter

HMZ%gipmwzﬁf:uwm-w6<mwMNﬂ2) (46)
0 VU

The Hamiltonian H (42) determines the evolution of the Dirac observ-
ables (39) with respect to the geometric time T

oF ) -
F'::ﬁ:\/ﬁ&pof:{H,F}. (41)
The local part of the energy constraint
SWE . p
6N = N N (48)
is the projection of the energy constraint 6W’E/5Nq = 0 onto the nonzero
Fourier harmonics. In the first order of the Dirac perturbation theory [8]
0?2 g
N=1, Higo) =My + 70,007, (49)
equation (48) is the Newton law for the present-day value of the dynamic time
©o = p (46)
The equation for shift vectors
SWE ‘
—_— = ;= 0 I
INi P (50)

are considered as three local constraints.

3.3. Reparametrization-noninvariant functional integral

To give basic definitions, we consider the standard Faddeev-Popov functional
integral [1] for the Einstein action given in the infinite coordinate space-time
(without the separation of the dynamic time as the zero Fourier harmonic of
the space metric)

+o0
W = / dt/d% (z PpF — N,H(p) — MP") : (51)
00 F
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; PrF = ;pff' — g

where H(p) is defined by (32) with ¢y = pu.
According to the Dirac-Bergmann generalized Hamiltonian theory [8, 9, 11],
the set of constraints begins with the first class primary constraints

PNq = 07 PN,- =0 (52)

for the conjugate momenta Py,, Py, of time components of the metric N, N'.
The constraints (52) are accompanied by the gauges

N,—1=0,  N;=0; (53)

whereas the equations for the lapse function H(x) = 0 and the shift vector
P’ =0 (50) are considered as the first class secondary constraints accompanied
by the Dirac gauges [8]

=r=0, X' =0 ) =0, (54)

respectively.
The FP-functional integral for the Dirac gauges was given by V.N.Popov in
the book [10] in the form

G(Fy, Bylpo = p) = 72D(F> Pr)AsApexp {iWp, }, (55)
F
where
Wy, :j/oodt/d'gr (; PpF — pr(u)> o Hpp(p) =H(p) - %Qaiajqij , (56)
D(F.Fy) =TI (1;Ik dqizimk I i ;fff > (57)
e Ay = tn_a(Pi))a(Xf)detB, detB = det{P;, '} (58)
A= tf[fé(?—[(u))é(ﬂ)detA, detA = det{H,n} (59)

are the space and time parts of the FP determinant, and A and B}, are operators
acting by the rules
Af ="V f +¢'*R; (60)

g L Lan
Bin,=q 1/3q”[6k818j+§6,6jak}ni. (61)

12



The F-P integral (55) is considered as the generating functional for unitary
perturbation theory in terms of S-matrix elements

+00
S[—o0| + o0] =< out|T exp {—i / dtH]} lin >, (62)

—00

where H; = H — Hy is the Hamiltonian of interaction, and Hj describes in- and
out- states of free fields, in particular, for free gravitons Hy takes form

s (80Tl W o, T T
Hy(w) = [ &' T+ﬂ(8,-h) L (hE=0; 9;p5 =0),  (63)

which corresponds to the metric
(ds)? = dt* — (6; + hl})da'da’. (64)

We see that the reparametrization invariance of the initial Einstein theory is
broken.

3.4. Reparametrization-invariant functional integral

We have seen above that the reparametrization invariance means that the co-
ordinate time could not be the measurable time of the invariant evolution. The
measurable time coincides with the global dynamic variable with a negative
contribution to the energy constraint ¢y which we call the dynamic time. The
dynamic time, together with its conjugate momentum P, and the global com-
ponent of the lapse function Ny, give the additional functional integrals for the
"commutative” Green function G.(Fy, Fy|p1, p9), just as the geometric sector
(P, Xo, Ng) in SR forms the "commutative” Green function G4(X; — X) for
a relativistic quantum particle (12).

To compare the standard result (55) - (61) with the reparametrization-
invariant version of the functional integral for the action (30) with the sep-
arated dynamic time ¢y, we consider this system in the class of solutions with
the lapse function A" = 1 (see its normalization (42)). Then, we have the set of
local constraints

H(po) —p=0, m=0; Pi=0, x'=0 (65)
with their determinants
detA = det{H(pp) — p,7}; detB = det{P;,x’}. (66)

The reparametrization-invariant version of the functional integral (55) can be
given so as to satisfy the relativistic causality in the form of the ”commutative”

13



Green function for a relativistic quantum particle (12). Repeating the functional
integral in the geometric sector (P, Xo, Vy) for the similar sector (P, g, Ng) of
a "relativistic quantum universe” we obtain the ”commutative” Green function
for a "relativistic quantum universe” in the notation of the FP-integral (55)
and (66):

F2,<Pz
; dpod Pyd N,
GL(Fy, Bl p0) = [ D(F,P»ASAiH(M) p{iw"},  (67)
Fi 1 t
where
i P} 1
WE = [dtl | &Pz S PrF| — Pypg+ Ny | =% — H ~9,( Py
t{ {‘{ f(; F) 00 + 0[4% (990)}+251(P0v0)},
(68)
and
_ i X - 5 H
Ao=I0(H(po) = p)o(mdetd . H(p) = [dah(@n), p=1- (69

Comparing (55) and (67), one can see that, to get the ordinary FP-integral (55),
one should to fix the dynamic time at its present-day value ¢y = u (46), remove
all the zero-mode dynamics Py = ¢y = 0, Ny = 1, and neglect the surface New-
ton term in the Hamiltonian. Strictly speaking, it is not a correct procedure,
as it breaks the reparametrization-invariance.

4. 7”Big Bang” of a ”free” quantum universe

Possible states of a free quantum universe are determined by the lowest order
of the Dirac perturbation theory given by the well-known system of "free”
conformal fields (35), (63) in a finite space-time volume [27, 7]

iy 2
Wi = [dt||[dxy PF| - P No[-2 — H, ~0y( Py 70
0 il/ ({/ 762; F } 00 + 0[41/ 0(0)] + 5 0590))7 (70)
where Hy is a sum of the Hamiltonians of "free” fields (gravitons (63), photons,
massive vectors, and spinors) where all masses (including the Planck mass) are
replaced by the dynamic time g [7]. The classical equations for the action (70)

dHy(¢7) OHy(py)  dey Hy
OR) g, V) dek ()
o, rPr 3F 0 4T po(27) =3
(71)
contain two invariant times: the geometric 7' (measured by the watch of an
observer in the universe) and the dynamic ¢f connected by the geometro-

orF =

dynamic (back-reaction) equation (44)
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Recall that, in the reparametrization-invariant classical mechanics, the geo-
metric and dynamic times coincide; in special relativity, the geometric time dif-
fers from the dynamic one, but both these times belong to different observers in
different frames (the rest and comoving ones); in general relativity, one and the
same observer detects and measures simultaneously both these times (o and
T') and reveals the dependence of the geometric time 7 on the dynamic time
@0 as evolution of a universe in the form of the Hubble law (46). Therefore,
the reparametrization-invariant content of general relativity can be covered si-
multaneously by two classical unconstrained systems with the dynamic time
and the geometric one 7. The dynamic system

ol(ta)

WE (constraint) = WP = dy x> Ppo,F ZFHR':Ela oH |
0 0 - ° 0 £ 509

o(t)

(72)
like the rest frame in SR, has two branches for a universe with a positive energy
(Fo > 0), and a universe with a negative energy (Py < 0). The latter should be
treated as an "antiuniverse” which propagates rearwords (¢ < 0) with positive
energy to provide the stability of a quantum system.

The geometric system is constructed by the Levi-Civita type transformation
to the action-angle variables, so that one of them coincides with the geometric
time T measured by the watch of an observer.

In the dynamic system, the content of matter in the universe, is described by
the number of particles Ngy and their energy wp (g, k) (which depends on the
dynamic time g and quantum numbers k, momenta, spins, etc. ). Detected
particles are defined as the field variables F = f

(o) = 5~ Crlo) explikaes) o0
f(ﬂ?)—ik: RN (af (=k) + aF (k) (73)

which diagonalize the operator of the density of matter

9’07]‘“ AT 1 — - rd
Z f( v, )Vf,lm Nf:§(a}raf +afaj{) . (14)

We restrict ourselves to gravitons (f=h) C, (@) = ¢0v/12, wi(pg, k) = Vk? and
massive vector particles (f=v) Cy(¢0) = 1, wy(po, k) = k2 + y2p8, where y is
the mass in terms of the Planck constant.
The equations of motion (71) in terms of a™,a™ [7] are not diagonal
R (L+ R wa/ s —iAf
IV P . —
Xa; = —HayXa; Xoy = ( ) ap =

a .
! —ZAf 5 —waf
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where nondiagonal terms Ay_, , are proportional to the Hubble parameter (46)

!

%0 W /
A ) = A —y = — ) Q = . 76
==y == ¥0 = Vo (76)

The ”geometric system” (b*,b) is determined by the transformation to the
set of variables which diagonalize equations of motion (75) and determine a set
of integrals of motion of equations (75) (as conserved numbers {Q}).

To obtain integrals of motion and to choose initial conditions for the ”Big
Bang”, we use the Bogoliubov transformations [28] of "particle” variables

b* = cosh(r)e a’ —isinh(r)e?a, b = cosh(r)e?a+isinh(r)e a™, (77)

bt A
Xb:( b ):OX(H

which diagonalize the equations expressed in terms of "particles” (a%t,a), so
that the "number of quasiparticles” is conserved

or

d(bth)
dt

.
=0, b= exp(—i [ dT@y(T))b, (78)
0

and functions r, 0 in (77) and the quasiparticle energy @, in (78) are determined
by the equation of diagonalization

d Cod . &y, 0
LmXe = {—iOflﬁO -O0'H,Olxs = - e (79)
0, —&y
in the form obtained in [7]
@y = (wy — 0f) cosh(2ry) — (A cos 207) sinh(2ry) (80)
0 = (wy — 6)sinh(2ry) — (Aj cos 26;) cosh(2ry), 7y = —Ajsin 20y,

Equations (76)— (80) are closed by the density of "observable particles” in terms
of quasiparticles

H, B %:wf<¢){a?af}

plp)=—=— {a*a} = {bfby} cosh 2r — i(b” — b*)sinh 2r
V Vo 2
(81)
with 5
wr —
D =/ (wyp — 052+ ()% — A%, cosh(2r =1 82
fo=/lwr = 072+ () ) === (82)

The conserved numbers by, bf of classical theory become the set of quantum
numbers in quantum theory. In other words, in the geometric frame one can
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quantize the initial data, like for a relativistic particle in the comoving frame
considered in Subsection 2.5. This is the principle of correspondence with clas-
sical theory in the strong version.

Let us suppose that we manage to solve equations (78)~ (82) with respect
to the geometric time 7" in terms of conserved numbers bg, by. This means that
the wave function of a quantum universe can be represented in the form of a
series over the conserved quantum numbers Q = nysj =< QIb}“bﬂQ > of the
Bogoliubov states

+\nys
Uo(T) =11 e*cp{—z/dTnfwb )} (\b/f;)? 0> . (83)

finy

In this geometric system, an observer (as ”"geometrician” who measures the
b)
geometric time T') could not differ a universe

P2
Ty (p2,01) = /d‘ﬁﬂ(sﬁ)*w >0, P2 > @1 (84)
$1
and an antiuniverse
©1
T_(p2,91) = —/d*p = [dep(p) >0, o> en (85
¥2

like an observer of a relativistic particle in the comoving frame. However, an
observer (as "physicist” who detects dynamic particles a¥, a) is simulteneously
in the dynamic system (72) connected with the geometric one by the Bogoliubov
transformations. These transformations restore wave functions of a universe
2 > ¢ and a untiuniverse @1 > @9

Vo(T) = AG¥q(v2, 91)0(02 — 91) + AgUo s, 01)0(01 — ) (86)

where the first term and the second one are positive (P > 0) and negative
(Py < 0) frequency parts of the solutions with the spectrum of quasiparticles @,
Aé is the operator of creation of a universe with a positive ”frequency” (which
propagates in the positive direction of the dynamic time) and Ag is the operator
of annihilation of a universe (or creation of an antiuniverse) with a negative
"frequency” (which propagates in the negative direction of the dynamic time).
An observer as a "physicist” sees the creation of a universe and the creation of
dynamic particles by the geometric vacuum (b%|0 >= 0) as two different effects.
The second effect disappears if we neglect gravitons and massive fields. In this
case, p' = 0, and one can represent a wave function of a universe in the form of
the spectral series over eigenvalues pg of the density p

(flw2, 1) = %ﬁ [wE + Tyl (87)
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A+

L

e winy
exp{ (o2 = 1) 22 M} < flQ >
¥ = s it - ) T2 < flQ >+
¢ Vg VPa
where < f|Q > is a product of normalizable Hermite polynomials.
The equation of diagonalization (79) for the Bogoliubov coefficients (77) and
the quasiparticle energy &y plays the role of the equation of state of the field
matter in the universe. We can show that the choice of initial conditions for the

5

”Big Bang” in the form of the Bogoliubov (squeezed) vacuum 6|0 >,= 0 repro-
duces all stages of the evolution of the Friedmann-Robertson-Walker universe
in their conformal versions: anisotropic, inflation, radiation, and dust. The
squeezed vacuum (i.e., the vacuum of quasiparticles) is the state of "nothing”.
For small ¢ and a large Hubble parameter, at the beginning of the Universe,
the state of vacuum of quasiparticles leads to the density of matter [7]

#*(0) ﬁ(T)) o
20 teom) 0T &)

4
where ((0) is the initial value, and pg is the density of the Casimir energy
of vacuum of "quasiparticles”. The first term corresponds to the conformal

1
p < pla*, a) >= s (

version of the rigid state equation (in accordance with the classification of the
standard cosmology) which describes the Kasner anisotropic stage Tl (¢) ~ £¢?
(described by the Misner wave function [29]). The second term of the squeezed
vacuum density (88) (for an admissible positive branch) leads to the stage with
inflation of the dynamic time ¢ with respect to the geometric time T

ATy & (0) expITy 200/ (0))
It is the stage of intensive creation of "measurable particles”. After the infla-
tion, the Hubble parameter goes to zero, and gravitons convert into photon-like
oscillator excitations with the conserved number of particles.
At the present-day stage, the Bogoliubov quasiparticles coincide with par-
ticles, so that the measurable density of energy of matter in the universe is a
sum of relativistic energies of all particles

T
LIk, + y2od(T), (89)
W

mie) =1 =%

where yy is the mass of a particle in units of the Planck mass. The case of mass-
less particles (y = 0, po() = constant) correspond to the conformal version of
radiation stage of the standard FRW-cosmology. And the massive particles at
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rest (k = 0,p0(¢) = prarions®/ ) corresponds to the conformal version of the
dust universe of the standard cosmology with the Hubble law

J =t = pulT) = (Pattons) 72 (90)
The dynamic time is expressed through the geometric time of a quantum as-
ymptotic state of the Universe |out > and conserved quantum numbers of this
state: energy Eo, and density py = E,,/Vy. It is well-known that E,, is a
tremendous energy (107GeV) in comparison with possible deviations of the
free Hamiltonian in the laboratory processes

Hy= Epu +0Hy, < out|§Hplin ><< E,yu. (91)

We have seen that the dependence of the scale factor ¢y on the geometric time
T (or the "relation” of two classical unconstrained systems: dynamic and geo-
metric) is the "Big Bang” and evolution of a universe. Therefore, from the point
of view of an Einstein observer in special relativity, ”Big Bang” is the pure rela-
tivistic effect of evolution of the geometric interval with respect to the dynamic
evolution parameter which goes beyond the scope of Hamiltonian description
of a single classical unconstrained system. The causal Green function

Ge(Fy, Falor,2) = Go(F1, Bolor, 2)0(01 — 92) + G (Fy, Filga, 01)0(02 — 1),

(92)
describes the creation of a universe, but it is not sufficient to describe ”Big
Bang” evolution in quantum theory with the creation of matter, as an observer
measures this evolution in terms of the geometric time 7.

5. Infinite volume limit of Quantum Gravity

The simplest way to determine the limits of the validity of the FP-integral (55) is
to use the quantum field version of the reparametrization-invariant integral (67)
in the form of S-matrix elements [23]

Slp1, o] =< out (p2)|T, exp {—i ./chp(Hﬁ)} [(¢1) in > (93)

where T, are symbols of ordering with respect to the dynamic time, and <
out (¢7)], |(¢) in > are states of quantum universes in the lowest order of
the Dirac perturbation theory (" = 1; N* =0; ¢ = §;; + hg}), HFE is the
interaction Hamiltonian

Hi'=H" - H}, HR=2/ViH(p), HE=2/ViH)(p) (94)
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Hy (i) is the free part of the measurable Hamiltonian H (y).

We consider the infinite volume limit of the S-matrix element in terms of the
geometric time 7" for the present-day stage T = Ty, o(Ty) = p, and T(p;) =
Ty — AT, T{ps) =Ty + AT = T,y.

One can express this matrix element in terms of the time measured by an
observer of an out-state with a tremendous number of particles in the universe
using equation (90) d = dT,yu¢\/pouw and approximation (91) to neglect "back-
reaction”. In the infinite volume limit, we get

delH[Y = do2 (VVo(Ho + Hy) = VVilly) = dT,u[FH; +O(1/Bpa)]  (95)
where H is the interaction Hamiltonian in GR, and
- Eout Eoul
F= =\ 96
\' HO \I Eout + OHO ( )
is a multiplier which plays the role of a form factor for physical processes ob-

served in the "laboratory” conditions when the cosmic energy E,, is much
greater than the deviation of the free energy

(SHO = Hy - Eout; (97)

due to creation and annihilation of real and virtual particles in the laboratory
experiments. The measurable time of the laboratory experiments Ty — T} is
much smaller than the age of the Universe T, but it is much greater than the
reverse ”laboratory” energy 4, so that the limit

T(p2) +00
/ dTmLt = dTout
T(p1) -

is valid. If we neglect the form factor (96) that removes a set of ultraviolet
divergences, we get the matrix element (62) that corresponds to the standard FP
functional integral (55) where the coordinate time is replaced by the geometric
(conformal) time t — ;.

Thus, the standard FP-integral and the unitary S-matrix for conventional
quantum field theory (QFT) are not valid for the description of the early uni-
verse. On the other hand, we revealed that QFT appears as the nonrelativistic
approximation of very large mass of a universe. In this approximation, QFT is
expressed in terms of the conformal-invariant Lichnerowicz variables and coor-
dinates including the conformal time as the time of evolution of these variables.

6. Conformal Relativity

The reparametrization-invariant description of the ”Big Bang” evolution distin-
guishes conformal variables (35) and coordinates including the geometric time.
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These conformal variables, coordinates, geometric time T, and the conformal
Hubble parameter Hj,, = ¢'/¢ can be considered as measurable quantities in
the Einstein General Relativity, if the latter is treated as a scalar version of the
Weyl conformal invariant theory [6]

Wevr = —Wper + Wiy, (98)
where
~Weer(p,g) = [ d'] ERG) + 0T 0] (90)
the Penrose-Chernikov-Tagirov action (Wlth negative sign), and
Wenle Viv,g) = [d's (€52 + vV =gl-¢F + *B)) (100)

is the conformally invariant part of the SM action (i.e. the conventional SM
action without the “free” part for the modulus of the Higgs SU(2) doublet ¢
and without the Higgs mass term), B and F are the mass terms of the vector
V" and fermion ¢ fields, respectively

=V }/7]‘;1 F= wa ad¢ﬁ> (101)

Y, X are the ordinary matrices of vector meson and fermion mass couplings
in the WS theory multiplied by a rescaling parameter [6, 30]. In terms of the
Lichnerowicz conformal invariant variables, this theory locally coincides with
the Einstein theory where the scalar field ¢ converts into the determinant of
the space metric multiplied by the Planck constant y (¢9'/%u = ) [5, 6]. The
action of conformal relativity (98) does not containt any dimensional parameter,
except of the finite time interval and finite volume, as the universe has the
beginning 7" = 0 and the end T' = Ty, i.e., the present-day stage, where the
value of the scalar field O(T = Ty) = \/Prarions/H,; = p coincides with the
coupling constant of the Newton interaction, in agreement with equations of
motion and astrophysical observational data (46).

The effective Higgs potential could not be restored by the the Coleman-
Weinberg perturbation theory, as the vertices with scalar field interactions are
absorbed by the definition of " particles” and by the Bogoliubov transformations.
Instead of the effective Higgs potential, in the exact theory, these interactions
form cosmological evolution of the universe as the pure relativistic and quantum
phenomenon which reproduces the conformal version of the standard Friedmann
model (developed by Hoyle and Narlikar [31]).

In the conformal cosmology, the Hubble law is explained by the evolution
of the masses of elementary particles, so that the photon on a star remembers
the "size” of a star atom at the moment of emission, and this size” increases
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during the time of traveling; as a result, we get the red shift of the star pho-
ton in comparison with a photon emitted by a standard atom on the Earth
at the moment of observation. The conformal version at the dust stage (90)
corresponds to the "accelerating Universe” with

H
_vy_ 1
qec = 99,2 - +§,
instead of ¢p = —1/2 for the Friedmann version (with the measurable time

dTe = (¢/p)dT).

In the conformal theory (98), the Higgs mechanism of the formation of par-
ticle masses becomes superfluous and, moreover, it contradicts the equivalence
principle, as, in the case of the standard Higgs mechanism, the Planck mass and
masses of particles are formed by different scalar fields. The Weyl scalar field ®
forms both the Planck mass (in agreement with the present-day astrophysical
data) and masses of clementary particles [6] (in agreement with the principle
of equivalence).

The Weyl geometrization of the modulus of the Higgs field removes the
Higgs potential with its problems of tremendous vacuum energy [32], monopole
creation, and the domain walls [32]. The conformal scalar field plays the role
of the dynamic time and forms the Newton potential. As a consequence, the
conformal version of the Higgs field looses its particle-like excitations ([30]) like
the time component of the electromagnetic field. In the conformal theory (98),
we obtain the o-version of the Standard Model [5, 6, 30] without Higgs particles
and with the prescription (96) which removes ultraviolet divergences from the
SM sector.

7. Conclusion

The main result of the paper is the reparametrization-invariant generating func-
tional for the unitary and causal perturbation theory in general relativity in a
finite space-time. This functional contains "Big Bang”, the creation of matter
in a universe from "nothing”, and a set of new effects, including the creation
and annihilation of universes. The classical cosmology of a universe and the
Faddeev-Popov-DeWitt functional correspond to different orders of decompo-
sition of this functional over the inverse "mass” of a universe.

All these results are based on the assertion that the measurable time in any
reparametrization-invariant system is not the coordinate time, but the time-
like variable (¢) of an extended phase space of this system (Fp, Pr; o, Py).
Accordingly, the measurable Hamiltonian is a solution of the energy constraint
with respect to the conjugate momentum of this variable (Fy) [5, 6]. This
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definition of the measurable time and Hamiltonian supposes the reduction of
an action for constructing an ”equivalent” unconstrained system (Fp|p) (but
not the reduction of a phase space).

The second assertion is that such an unconstrained system cannot cover the
physical content of a relativistic reparametrization-invariant system (Fp, ¢|T).
This content can be covered by two "equivalent” unconstrained systems-the
dynamic system (Fp|p) and geometric one (Fg|Qy = T) (constructed by the
Levi-Civita type canonical transformation so that a new dynamic time @Q coin-

cides with the proper one T'). The very notion "relativistic” means the relation
between these systems. In special relativity (SR), they are the rest frame (dy-
namic) and the comoving frame (geometric), and the "relation” between these
frames is described by the Lorentz transformation. The Lorentz transformation,
in SR, realizes the "creation” of a measurable time interval by a measurable
space interval (with the measure of this "creation” as the ratio of velocities of a
particle and light), only light-cone intervals are free from this ”creation”. Sim-
ilarly, in GR, the transformation between the dynamic and geometric systems
realizes the creation of matter by the geometric vacuum (with the measure of
this creation as the variation of masses of conformal quantum fields), only the
massless light-like fields are free from this creation.

There is an essential difference between the SR and GR from the point of
an Einstein’s observer. In SR, the "dynamic” and ”geometric” systems are al-
ternative (we have two different observers in the rest and comoving frames),
whereas, in GR, these systems are supplemented, as the same observer is si-
multancously in two systems (Fp|p), (Fg|T), and he observes the evolution of
particles, i.e., the "dynamic” variables (Fp), with respect to the ”geometric”
time (1) measured by his watch. While, the "geometric” variables (Fg) are
the Bogoliubov quasiparticles which diagonalize equations of motion and give
cosmological initial conditions, and the "dynamic time” () is the cosmic scale
factor as the measure of the cosmic evolution of the density of matter. The
creation of matter from "nothing” is the creation of dynamic” particles from
the "geometric” vacuum of the Bogoliubov quasiparticles. The coefficients of
the Bogoliubov transformations, in the conventional QFT perturbation theory,
determine the density of matter and reproduce all stages of the standard FRW
evolution of a universe in their conformal versions. In quantum field theory, the
space scale factor (as the zero Fourier harmonic of the space metric) converts
into the mass scale factor, so that general relativity looks like the scalar version
of the Weyl conformal theory with the measure of change of the length of a
vector in its parallel transport.

We show how to construct the unitary and causal functional integral for the
sector of measurable quantities which generalizes the standard Faddeev-Popov
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integral for infinite space-time. The stability of a quantum relativistic system
determines the arrow of geometric time T'(p9,¢1) > 0 for the causal Green
functions.

A quantum universe is defined as stable states of "free” quantum fields in the
space-time with the dynamic and geometric times; and Quantum Gravity, as
the theory of the unitary S-matrix between the states of the Quantum Universe.

Consistent limits of the generating functional in classical gravitation and cos-
mology and the conventional quantum field theory (in the form of the Faddeev-
Popov generating functional for the infinite space-time) distinguish the treat-
ment of general relativity as the scalar version of the Weyl conformal theory.

The considered quantization leads to the unification of general relativity and
the Standard Model with the Weyl geometrization of the modulus of the Higss
field and with the set of predictions, including the Hoyle-Narlikar cosmology
(where the physical reason of red-shift is changing masses of elementary parti-
cles in the process of evolution of the Universe), the cosmic mechanism of the
formation of both the masses of elementary particles and the Planck mass by
the Weyl scalar field (which does not contradict the present-day astrophysical
data), squeezed (geometric) vacuum inflation from "nothing” at the beginning
of the Universe, accelerating conformal universe at the dust stage, and the
negative result of CERN experiment on the search of Higgs particles.
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[MaBnoscku M., [lepByn B.H. E2-2000-67
«Bonpioi B3pbIB» KBaHTOBOM Bcenennoi

Iaetrcs pemapaMeTpU3alMOHHO-MHBapHAaHTHOE OOOOLIEHHE NPOU3BONAILErO
¢ynxunonana @anneesa—Ilonosa—/leBurra 11 yHUTapHOH TEOPUH BO3MYILEHHUS B
OTO B KOHEYHOM NPOCTPaHCTBE-BPEMEHHU.

[Moka3aHo, 4TO penapameTpu3alMOHHO-HEHHBApHAHTHbIE (OOLIETTPUHATHIE)
OINMHCAHUs 3BOMIOLMH BceneHHOHW M KBaHTOBOH IPaBUTALUHM COOTBETCTBYIOT pas-
HbIM TIOpSIIKaM pa3xIOkKEeHHs MOMy4EeHHOr0 HMHBAPMAHTHOIO (PyHKUMOHAIA IO
obpaTHOii «Macce» BceneHHOM.

«BosbLION B3pbIB», 3BOIOLMSA BCeneHHON, poXIEHHEe MAaTEPUH U3 «HUYEro»
BOCIIPOU3BOAATCS Ha YPOBHE penapaMeTpU3allMOHHO-MHBADUAHTHOIO IPOU3BOs-
wero (pyHKUHOHANA KaK YHCTO PENATHBUCTCKHE M KBAHTOBbIE 3(peKThI.

Pa6ora Buimonuena B JlaGoparopuu teopetuyeckoit ¢usuku um. H.H.Boro-
mo6osa OHSN.

Tpenpunr O6GbeAMHEHHOTO HHCTUTYTA NEepHBIX HccnenoBanuid. [ly6Ha, 2000

Pawlowski M., Pervushin V.N. E2-2000-67
«Big Bang» of Quantum Universe

The reparametrization-invariant generating functional for the unitary and
causal perturbation theory in general relativity in a finite space-time is obtained.
The classical cosmology of a Universe and the Faddeev—Popov—-DeWitt functional
correspond to different orders of decomposition of this functional over the inverse
«mass» of a Universe. It is shown that the invariant content of general relativity as
a constrained system can be covered by two «equivalent» unconstrained systems:
the «dynamic» (with «dynamic» time as the cosmic scale factor and conformal
field variables) and «geometric» (given by the Levi-Civita type canonical transfor-
mation to the action-angle variables which determine initial cosmological states
with the arrow of the proper time measured by the watch of an observer in the co-
moving frame).

«Big Bang», the Hubble evolution, and creation of «dynamic» particles by the
«geometric» vacuum are determined by «relations» between the dynamic and geo-
metric systems as pure relativistic phenomena, like the Lorentz-type «relation» be-
tween the rest and comoving frames in special relativity.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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