OBbEAUHEHHbIN

WHCTUTYT
SIAEPHBIX
UCCNEAOBAHUU

Lly6Ha

E4-2000-19

G.G.Bunatian*

ON THE PROTON SPECTRUM
IN FREE NEUTRON B-DECAY

Submitted to «2KypHan sKxCnepUMEHTaNbHON U TEOPETHYECKOH (PUIMKH»

*E-mail: bunat@cv.jinr.dubna.su

2000




1. Introduction. Formulation of the general task.

Long since, the treatment of the f—decay of free neutrons has been rightly conceived to
provide the straightforward way to inquire with full confidence into weak interactions in general.

Nowadays, it has been well realized that the characteristics of weak interactions are to
be acquired with a precision better than 1% in order to judge definitively the validity of the
general principals of the modern elementary particle theory. Rendering, properly speaking, the
simplest semi-leptonic process, the neutron F—decay is evidently relevant best of all for the
most reliable and precision investigation of the underlying semi-leptonic interactions. Being far
more complicated, all the other phenomena used to ascertain the main features of the semi-
weak interactions - the nuclei f—decay, the hyperon semi-weak decay, the muon-capture, and
so on - are known to involve the manifold ambiguities which preclude to attain the desirable
high-precision results. That is why within the past decade the considerable effort has been
directed towards the inquiry into the various phenomena associated with the g—decay of free
neutrons. Amongst these, what is to point out, as presentivng the special interest and advantage
to-day, is just the precision study of the recoil proton distribution; that is what the presented
work deals with.

In actual fact, to try our best in studying genuine semi-weak interactions, we have got
to-day no option, but to confront the high-precision experimental data with the results of
the theoretical calculations based on the trustworthy effective Lagrangian descending from
the general field theory. As charged particles are involved in the phenomena, electromagnetic
interactions are to be allowed for, and this effective Lagrangian proves to be of the form (see,

for instance, Refs. [1-3] )

Lint = LBBiw + Ley + Ly (1.1)

where

Lassilz) = f/g(zze(xwu () x

\I}Bf(x)[’Yozgg(Q) + gl%Maowqu + g?sqa + 75(70(9/?((1) + g?}’qa + g?T‘Tau‘IV)]\IJBi(‘T) (1.2)



renders the (V — A) baryon-lepton weak interaction, ¢ being the four-momentum transferred

in the 8-decay process. The expression

Ley(2) = —eize(x)’y"d)f(z) - Au(z) (1.3)

describes the electromagnetic-field interaction with leptons, and Lp, similarly stands for the
interaction with baryons. In (1.2), (1.3), the notations are alike ones in Ref. [1], the index
B specifies the various kinds of baryons, and the system of units A = ¢ = 1 is adapted;
Ug(z), \Ilgf(m) render the baryon fields in the initial and final states, and v, ,, A, stand for
the electron (positron), (anti)neutrino, and electromagnetic fields, respectively.

As to the gf(0) value, we adapt, alike in Ref. [2], g7(0) = 1 for the neutron decay (and
g% (0) = 0 for the strangeness-conserving decay Tt — A%+ e* 4 u() +v). Then, for various
semi-weak decays associated with definite i— f quarks transitions, u—d, s—d, b—d, the

amplitudes Gy in Eq. (1.2) are known [1-3] to be represented as
Gy = Gr - |Vigl. (1.4)

Here, Gr = 1.16639(2) - 107° - GleV=? is fixed by the muon lifetime [4], and the Cabibbo-

Kobayashi-Maskawa, C'K M, [5] quark-mixing matrix elements V;; satisty the unitarity identity
[Vaal® + [Vaal* + [Via* = 1. (1.5)

The validity of this relation is known to be warranted mainly by the contribution from the
u—d transition; |V,q| ~ 0.974440.0010 as asserted, for instance, in Refs. [4,6]. Henceforward,
we treat the free neutron S-decay solely.

In the current study, our tenet is, starting with the Lagrangian (1.1)-(1.3), to evaluate up-
right and consistently the values of the quantities measured in the correspondent trustworthy
experiments, that is, to express with a high accuracy the experimental data immediately in
terms of the effective interaction (1.1)-(1.3). Subsequently, confronting the results of calcula-
tions with the experimental data, we can acquire the values of the quantities Giy, |Vis|, g4, ...
in (1.2) and even get in position to judge the validity of the very general form of the effective

interaction (1.1)-(1.3) itself. For instance, we might judge an feasible admixture to (1.2), having



the same transformation properties as (1.2) has, but differing from (1.2) via replacing v°— —~°
(see Refs. [7-9]).

Though, by now, the terms with grs and grr in (1.2) cannot be excluded absolutely (see, for
instance, [2, 10]), and their possible availability, strictly speaking, must be investigated as well,
we abandon these terms in our study once and for all. In the common simplified treatment,
when the electromagnetic interaction (1.3) turned out, the nucleon mass is presumed to be
infinite, My —o0, and, consequently, the terms with gwas, grp disappear and the g—dependence
of gv(q), g4(q) is negligible, only the very terms with gy (0),g4(0) in (1.2) cause the bulk of the
B—decay probability. With accounting for the electromagnetic interaction (1.3) as well as for
the finiteness of the nucleon mass, the calculations provide the correspondent, relatively small,
corrections to that main quantity. Surely, the high-precision allowance for these corrections in
any given case is a matter of the desirable accuracy to which we try to specify the peculiarities
of the effective interaction (1.1)-(1.3).

From the very first, it is instructive to recall that starting with the effective interaction of the
form (1.1)-(1.3) we inevitably encounter (see, for instance, [1-3]) the ultraviolet divergencies in
evaluating radiative corrections. Consequently, the ad hoc effective cut-off parameter A emerges
to preclude these divergencies. At first, this cut-off mass A was thought to be of the order of the
nucleon mass A&My [11,12]. Afterwards, as weak interactions were ascertained to be mediated
by heavy vector bosons [13], the masses of these mesons, W —boson, or Z—boson, were realized
to stand for the effective cut-off mass, A = My>>My. The profound investigations of Sirlin’s
[14], carried out in the framework of the SU(2),xU(1)-gauge modal [15], are known to have
confirmed this previous handy prescription, to all intents and purposes. In the work presented,
we don’t contemplate plunging into the general treatment of the ultraviolet divergency, but
merely pursue the way paved by the aforecited investigations [13-15], the dependence of our

calculations on the A-value being offered in due course.
2. The agenda of the neutron 3—decay study to-day.

So far the final state after the neutron #—decay involves a proton, an electron, an antineu-



trino and y—radiation, the probability of the polarized neutron f—decay, upon summarizing
the absolute square |M;;|* of the transition amplitude over the polarizations of all the particles

in the final state, is obviously put into the following well-known general form

dW (pe, P, p., k, &) = (27)*8(M,, — Ep — w, — € — w)§(P+pe+p,+k) X

1 S My dPdp.dp,dk
2M, I 2n)22E, 26 2w, 2w
w(pea P,p,,k, 5) depedpudké(A{n -Ep—-w, —e— w)é(P+pe+pu+k)w (21)

where € stands for the polarization vector of an incident neutron which is presumed resting,
M, is the neutron mass, and p.=(e,pe), P=(Ep,P), p.=(w,,p.), k=(w,k) are the elec-
tron, proton, antineutrino and y—ray four-momenta, receptively. The familiar expression (2.1),
appropriate and handy for the following discussion, renders the momentum distribution of
electrons, protons, antineutrinos and y—rays in the final state.

Up to now, four species of experiments on the free neutron f—decay have been known to
investigate the genuine form of the effective interaction (1.1)-(1.3).

On integrating the distribution (2.1) over all the momenta in the final sate and averaging
over the polarizations of an original neutron, the calculation results in the total probability
of neutron S—decay, i.e. the reverse lifetime, W = 1/7, which is known to be measured in
experiment most precisely and trustworthy, with an accuracy of ~0.3% or so [6]. Thus, by
equating the measured and calculated 7 values, we get the first relation to specify the effective
interaction (1.1)-(1.3).

Upon integrating (2.1) over the proton and y—ray momenta and the antineutrino energy,
we arrive at the well-known electron-antineutrino distribution

dW (&, pe,n,, &) = dwdﬂ X
4

{WU(57 pevgvng) + (VE) ) WUE(57p97gV79A) +

+(nu€) : WU{(EvpeagV7gA) + (l’l,/V) : WU,,(&‘, Pe>9v, gA)} ) (2-2)
where
G? dn Pe p p
dw = —Lepw? de—=, =A— R LR =n, = 2~
W 27(3517%0 13 i €, N o v = vV, =n Tk



A=M,—M,=12043MeV , &=1/m?+p.?,

and m = 0.511MeV , M, = 939.5TMeV , M, = 938.28MeV are the electron, neutron, and
proton masses, restrictively.
Here, the dependence of the distribution (2.2) on the form of the effective interaction (1.1)-

(1.3), especially on gy, ga, is incorporated into the coefficients Wo v¢ v¢ vi. The quantities

A= in(ev pe’nggA) B= WU£(57 pervaA) o= Wuv(ev pcngng) (2 3)
Wo(l‘:,pe,_{]V,gA) ' WU(evpmgV»gA) ’ WO(avpeﬁngqA)
stand for the asymmetry of the electron and antineutrino angular distributions and for the

electron-antineutrino angular correlation, respectively. Surely, all the aforesaid corrections

having been abandoned, the quantities (2.3) take the familiar well-known uncorrected form

2g4(1 — ga) 2g4(1 + ga4) 1-g3
Ay = ———27 By = —_— = —, 2.4
T s T 143gh 0 T 1434, @4)
and the distribution (2.2) itself reduces to
dn,
AWo(e, Do, €) = dw (14 33) {1+ (vE) Ao+ Boln ) + anlmv) | (23)

By now, the electron momentum distribution irrespective of the antineutrino angular distri-
bution has been measured in several high-precision experiments [16]. Such distribution cor-
responds to (2.2) integrated over dn,, or to (2.1) integrated over all the momenta but dpe.
The coefficient A prefixed to (v€) in (2.2) is immediately acquired thereby. Thus, the second
relation has been gained in order to specify the form of the effective interaction (1.2), especially
to size up the value of g4.

So far antineutrinos cannot be registered in any conceivable experiments, we are to deal
anyway with the general distribution (2.1), or with the distributions (2.2), (2.5) integrated
over dn,. Consequently, the coefficients a, B in front of (vn,), (n,€) assigned to describe the
antineutrino-electron correlation and the asymmetry of the antineutrino angular distribution,
respectively, are not definable immediately from such experimental measurements at all. So,
there is no option for a further advance in the study of the peculiarities of neutron f—decay,

but to menage and register protons and y—rays in the final state, which is known to be many



times more difficult than to measure the electron momentum distribution [16]. Whereas the
y—radiation accompanying neutron S—decay still stands beyond observations, the proton dis-
tribution has been studied by now in two kinds of experiments [17-20], and some new ones are
believed to be carried out and come to fruition before long [21-24].

For more than three decade, a great deal of effort has been devoted in the series of the
investigations [17, 18] to register with a high precision, better than 1%, the electron momentum
pe simultaneously with the projection P=P, of the proton momentum P on an axis x, with
an incident neutron polarized along or opposite the x-direction. Such measurements provide
the distribution

dW(pm Pa:, g) = w(pev Px,f)dPede (26)

which corresponds to the general distribution (2.1), having been integrated over dp,dkdP,.
By confronting the experimental results obtained in [18] with the calculated distribution (2.6)
we arrive at the third relation to elucidate the features of the effective interaction (1.1)-(1.3).
The most promising purpose of the works [17,18] might have been to define immediately the
coefficient B in the distribution (2.2) with a very high precision, better than 1%. Yet for now,
such a high accuracy is seen to be not attainable in B specifying [18], so far the antineutrino
momentum occurring in (2.2) can’t be reconstructed precisely when the momenta of electrons
and protons are observed only, without registering the y—rays which are known to accompany
—decay unavoidably; see, for instance, Ref. [25].

The measurement [19,20] of the energy distribution of protons in the f—decay of unpolar-
ized neutrons,

AW (Ep) = w(Ep)dBp = w([P|)d|P|, (2.7)
is the fourth kind of the experiments carried out by now to investigate the neutron S—decay.
The experimentally observed distribution (2.7) corresponds to (2.1), integrated over all the
momenta but d|P|. Thus, the fourth relationship is procured to inquire into the actual form
of the effective interaction (1.1)-(1.3). As far back as in the ’seventies, the distribution (2.7)

was acquired in the experiment [19,20], but an accuracy about 5% only was attained, which is



considered to be not sufficient for now. Lately, the ingenues experimental setup [21] has been
thoroughly elaborated in order to measure the distribution (2.7) with a precision better than
1%. The correspondent measurements are known to come true for now [22] and the desirable
high-precision results are believed to be offered before long. According to our lights, we are to
try our best to acquire outright the distribution (£.7), the etfective interaction (T.0)-(1.3) put

to use.
3. Transition amplitude.

Pursuing the way proclaimed afore, we are now to evaluate, upright and consistently, the
distribution (2.7), measured in [19,20], starting with the effective Lagrangian (1.1)-(1.3). Upon
such calculating, the experimental results come out to be presented immediately in terms of
the original effective interaction (1.1)-(1.3), so that the form (1.1)-(1.3) itself and the values of
the parameters involved in (1.2) can be specified thereby. As a matter of course, so far as an
accuracy better than 1% has to be procured, all the peculiarities in describing f—decay became
of value and must be properly allowed for. In the well-known work [26], all the corrections
entailed by accounting for the finiteness of the nucleon mass have been thoroughly evaluated in
studying the electron and antineutrino distribution (2.2). The results of Ref. [26] are thought
to be adjusted, in properly way, but not just immediately, for acquiring the correspondent
corrections, to the distribution (2.7); as some simplified approach, the calculations [27] might
be referred to. We are not on the point of discussing here that task, but we have solely the aim
to scrutinize the effect of the electromagnetic interaction (1.3) on the distribution (2.7).

The effective interaction (1.1)-(1.3) is known to give rise to both the real y—radiation of
the charged particles involved in f—decay and to the virtual photon exchange between them.
To the lowest order in electric charge e, the matrix elements of the transition amplitude to be
calculated are displayed, as usually (see, for instance, [1,28]), by the diagrams presented in
Fig. 1. All the notations in the pictures need no explanations as being familiar. The diagram
a) renders the uncorrected bulk of the free neutron f—decay, and b) describes the electron

bremsstrahlung. As the proton bremsstrahlung displayed by the diagram c) is concerned, there



is no need to take it into consideration so far the nucleon mass is as 2000 times greater as the

electron one.

€ U a) € v b) € v C)
v
p n p n p n
7/
€ 1% d) e 1% e) v )
v

Fig. 1. The diagrams to describe the neutron f-decay to the lowest e-order.

With accounting for the diagrams e), f), the uncorrected, zeroth-order in e transition am-

plitude displayed by the diagram a),

M, = % 1P ) (p2) - Ty(pp)horUn(r), (3.1)

lo =7 (1+7%), horx=lgv +947%), (3.2)
is known to be replaced by the renormalized one (see, for instance, [1,28])

Mo~ Mo+ Mg, Mg = Mo(Z" + ZV)/2, (3.3)

zM = —%[ln(A/mi) +9/4 +2In(Mmy)], mi=m,M,.

In (3.1), Pe,Pu,Pn,Pp = P are the electron, antineutrino, neutron and proton four-momenta,

respectively, and uc, u,, Uy,, U, indicate their Dirac spinors. The photon mass A is introduced,



as usually, to treat the soft (infrared) y-radiation (see, for instance Refs. [1,28,29]). The con-
tribution (3.3) Mg to'the transition amplitude from the diagrams €), f) is known to diverge
logarithmically [1-3, 28] owing to integrating over the four-momenta of virtual phot«;ns. Con-
sequently, the cut-off mass A [11-14] has emerged in (3.3) to prevent this divergency, as was
expounded afore, see Sec. 1.

The matrix element presented by the diagram d), involving an internal photon line, takes

the form

i e*G, 4y u - .
Mgy = (27)4 ’ \/§d ./d k(t.(pe)P )‘u,,(p,,)) ’ (Up(pp)(hv)#)\Un(pn)) < F(k). (3.4)

The following notation has been introduced in (3.4):

F(k) = 1/[(p* = m? + i0)(Q? — M2 + i0)(K* — A2 + i0)]
(hy)"™ = y4(Q + Mp)yNgv + 947°)
P =y (4 mpy (1 +7°) (3.5)

p=p.—k, @=P+k, OEO&VQ-

Obviously, to the first order in the fine-structure constant «, the expression (3.4) incorporates
all the effects of the electromagnetic interactions between the charged particles involved in -
decay. In particular, the so-called “Coulomb corrections” are not separated as against what have
been assumed in a number of the previous papers [27,30-36] in evaluating the electromagnetic
corrections to the distribution (2.7). Let us emphasize that though outer nucleons are non-
relativistic and even have got negligible velocities, a virtual proton in the intermediate state in

the diagram d) must be described by the relativistic propagator

Q= (36)

because integrating over d*k in (3.4) involves arbitrarily large values of the virtual photon
momentum k and, consequently, of the virtual proton momentum Q. If anything, it might be
pertinent to point out that if we had replaced the function G (3.6) by the non-relativistic value,

the calculation of the radiative corrections to the transition amplitude and, subsequently, to



the B-decay probability could have reduced, to all intents and purposes, to handling their, so
called, “model independent” parts only, as was presumed, for instance, in Refs. [30,31,33-36]
accordingly the prescription of Ref. [37].

The transition amplitude corresponding to the diagram b) in Fig 1. is

M) = S 0 P () (Ul o). )

(m, 1) = (1,2,3),

where € is the y—ray polarization vector.
After all, upon lumping all the terms of (3.1-3.7) together, we left with the corrected

transition amplitude accounting for electromagnetic interactions to the lowest order in electric

charge e:
MY = My + MO + M, (33)
where
My = Mg + M,, (3.9)

. . 9 . . N
is proportional to e*, whereas Ml(,y) is linear in e.

The decay probability we aim to calculate is expressed through the absolute square

2 2
MU = Mo + My + M| (3.10)
which reduces in the first a-order to
2 2
(MO ~ [Mo|” + Mg My + MM, + [ME)| + Mg My, + MoMs, . (3.11)

‘o allow for the polarizations of the particles involved in the process considered, we rewrite, as
usually (see, for instance, [1]), the terms incorporated in (3.11) making use of the polarization
matrices pe, pu, pn, pp of the electron, the antineutrino, the neutron and the proton, respectively.
The value of the first term in (3.11) is, of course, well known,

s

. G )
|Mois|* = =22 Splpph§ pahg) - Splpeloapulos), (3.12)

10



and evaluating the quantity
[Mg MR + MoMF)is (3.13)

in (3.11) is straightforward, allowing for the equations (3.1), (3.3). The quantities hg, lo, have
been defined in (3.1), (3.2), and, as usually, @ = 7%a*4°.

The fourth term in (3.11) is
2 an * 7 o DK, <
(MO = =5 Del Splpphoapnhos] SplpcP** p, P, (3.14)

where P** is defined by (3.5). With the equations (3.4), (3.5) accounted for, the sum of the

last two terms in (3.11) can be presented in the following form

(Ms)i; = (Mg Moy + Moy, )i =

aG?, 7 4 " e .
3 (20 [ ARPRTS 0 + (TS 00)'], (3.15)
7% = Splpy(hy)** pu(ho)°]; Sura = SplpPurpy(lo)al: (3.16)

The distribution (2.7) studied in this work corresponds with the experiment on the fB—decay
of unpolarized neutrons, where only the absolute value of the proton momentum P = |P| is
registered, whereas electrons, antineutrinos and y—rays are not considered at all, as well as the
proton angular distribution. Consequently, the polarization matrices in (3.12)-(3.16) are given

as follows

10 10 ) )
Pp = Mp sy Pn = M, y Pe = (pe + m)/27 Pv = Puv, (317)
0 0 00

and we are to evaluate henceforth the yield of protons with a given value P = |P], that is, the
—decay probability integrated over the momenta of electrons, antineutrinos, y—rays and over
the proton escape direction as well as summarized over the polarizations of all the particles in
the final state. It is instructive to recall that in the previous work [38] we have treated, the
other way round, the electron momentum distribution (2.2) in the decay of a polarized neutron

just regardless of the final proton state.

11



4. The distribution of protons with momentum absolute value.

The quantity |Mo|? in (3.11) provides the well-known uncorrected yield of protons at a

given value of the momentum P = |P| [19,27,39)
G? 7
dWa(P) = dP-PT2(1 + Bgi)/dsewyo[l + aoN(e, P)]. (4.1)
€
Here, the limits of the integration over the electron energy are

€12 = —_[:I:P A -+ (42)

:I:P A]
P itself varying within

P=0<P<P=VAI—m2, (4.3)

and the notation is introduced:

N, P) = (vov) = ———(pF — PP — ), (4.4)

2wyo€
where p, = ev is the electron momentum, v, and v are the antineutrino and electron velocities,
restrictively.
After the unsophisticated familiar calculations, the contribution owing to (3.14) into the

distribution (2.7) is put into the simple, but slightly long and cumbersome form

2 E)
AWy, (P) = dP-P(1 + 3¢%) “d"/ /dkk

{ew,,[(w +e)u +2 (1 —av)] — (4.5)

%( — P4 ) \f(k+m)+ve(1+¥)u]}.

Here we have denoted:

)\2

u=1-2*(1-5), kn=\/(A—e)2 =7, w(k)=VE+),
w

=k 4+ p2+2pkz , s=(w—avk), w=A-c—w, (4.6)

and the upper limit of the integration over  is

22w, pe) = 5w + P)? — (pe + @) +1 <1 (4.7)

1
2wpe

12



Herein, feasible further reducing the quantity (4.5), being rather complicated and time-
consuming, runs nevertheless, as a matter of fact, along a conventional familiar way, so that
there sees no reason to put out here all the calculations at full length; the outcome is incorpo-
rated into the final result (4.15) for the distribution (2.7), along with the contributions from
all other diagrams in Fig. 1.

The contribution to the decay probability caused by (3.15) sets out as follows:

2
dWP(P7 Pe; Pu) = P2denpdpedp,,6(P + pe + pu)é(A —e— va(P, pe))ﬂ y
4(27!')860)”0
P
/ RGP (R) TS 00) + (P (T S00)], mp=5.  (48)

The evaluation of all the expression (4.8) comes out to be plain and unsophisticated except for

the piece incorporating the integral

2
M,m

I= 2M,,i/d4kF(k) - 7, (4.9)

the careful study of whiéh is relegated to Appendix. In Eq. (4.8), all the emerging integrals of
the type

/d“kF(k)ka}," (n,m =0,1), (4.10)
but one given by (4.9), are evidently real and their straightforward evaluating runs in a general
way, with allowance for the relations A/My — 0, (A/My)In(A/My) — 0 which hold true so
far the nucleon mass is presumed tending to infinity, My — oo. Then, upon integrating (4.8)

over dnpdp.dp,, the contribution caused by (4.8) into the distribution (2.7) results as

¥2 €2

ud®
AWp(P) = —dP-PZ4L [ de e x
€

{B0n() tn(a) = ) + 2In(GEHEE +1) + N1 - 53] +
%1n(z)[v2(3g2, +1)+N(1-g3) - %(g + 21n(ﬁp)) X (4.11)

(5+ 1294 + 1565 + 5N (1 — g3))+[2 + 3ga + 3¢5 + 2N°(1 — g3)]},

with allowance for all what is expounded in Appendix. Here

v 1—vw

T =1(3 () ~F(1/z 1)+ e IR

, (4.12)

13



F(z) is the Spens function [40]

z

F(z) :/%ln(l +1),

0
and the quantity 0p(P,¢) is defined by Eq. (A.21).
As was discussed above, see Sec. 1., the ad hoc effective cut-off parameter A emerges in

(4.11) in order to prevent the ultraviolet divergency of the integrals

3 om( A

5 ) 2600 ) » (4.13)

2Mz/d4kF (k)kaky = — aﬁ”(

which occur in calculating (4.8).
The contributions to the distribution (2.7) from the diagrams a), e), f), that is, due to the

first three terms in (3.11), when combined, result as

dW,(P) = Gidfdesw (Beh+ 1)+ N1 - g3
(4 s wol(3g4 +1) + V(1 - g3)] x
a A1, M, 9 A
;(— ln(E) +5n(=) -1 - 21n(n—1)> . (4.14)

Upon summarizing all the results (4.1), (4.5), (4.11), (4.14), after a good deal of plain, but

slightly cumbersome calculations, the distribution (2.7) sets out in the eventual form

ud(x

AW (P) = dWo(P) + dP-P

/dseww{u +35){(1 + aol)x

2 M, 9 200 1
(‘\7 + 31H(;) - 5 - 4111(7)(1 + %IH(Z')) bl ;)C —

/dy 1—y? n(va + ywyo + Vw,o? + v2%e? + 2yvw,oe ))

1 —wy)? 2ve
1 1—22 1
()07 4 ao) + /dz V(w0 =)o — h) ==+ (@l — B+ (415)
k(e)
dk ok
7 (o — k)w?(k + ) (io — i) + ~ o —vi)]} —
k()
wyo Wy
26wu0[/dk )+ B(1) +C(1) /dk (22) + B(2) + D(e2))]} +

k(e)

7 33, A
7T 694+ gA + 1n(M JBN(1 = g4) + 995 + 1294 + 3)}

Here, the quantities wyo,.J, N, ag, z2,{*> have been defined afore, and the following notations

14



are introduced anew:

K= %(]-'(z) — F(1/x) ~ In(1/a) - In(+

)
—v + %ln(z) + F(v) — F(—v),

]}(5):(‘*)1/0"'13_5”)/27 k(e):(wuo_P'{'Ev)/Q, bzl—mu

x2 (ke w0

)
. dza™ dkk™
Zn(k,€) = / b2 In(wuo) = / )

P T
-1 0

A= (- P [ 8D gy = [ D (g

-1 -1

T

, dz2ev?(1 — o? [ de 5 )
C(z) = / %(xv& —w,), D(z)= W(wz + 12— P)e(1 — a)?,
21

r(k,z) = Vo2e? 4 2vukae + k2, d(z) = [P+ &*(1 — 20?) + keb — e(e + k)] /b .
For briefness’s sake, we don’t pull out explicitly the vast expressions of the integrals in (4.16),
though they all are amenable to straightforward analytical evaluation.

Surely, upon integrating (2.7), (4.15) over dP within the limits (4.3), one gets the total

decay probability, W = 1/7. Consequently, the quantity
P,
sW = / [dW (P) — dW,(P)] (4.17)
Py

stands for the effect of electromagnetic interactions on the total decay probability. The quantity
(4.17) was evaluated earlier in Ref. [38], starting with the same Lagrangian (1.1)-(1.3), but by
integrating\ the general expression (2.1) first of all over dP and then over dp,dpedk, just the
other way round as compare to the order of integrating in this work.

Having at our disposal the result (4.15), we are in position to ascertain the effect of elec-

tromagnetic interactions on the proton distribution (2.7), which is our outright objective.

5. The calculation of the proton distribution and discussion of the

results.

Before to set forth the results of the numerical calculations, the main features of the ultimate

formula (4.15) deserve to be spotlighted.
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Surely, upon adding the contributions (4.11), (4.14), (4.1), (4.5) from all the diagrams in
Fig. 1, the ad hoc artificial photon mass A has disappeared from the final formula (4.15),
amenably to the received handling of the infrared radiation; see, for instance, [1,2,29].

With the effective interaction (1.1)-(1.3) underling the inquiry, the ad hoc effective cut-off
parameter A has emerged in order to prevent the ultraviolet divergencies which would come
from integrating over the four-momenta of the virtual photons in the diagrams d), e), f). As was
proclaimed in Sec.1, we are not on the point of treating the whole problem how to remove the
ultraviolet divergency out of the radiative corrections to the neutron f—decay. In the course
of our upright calculation, we just take for granted the received recipe, first set forth in Refs.
[13] and perfectly confirmed in the profound papers [14], which prescribes the A value to be
equal to the mass of Z— or W—boson. So, in the present work, as well as in the previous
one [38], we presume A = Mz (or A = My ) in the main calculations whose results are to
be ‘confronted with experimental data. For comprehension’s sake, we set out also the results
gained with A = My which get us to realize several interesting features of the distribution
(4.15). While the dependence of (4.15) on the A value is slight enough as being due to the
terms ~ In(A/M,), the contribution of these terms into (4.15) is of value, so far the accuracy
about 1% or better goes. What is to emphasize here is that the contribution ~ In(A/M,) in
(4.15) would vanish at all, as in the case of the decay of the y—meson [41], if the relation
ga = —gv-(i.e. ga = —1 in the notations adopted here) held true, in perfect agreement with
the general theorem ascertained in Ref. [42]. It might be well to point out that, till now, this
stringent constrain has not been adhered to in many a calculation (see, for instance, [31,32]).

It goes as a matter of course that the genuine quantity a (2.3) prefixed to vv, in (2.2),
rendering the electron-antineutrino correlation, will never o;:cur in the distribution (2.7), (4.15).
Moreover, considering the distribution (4.15), one realizes just away that beside the terms
depending on the combination ag (2.4), there exist ones depending on g4 immediately, but
not via ag. The evaluations carried out make us realize that the contribution of these terms
into (4.15) is not negligible as compare to the contribution of the terms which are multiple

of ag (2.4). Thus, confronting the calculated distribution (2.7), (4.15) with the correspondent
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experimental data, we are not in position to acquire directly the quantity a itself, or even aq,
but can judge the value of g4 only, so far the accuracy about 1% or better goes.

Starting with the effective interaction (1.1)-(1.3), we have consistently evaluated, in the
unified way, upright and straightforward, all the contributions into the distribution (4.15) from
all the diagrams in Fig. 1, without treating separately the so called “Coulomb correction”
a‘n(Al the “model-independent” and the “model-dependent” parts of the contribution from the
diagram d). So, to the first a—order, we have acquired the complete effect of electromagnetic
interactions on the proton distribution (2.7). The final result (4.15) stands in one-to-one cor-
respondence with the form of the original effective interaction (1.1)-(1.3), being immediately
expressed just in terms of the quantities Gya, g4, |Vadl, ... involved in (1.2).

Inthe calculations (see, for instance, [30-36]) pursuing the approach launched long ago by
Ref. [37], the whole contribution from the diagram d) in Fig. 1, upon rather artificial extracting
the” “Coulomb correction”, is divided into the “model-dependent” and “model-independent”
parts. In this, strictly speaking, ambiguous separating, the “model-independent” part of the
amplitude My, (3.4) is chosen to be a multiple of My (3.1). Subsequently, the corrected eventual
distribution (4.15) would be a multiple of the uncorrected one (4.1), which is apparently not our
case. In that approach, the whole effect of the remained “model-dependent” part is presumed to
be absorbed into the quantities G4, gv, g4, ... in (1.2) determining (4.1), so that they have got
the new values Gy, g%/, ¢4, ... instead of the original ones in (1.2). Thus, the experimental data
show up to be described in terms of these “new” quantities. However, any strict quantitative
one-to-one correspondence between G, g1, ¢4, -.. and Gua, gv, ga, ... has never been asserted
explicitly and definitely in the aforecited investigations [30-37]. But the guide tenet is to inquire
outright into the original effective interaction in order to ascertain, as precisely as possible, the
genuine values of the quantities in (1.2). In particular, we are in need of the stringent |V,q4
value in order to judge the validity of the C K'M identity (1.5) [5]. So, the aforesaid calculations
[30-37], making use of the very handy, but rather untenable simplifications, cannot be said to
be eligible for now. Consequently, we perform our calculation accordingly to the result (4.15)

which lumps together all the effect of electromagnetic interactions on the distribution (2.7) up

to the first a—order.
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The main results to discuss, depicted by the solid curves in Figé. 2-4, are obtained with
A = Mz = 94 GeV; the value g4=1.2662 is adopted [4, 16]. At first, we merely offer in Fig. 2,

for the sake of comprehension, the relative distribution

dwW(P) 1
P W’ (5.1)

where W stands for the total decay probability which is obtained by integrating (4.15) over dP

the limits P, P, given by (4.3). As a matter of fact, what is measured in the experiments [20~
22] is just the quantity displayed in Fig. 2. In Fig. 3, the solid curve sets forth the modification

(in percent) of the quantity depicted in Fig. 2, namely,

dAW(P) 1
( 4P 'W)

dW(P) 1 dWo(P) 1y, dWo(P) 1
=Carw—ar w)l )

= T (5.3)

where the quantity dWo(P)/dP stands for the uncorrected proton distribution (4.1), and

P, .
Wo =P/dP(du;l}(3P)) (5.4)

is the total uncorrected decay probability. The solid curve in Fig. 4 offers the modification (in

percent) of the proton distribution itself:

dW(P)y  (dW(P)  dWo(P)y , dWao(P)
*(Zap )= P~ dP ) (ap)- (5:5)
Certainly, the modification of the total probability evaluated through (4.15), (4.1),
P, P,
~ dW(P)  dW,(P) AWo(P)
6W—P/dP( - )/P/dp(——dp ). (5.6)

comes out to be strictly equal to the value §W = 8.05% obtained earlier in the Ref. [38], starting
with the same effective interaction (1.1)-(1.3), but performing calculations in a different way.
All the results obtained make us realize that the whole effect of electromagnetic interac-

tions amounts to several percent. Nowadays, this is of value to ascertain with a high accuracy
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the genuine form of the effective interaction (1.1)-(1.3), especially to gain the strict g4 value,
in processing the experimental data of [20-22]. Apparently, this conclusion is seen to be appre-
ciably different as compare to one asserted in Refs. [30,35, 36], where the radiative corrections
were inferred to be rather beyond interest in studying the proton momentum distribution (2.7).
Bearing in mind what has been expounded afore, we realize the primary origin of this mismatch
anci see no reason to be confounded.

The difference between the results obtained with utilizing A = Mz = 94MeV (presented
in Figs. 2-4) and ones with A = My = 80MeV comes out to be less than 0.1%, alike what
was inferred in the previous work [38]. So, for now, there sees no practical difference between
the calculations with A = Mz and with A = My. The short-dashed curves in the pictures
render the results obtained with assuming A = My instead of A = Mzw the solid curves
were obtained with. As seen, the deviations are visible. Especially, they are noticeable for the
quantity (5.5) depicted in Fig. 4 and for the quantit.y (5.6) whose value at A = My comes out
to be §W = 5.04% as gained before in Ref. [38].

Certainly, the various terms in the distribution (4.15) are of different species and signifi-
cance:. To the best of our believe, it is pretty much relevant to visualize the effect of the very
term 72v/0p in (4.11), (4.12), (4.15), which is scrutinized in Appendix, on the whole results
depicted in Figs. 2-4. The results of the calculations without allowance for this term 7?v/0p
are displayed in Figs. 3,4 by the long-dashed lines. In appearance, their shape shows up to be
utterly unlike the shape of the solid curves standing for the main results obtained amenably to
the complete formula (4.15).

Let us now pay attention to some curious peculiarity which shows up on the very curves at
P=P=A-—m=0.7833MeV. Surely, this tiny cusp isn’t visible in the shape of the curve
in Fig. 2. When P tends to this value P, the lower limit of the integration over de in (4.15)
evidently tends to m, e;—m. Consequently, there appears v—0 at the lower limit, whereas
the quantity ¥p (A.21) remains though very small, but still finite, 9p—(A — m)/M,, so far we
don’t presume at this point the infiniteness of the proton mass (see Appendix). To all intents

and purposes, what rules the behaviour of the distribution (4.15) in the vicinity of P is just
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the part of (4.15) containing the very quantity 1/9p, namely,

aw(P) - P
ap - oP) =30

? 272
Pl +3gﬁ)/de€wu0(1 +aoN (e, )5 (5.7)
€1

so far the remainder of (4.15) is seen to be very flatten at P~P (the long-dashed lines in Figs.
3,4). First thing, what is to emphasize here is that, even on replacing vp = v, the function
(5.7) does not diverge at P—P, &,—m, when v=(vZ — m?/e)—0 at the lower limit, ¢ = ¢,.
Moreover, the difference between the results obtained with vp and with replacing ¥p = v comes
out to be as good as negligible, amounting to ~0.3% to the whole radiative correction itself.
For that matter, it is instructive to recall that the electron momentum distribution, treated
in Ref. [38], includes the quantity (A.18) which would apparently diverge with replacing v=v,
when eé—m, that is, at the end of the electron spectrum.

Though the values of the function (5.7) itself with v and 9p do coincide practically, the
derivatives of (5.7) for these two cases show up to be quite different. Indeed, the term ruling
the Behaviour of the derivative of (5.7) at P = P + 6, 6—=+0 stems from differentiating the

function (5.7) with respect to the lower limit, namely,

dib(P) Gl

1
dpP |p=1‘3+5 ~ gt =

P(1+3¢2)(1 + aoN)m(A — m)2r?

(5.8)

3|
<2
-

As a matter of fact, the quantity (5.8) renders at P~P the whole derivative of (4.15), so far
all the quantity (4.15), but the term (5.7), is as good as constant in the vicinity of P, as one
recognizes considering the long-dashed curves in Figs. 3, 4. With 05— (A — m)/M, being very
small but finite, the quantity (5.8), remaining continuity, changes its sign at § = 0. So, the
function (5.7) itself, and thereby the very quantity (4.15), having got the very sharp maximum
at P = P, do not suffer a fracture. Yet, when op was replaced by v, the behaviour of the
derivative (5.8) and, consequently, of the function (5.7) itself would become quite different. In
fact, as v = |6]/m at P = P + 6, the derivative (5.8) would suffer discontinuity at P = P, with
its sign changing when §—+0. Consequently, in the case when vp was replaced by v, the very
function (5.7) and, subsequently, (4.15) itself would have got a fracture at P = P.

Thus, the properties of the distribution (4.15), especially its dependence on P, have been

thoroughly expounded.
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Fig. 2. The relative distribution (5.1) of protons with absolute value of the momentum

P = |P| obtained accordingly (4.15) with A = Mz = 94GeV.
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Fig. 3. The modification (5.3) (in per cent) of the relative distribution (5.1) of protons
(5.2) owing to electromagnetic interactions. The solid and short-dashed curves represent the
results obtained accordingly to (4.15) with A = My = 94GeV and with A = My = 939MeV,
respectively. The long-dashed curve stands for the result obtained with A = Mz, the term with
1/9p(P,¢) extracted from (4.11), (4.12), (4.15).
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Fig. 4. The modification (5.5) (in per cent) of the proton distribution owing to electro-
magnetic interactions. The solid, short-dashed and long-dashed curves have the same meaning

as in the Fig. 3.

23



The results obtained bring to light that if we are in need to ascertain the g4 value with
an accuracy of ~1% or better from the high-precision measurements of the proton spectra, the
effect of elec‘tromagnetic interactions is bound to be properly accounted for. As to the value of
the quantity a itself in (2.2), or even g in (2.5), thy can’t be immediately gained in studying
the distribution (2.7), (4.15), so far a precision of ~1% or better goes. Surely, it is to recall
tha‘t the corrections to the distribution (4.1) owing to the proton mass finiteness [26] must be
properly taken into consideration as well, which, in turn, entails the corrections to (4.1) caused

by the terms with gwar, grp in (1.2).
6. Concluding remarks.

Despite the study of neutron f—decay has been lasting long since, properly speaking, for all
the time of neutron physics itself existing, it was restricted until a little while ago by the high-
precision reliable inquiry into the neutron lifetime 7 [6] and the electron momentum distribution
(2.2) [16] only, as a matter of fact. Indeed, registering antineutrinos is apparently unattainable,
past questions, and all the attempts to deal with the proton distributions (2.6), (2.7) [18,20]
have turned out to be rather untenable by now, all the more that a precision of ~1% or better
goes we are in need to-day. As one might reword, only the lifetime 7 and the coefficient A in
the distribution (2.2) have been procured safely from experimental data processing, until now.

Nowadays, the situation is thought to alter towards the study of the proton distribution
in the final state of neutron S—decay. The various new experiments [23,24] as well as the
substantial improvements of some previous ones [21,22] have recently been launched in order
to obtain, with an accuracy better than 1%, both the proton distribution itself solely and the
electron and proton distributions simultaneously; the appropriate measurements are believed
to come to fruition before long. Consequently, obtained such high-precision experimental data,
the observed proton distributions are to be evaluated, in turn, with the same high accuracy
outright in terms of the received effective Lagrangian (1.1)-(1.3), undcrlyingkthe inquiry. It is

what this work has dealt with accordingly the tenet proclaimed from the very first.
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For that matter, it is to expound here that the corrections entailed by the finiteness of the
nucleon mass were thoroughly elaborated in Ref. [26] just to the distribution (2.2), but not in
the least to the distributions (2.6) and (2.7). So, such corrections are to be re-evaluated just
to the very distributions (2.6) and (2.7) in order to acquire the high-precision values of the
quantities Gua, |Vudl, g4, .- in (1.2) by processing the correspondent experimental data [21-24].

. What is to realize here is that we shall never deal with the coefficients B or @ in (2.2) imme-
diately, but only with the quantities Guq, [Vual, gv, g4, ... in (1.2) themselves, so far antineutrinos
and y—rays are left beyond registering in studying such conceivable proton or proton-electron
distributions. It stands to reason that the triple proton-electron-y—ray distributions, if ob-
served, could enable us to reconstruct the antineutrino kinematics and, subsequently, to try the
B anda values with an enough precision, as was expounded in Ref. [25].

Surely, to repose full confidence in the values of Gug,|Vaal,94,9v, ... in (1.2), the results
acquired from processing the data of the various aforecited, see Sec. 2, experiments must be
properly compared and investigated simultaneously; the prescription of such recapitulation was
offered in Ref. [43].

The methods of calculation elaborated and applied in studying the distribution (2.7), (4.15)
are certain to be relevant and eligible in treating other phenomena, where the proton distribu-

tion goes, and we are on the point of pursuing this way in our subsequent work.
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Appendix.

Here, we pick out from the general expression (4.8) the piece including the real part of the

quantity (4.9), especially interesting and worth-while for an inquiry,

G? ae
73(2m)5

(1 +3¢% +vvi(1 = g24) + 294vE(L — ga) + 294 v.€(1 +9A)) » (A)

dW (P, pe,p.) = P?dPdnpdpedp,8(P + pe + p.)8(A — £ — wyo) (Rel)x

which stems out of the non-relativistic part of the proton propagator (3.6), with Qo+ M,—2M,
assumed therein.

Accordingly [1,28,29], the integral J in (4.9) reduces as follows

1 2
:jg?ngﬂ, (A:2)
where 2p, = (1+t)p. + P(t—1). In (A.2) and hereafter in Appendix, P = (Ep,P), pe = (¢, pc)
denote the proton and electron four-momenta, respectively. Surely, in further calculating J
(A.2), we are to retain only the terms whose contributions into I (4.9) do not vanish when the

nucleon mass tends to infinity.

With the roots
m? — M2 £ ,/(Pp.)? — 4M?2m?
m? + M2 + 2(Pp.)

lig=—

(A3)
of the equation

pi =0, (A.4)

both positi‘\./e, t1,t2 < 1 and #,>t;, the consequent singularities of the integrand in (A.2) reside
within the range of integration. As usually, see, for instance, [1,28,29], these singularities
are to be treated by adding an infinitesimal negative imaginary part to p? in (A.2); then the
singularities of the integrand in (A.2) are at t5 4 ¢0 and t; — 10. We also choose the branch
cuts for the logarithms of the type In(p?), occurring in (A.2) and hereafter, so that they do not
cross the real axis; the branch must be chosen so that Sm[In(p?)] = 0 for t = 1 or t = —1.
That is what we are to keep in mind hereinafter, in course of the subsequent calculations.

Then, by introducing the new variable

P = ez 1)+ P = 2) = 1(m? + M2+ 2 P)(1 —0)(1 —137),  (AS)
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the integral (A.2) proves to be transformed as follows

J—_!o dzl L __/1 /jEln (A.6)

Let us now focus on the first integral in (A.6) which reduces to

dz
Ji= Z_w (1—t:12)(1 —tgz)[l A2

+ In(1 — t12) 4+ In(1 — ¢22)], (A.T)
where A = (m?® + M} + 2p.P)/4. The infinitesimal imaginary shifts of the singularities, ¢, +
i0, t; — 40, give rise to the imaginary part of the integral (A.7). Yet, so far the desirable
distribution (A.1) does depend just on Rel, the emerged imaginary part of (A.7) will not
contribute to (A.1) at all. Integrating the term containing In(A/A?) in (A.7) results in the pure

imaginary value

11 A 2m

va'tz_tl. (AS)

With allowance for the discussion set out before Eq. (A.5), the rest of the integral (A.7)

transforms to

271 2 1 . 27 1 . |t2 - t1|2
UL 0t —t)) = m2=10 (A
e i - 0~ 0 - w)] = 5 il (a)
So, the real part of the integral (A.7) we are in need of is merely
27 1
Red, = — - . Al
NTTA Lo (A-10)

If anything, it is to note that when we assumed for the positions of the singularities ¢, —:0, t,+:0
instead t5 +¢0, t; —i0 , the imaginary part of (A7) (which are, though, beyond our need here)
would change its sign, whereas the actually desirable real part (A.10) would not modify at all.

In the second integral in (A.6), the integrand has got no singularities within the range of

integration. The straightforward evaluation of this integral results in

v;[—ps(ln % “In(z) + i(ln(x))Z - F(l/z — 1)) , T = (A.11)

where F(z) is the Spens function [40] (4.12).
Recalling the quantity  is a multiple of 2M,,, the contributions from (A.10), (A.11) into the

decay probability (A.1) do not vanish when M,—o0, unlike the contribution into (A.1) from
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the third integral in (A.6) which proves to be proportional to

1 1
t—1—-06, t—1-6

~ondt n(t) [ ], (A.12)

where 61, = —2¢(1+v)/M,. Indeed, after variable change ¢ = (1 + 612)(1 + 21,2), the integrals

in (A.12) transform as
. =8i/(148)
—In[(1+&)(1+2)], (A.13)

-1

and then the Eq. (A.12) reduces to

272 2(1 +v)e 1

which apparently tends to zero when M,—o0, even in the very case v—0. So, the last integral

in (A.6) does not contribute to (A.1) and, consequently, to (4.9). Thus, after all, we left with

Mr? Myx*  ve

A -t

Rel = ReJ = :—Z[lnﬂ-ln(z)+‘(%ln(x))2-f(l/x— 1)+ ], (A.15)

A

which specifies the value of (A.1).

By integrating (A.1) over dep,,7 one gets the contribution to the electron momentum
distribution with respect to &, studied in the previous work [38]. The contribution of (A.1) into
the antineutrino momentum distribution would be acquired by integrating (A.1) over dPdp..
Surely, upon integrating (A.1) over dPdp.dp, and averaging over the neutron polarizations we
obtain the contribution to the total decay probability. In order to acquire the distribution of
protons with a given |P| value we are to integrate (A.1) over dnpdp.dp,. In integrating the first
three terms in (A.15), there occur no hitches and complexities. Let us focus on integrating the
last term in (A.15). What is of value to realize here is that there would emerge the divergency
at v—0 if we merely put in this term M, = oo, without any special cautions. Indeed, on

integrating this term over dnpdp, we get the value

P|27%w 2 mP?
|| I — V0 (0252 _mw,,o +

dp.d|P
pd| M, T

(m+M,)) " (A.16)

which apparently would diverge when we put M,—o0 ,v—0 simultaneously. Thus, this is one

and only point in all the course of our calculation where the presumption M,—oo shows up to
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be self-contradicting, though in the very special case v—0. Given an ¢ value, the value of |P|

varies within the limits

wyo — pe<|P|<wyo + pe - (A.17)
Then, upon integrating (A.1) over dPdp, with accounting for the limits (A.17), the contribution
due to (A.15) into the correspondent electron momentum distribution (2.2) proves to be

Gu.d aqu dpe
Surs

(m% ln(x)+(51n(x))2—f(l/x— 1)-|—7r2%>, (A.18)

[(143¢%) + (v€)2ga(l — ga)] x

where

1 2 VA ‘2 14
i(e) = E(J (04 oy y gy 20( e J (v D)2 _ 5,20 I, ) o (Aa9)
4

» Mye € (M,,
with no divergency occurring herein. The replacement 6—9m is seen to be rather
a geod approximation [38].
Next, given a |P| value, the value of € varies within the limits (4.2), the [P| value itself
varying within the limits (4.3). So far neutron is unpolarized, there are no contributions from

the terms including €, so that the desirable contribution from (A.1) into the proton distribution

(2.7), (4.15) results as follows

uda EWyo [, MM n(z 1 n(z))? — v — Wzi
dp-|P| 22 /d [In - In(e) + (5 n(@))* = F(1/o = 1) + 77 5]
((14363) + (1 = N (Pye)) (A.20)
where
15P(\PI,5)=%)2 rileta = PG 1) (A.21)

Let us recall that the terms in (A.18) and (A.20) containing 1/9,1/0p which originat.e from
(A.10) are usually associated with the so called “Coulomb correction” (see, for instance, [31-
33,44,45]). What is of value to emphasize here is that these terms have been wrought up in
our treatment, simultaneously with all other electromagnetic corrections, in upright consistent
evaluating the contribution from the diagram d), Fig. 1, dictated, in turn, directly by the

original effective interaction (1.1)-(1.3).
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Here, it is relevant to point out that the method of Refs. [1,28,29] we pursue here is appro-
priate to describe consistently, including the “Coulomb interaction”, the electromagnetic effect
only in the very case where electron and proton are in continuum, but never form a bound
state, neither real or even virtual. In summarizing the contributions from the processes to an
arbitrary-high a-order in frame-work of this method, the multiple electron-proton re-scattering
witlh vanishing relative momenta, leading to the formation of a (Pe™) bound-state, isn’t al-
lowed for. Thus, this approach provides true handling the infrared y—radiation accompanying
B—decay [38], but does not describe the feasible production of the (Pe™) bound-state, that
is, an H-atom. As one may reword, a certain species of the Bethe-Solpeter equation ought to
be drawn into consideration in order to reproduce such bound-state formation in calculating
the neutron S—decay, but this is not our task here, all the more that the probability of the
H-production is known to be negligibly small [46].

References
[1] V.B. Berestezky, E.M. Lifshitz and L.P. Pitajevsky, Relativistic Quantum Field Theory,
part I, Nauka, Moscow (1971).
E.M. Lifshitz and L.P. Pitajevsky, Relativistic Quaﬁtum Field Theory, part I, Nauka,

Moscow (1971). -
(2] E.D. Commins and P.H. Bucksbaum, Weak Interactions of Leptons and Quarks, Cam.

Univ. Press, Cambridge England (1983).
E.D. Commins, Weak Interactions, McGraw-Hill Book Company, New York (1973).

P.H. Frampton and W.K. Tung, Phys. Rev. D 3 1114 (1971).
(3] C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGgaw-Hill book company, New

York (1981).

[4] Rev. Part. Prop., Phys. Rev. D 50 (Part I) 1177 (1994).
[5] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).

M. Kobajashi and T. Maskawa, Prog. Theor. Phys. 49, 625 (1973).

[6] A. Pichlmeier, P. Geltenbort, V. Nesvizhevsky et al., in Proc. of ISINN-6, E3-98-202,

JINR, Dubna, Russia, 15-18 May, 1998, p. 220.

30



S. Arzumanov, L. Bondarenko, S. Chernyavski et al., in Proc. of ISINN-5, £3-97-213,
JINR, Dubna, Russia, 14-17 May, 1997, p. 53.
K. Schreckenbach and W. Mampe, J. Phys. G12, 1 (1992).

W. Mampe, P. Aregon, J. C. Bates et al., NIM A284, 111, (1989).
W. Mampe, L. Bondarenko, V.I.Morosov et al., JETP Lett. 57, 82 (1993).

- J. Byrne, P. G. Dawber, C. G. Habeck et al., Europhys. Lett. 33, 187 (1996).
[7] A. P. Serebrov and N. V. Romanenko, JETP Lett. 55, 503 (1992).
[8] B. R. Hostein and S. B. Treiman, Phys. Rev. D 16, 2369 (1977).

M. A. Beg, R. V. Budny, R. Mohapatra et al., Phys. Rev. Lett. 38, 1252 (1977).

[9] R. N. Mohapatra and D. P. Sidhu, Phys. Rev. Lett. 38, 667 (1977).

R: N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 566 (1975).

[10] Time Reversal Invariance and Parity Violation in Neutron Reactions, Dubna, Russia, 4-7
'May 1993, ed. by C.R. Gould, J.B. Bowman, Y.P. Popov, World Scientific, Singapure
(1994).
L. Beck, K. Schrekenbach, T. Soldner et al., in Proc. of ISINN-5, E3-97-213, JINR, Dubna,
Russia, 14-17 May, 1997, p. 199.
[11] T. Kinoshita and A. Sirlin, Phys. Rev. 113 1652 (1959),

[12] S.M. Berman and A. Sirlin, Ann. of Phys. 20 20 (1962).

[13] T.D. Lee, Phys. Rev. 128 899 (1962).
R.A. Shaffer, Phys. Rev. 128 1452 (1962).
G. Dorman, Nuov. Chim. 32 1226 (1964).

D. Bailin, Phys. Rev. 135 B166 (1964),

(14] A. Sirlin, Nucl. Phys. B 71 29 (1974); Nucl. Phys. B 100 291 (1975); Nucl. Phys. B 196

83 (1982); Rev. Mod. Phys. 50 573 (1978); Phys. Rev. D 22 971 (1980).

(15] S. Weinberg, Phys. Rev. Lett. 19 1264 (1967); Rev. Mod. Phys. 46 255 (1974).
A. Salam, Elementary Particle Theory: Relative Groups and Analyticily (Nobel Symposium

No. 9) ed. by N. Svartholm (Stockholm 1968 Almquist and Wiksells) p. 367.

31



[16] J. Reich, H. Abele, M. A. Hoffman et al., in Proc. of ISINN-6, £3-98-209, JINR, Dubna,
Russia, 15-18 May, 1998, p. 226.
H. Abele, S. BéBler, D. Diibbers et al., Phys. Lett. B 407, 212, (1997).
P. Liaud, K. Schreckenbach, R. Kossakowski et al., Nucl. Phys. A 612, 53 (1997).

K. Schreckenbach, P. Liaud, R. Kossakowski et al., Phys. Lett. B 349, 427 (1995).

[17] B. G. Yerosolimsky, Uspehy Fiz. Nauk 116, 145 (1975).
B. G. Yerosolimsky, L. N. Bodarenko, Yu. A. Mostovoj et al., Yad. Fiz. 8, 176 (1968).

B. G. Yerosolimsky, L. N. Bondarenko, Yu. A. Mostovoj et al., Yad. Fiz. 12, 323 (1970).

[18] 1. A. Kuznetsov, A. P. Serebrov, I. V. Stepanenko et al., Phys. Rev. Lett. 75, 794 (1995).
L. A. Kuznetsov, A. P. Serebrov, I. V. Stepanenko et al., JETP Lett. 60, 311 (1994).

A. P. Serebrov, I. A. Kuznetsov, I. V. Stepanenko et al., JETP 113, 1963 (1998).
(19]. P. Riehs, Acta Phys. Austriaca 27, 205 (1968).
[20] Ch. Stratowa, P. Dobrozemsky, P Weinzierl, Phys. Rev. D 18, 3970 (1978).
(21] J. Byrne, P. G. Dawber, S.R. Lee, NIM A439, 454 (1994).

(22] J. Byrne, P.G. Dawber, C. Habeck at al., ILL Experimental Report, Experiment
N 3-07-85, Instrument PL1. Date of report: Feb. the 10th, 1998.
J. Byine, P.G. Dawber, M.G.D. van der Griten at al., ILL, Experimental Report, Experi-
ment N 3-07-97, Instrument PL1. Date of report: Aug. the 15th, 1999.

P.G. Dawber, J. Byrne, M.G.D. van der Griten at al., NIM A, to be published.

[23] A. Young, in Proceedings of The Second UCN Workshop, Pushkin, Russia, June 14-17,
1999, Published by the Petersburg Nuclear Physics Institute, 1999, p.485.
S. Hodle, ibid, p.477.
W.S.Wilburn, J.S. Kapustinsky, J.D. Bowman et al., in 1999 Division of Nucl. Phys. Fall
Meeting, October 20-23, 1999, Pacific Grove, CA, Bul. of American Phys. Soc., 44, [BC.09]
(1999).

32



M.S. Dewey, F.E. Wietfeldt, B.G. Yerozolimsky et al., in 1999 Division of Nucl. Phys.
Fall Meeti'ng7 October 20-23, 1999, Pacific Grove, CA, Bul. of American Phys. Soc., 44,
[BC.11], [BC.12] (1999).

A.R. Yong, S. Hodle, C.-Y. Lin at al., in 1999 Division of Nucl. Phys. Fall Meeting, October

20-23, 1999, Pacific Grove, CA, Bul. of American Phys. Soc., 44, [BC.08] (1999).

H.P. Mumm, M.C. Browne, R.G.H. Robertson at al., in 1998 Division of Nucl. Phys. Fall

24

Meeting, October 28-31, 1998, Santa Fe, NM, Bul. of American Phys. Soc., 43, [B2.05],

[B2.06] (1998).

J. Byrne, P.G. Dawber, C. Habeck at al., ILL Experimental Report, Experiment
N 3-07-61, Instrument PL1. Date of report: Aug. the 22th, 1996.
L. Beck, K. Schreckenbach, T. Soldner at al., ILL Experimental Report, Experiment

N 3-07-103, Instrument PL1. Date of report: Aug. the 10th, 1999.

H. Abele, M.A. Hoffmann, S. Bafiler at al., ILL Experimental Report, Experiment

[25]

(26]

[27]
(28]

[29]

(30]
[31]

[32]

N 3-07-73, Instrument PL1. Date of report: Aug. the 12th, 1997.

G. G. Bunatian, ZhETF 116, 1505 (1999).

G. G. Bunatian, JETP Lett. 69, 728 (1999).

S.M. Bilin’ky, R.M. Ryndin, Ya.A. Smorodinsky and Ho Tso-Hsin, ZhETTF 37, 1758

(1959).
0. Nachtman, Zeit. fiir Phys. 215, 505 (1968).
A. I. Achiezer and V. B. Berestezky, Quantum Electrodynamics, FM, Moscow, 1959.

D.R. Yennie, S.C. Frautschi and H. Suura, Ann. of Phys. 13, 379 (1961).

N. Meister and D.R. Yennie, Phys. Rev. 130, 1210 (1963).

R. Christian and H. Kithnelt, Acta Phys. Austriaca 49, 229 (1978).
K. Toth, K. Szegd and A. Margaritis, Phys. Rev. D 33, 3306 (1986).
F. Gliick and K. Toth, Phys. Rev. D 41, 2160 (1990).

33



3] F. Gliick and K. Toth, Phys. Rev. D 46, 2090 (1992).
[34] F. Gliick, L. Joo, J. Last, Nucl. Phys. A 593, 125 (1995).

35

F. Gliick, Phys. Lett. B 376, 25 (1996).

[36] F. Gliick, Phys. Lett. B 436, 25 (1998).

[37] A. Sirlin, Phys. Rev. 164, 1767 (1967).

[38] G. G. Bunatian, Yad. Fiz. 62, 697 (1999).

[39] O. Kofoed-Hansen, Phys. Rev. 74, 1785 (1948).

[40] R. Mathuse, Phil. Mag. (Ser. 7) 40, 351 (1949).

[41] S.M. Berman, Phys. Rev. 112, 267 (1958).

[42]" R.P. Feynman and M. Gell-Mann, Phys. Rev. 109 193 (1958).

Ya.A. Smorodinsky and Ho Tso-Hsin; ZhETF 38, 1007 (1960).

[43] Yu. A. Mostovoy, Phys. of Atomic Nucl. 59, 968 (1996).

Yu. A. Mostovoy, Preprint of Russian Research Centrum “Kurchtov Institute” , IAE-

6040/2, Moscow, 1997.
[44] F. Gliick, Phys. Rev. D 47, 2840 (1993).
[45] A. Garcia, Phys. Rev. D 25, 1348 (1982); D 35, 232 (1987).

[46] L.L. Nemenov, Yad. Fiz. 15, 1047 (1971); 16, 1258 (1972).

Received by Publishing Department
on February 9, 2000.

34



Bynarau I'.T". E4-2000-19
O cnekTpe NpOTOHOB B B-pacnane cBOOOAHOrO HEHTPOHA

Mgl paccMaTpuBaeM pacyeTbl, MpeqHa3sHaYeHHbIE UL TOrO, YTOOBI M3BJIEYb C BbI-
COKO# TOYHOCTBIO, ~1% Wiy ny4diue, obLiye XapaKTePUCTUKH Cc1aboro B3auMOIenCTBHS
M3 3KCNEPUMEHTOB 110 B-paciiagy CBOOOIHOrO HEHTPOHa; ocoboe 3HauYeHHE MPHUAAETCS
SBJIEHHAM, CBA3aHHBIM C OTHayYed MPOTOHOB. BbIsCHAETCS POjb, KOTOPYIO MIPAIOT BJIeK-
TPOMarHuTHbIE B3aUMOIEHCTBHS B mpouecce PB-pacnama, npuyeM oco6oe BHHMaHHE
TNPHBIIEYEHO K BIMAHHIO Y-H3ITydEeHHs! Ha MMITYJIbCHOE pacrpeie/eHHe YaCTHL B KOHeY-
HOM COCTOSIHUM. B CcBETe 3KCnepHMEeHTOB, MPOBOAMMBIX M IUIAHHPYEMBbIX B HacCTOsLLEe
BpeMsl, MCCIIEYeTCs BIMSHHE 31€KTPOMarHUTHOTO B3aUMONEHCTBHS HA CHEKTpP MPOTO-
HOB OTayH. Pe3ynbTaThl pacyeToB, KOTOPbIE HAIJIEXHUT CPaBHUBATh C 3KCIIEPUMEHTAITb-
HBIMH JaHHBIMH, BBIPAXEHbl HEMOCPENCTBEHHO Yepe3 BEeJIMYHHBI, ONpeaessioume ag-
(bexTHBHBIH NlarpaHXuaH, JEXalni B OCHOBE HcciefnoBaHuit. OKa3biBaeTcsl, YTO MO-
NpaBKM K SHEPreTHYECKOMY paclpele/eHHI0 MPOTOHOB, OOYCIOBIEHHBIE 3JEKTPO-
MarHMTHbIMHM B3aMMOAEHCTBHAMH, NOCTUIAIOT BEJIMUHMHBI HECKOJILKHX MpOLIEHTOB. B Ha-
CTOsiILIEE BPEMsI 3TO ABJISAETCA CYLIECTBEHHBIM ISl MOJIYYEHHS C BbICOKOH TOYHOCTBIO Xa-
PaKTepHCTHK c1ab0ro B3auMONEHCTBHS U3 06pabOTKH SKCIIEPUMEHTATIBHBIX JaHHBIX M0
pacrnpeeneH’io NPOTOHOB B B-pacraje cBOOOAHOrO HEHTPOHa.

Pabora BbimonHeHa B JlabGoparopuu Heﬁfponﬂoﬁ ¢usuxkun um. H.M.Ppanka
OHAN.

INMpenpuHT O6BEANHEHHOTO HHCTHTYTA SIEPHBIX MccienoBanuii. NybHa, 2000

Bunatian G.G. E4-2000-19
On the Proton Spectrum in Free Neutron B-decay

We consider the calculations which are appropriate to acquire with a high preci-
sion, of ~1% or better, the general characteristics of weak interactions from the experi-
ments on the free neutron p-decay; the principle emphasis is placed on the phenomena
associated with the recoil of protons. The part played by electromagnetic interactions in
B-decay is visualized, with special attention drawn to the influence of the y-radiation on
the momentum distribution of the particles in the final state. The effect of electromag-
netic interactions on the proton recoil spectrum is studied, in the light of the experi-
ments which are carried out and planned for now. The results of the calculations, which
are to be confronted with the experimental data, are presented upright in terms of the
effective Lagrangian underlying the inquiry. Owing to electromagnetic interactions, the
corrections to the energy distribution of protons prove to amount to the value of a few
per cent. Nowadays, this is substantial to obtain with a high accuracy the characteristics
of weak interactions by processing the data of the experiments on the proton distribu-
tion in the free neutron B-decay.

The investigation has been performed at the Frank Laboratory of Neutron Physics,
JINR.
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