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1 Introduction

Many properties of the nuclear vibrational states can be described within
the Random Phase Approximation (RPA), which enables one to treat some
correlations in the ground state [1-5]. The low-lying nuclear vibrational
states investigated with new generation of detectors [6] and the double giant
dipole resonances observed in relativistic heavy ion collision [7, 8] provide
an excellent test for the studies of deviations from the harmonic picture
for multi-phonon excitations in real physical systems. It is well known
that due to the anharmonicity of vibrations there is a coupling between
one-phonon and more complex states [3, 5]. Usually such a coupling was
considered for the RPA phonons only [5].

From another point of view the RPA violates the Pauli principle and
many attempts have been done to improve it [9-29]. Extended RPA equa-
tions include additional corrections for the ground state correlations (GSC)
[17, 18, 27, 29]. In the papers [24, 27, 29] phonons of the extended RPA
containing corrections for the GSC have been used as a basis on which
the quasiparticle-phonon model (QPM) equations [5, 30, 31] are general-
ized. The influence of the GSC on properties of nuclear vibrational states
constructed by one- and two-phonon configurations was studied in [24].
Besides the GSC, the Pauli principle corrections arising in the two-phonon
terms due to the fermion structure of the phonon operators were taken into
account and the particle-particle channel was included too [27, 29].

However, these extended QPM equations have been derived for the case
of the so called quasidiagonal approximation for the Pauli principle correc-
tions. In the present studies we don’t use this approximation. The second
improvement seems more important. Namely, it is found that there are
additional Pauli principle corrections resulting in the anharmonicity shifts
of the two-phonon configuration energies. A correspondence between the
anharmonicity shifts of the QPM and Nuclear Field Theory diagrams is
discussed.

2 Hamiltonian of the model

We employ the QPM hamiltonian [5, 30, 31] including an average nu-
clear field described as the Woods-Saxon potential, pairing interactions,
the isoscalar and isovector particle-hole (p-h) and particle-particle (p-p)



residual forces in a separable form with the Bohr-Mottelson radial depen-
dence [3]:
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We sum over the proton(p) and neutron(n) indexes and the notation {r =
(n,p)} is used and a change 7 <+ —7 means a change p < n; a is the
channel index a = {ph,pp}. The single-particle states are specified by
the quantum numbers (jm); E; are the single-particle energies; A, is the
chemical potential; G0 and £ are the strengths in the p-p and in the
p-h channel, respectively. The monopole pair creation and the multipole
operators entering the normal products in (1) are defined as follows:

PO+ (T> = ZT( 1)J ma’j—ma;— ms

jm
AP+ (1) = Z )]+m< mj —m | A t) at a.
Mt m J J H ]] Ajmj'm'
]J TnTn
A—p
+ (—1) T 4. J ! A
M0 = U B U D G

where fj(;,) are the single particle radial matrix elements of residual forces.

3 Extended RPA

In what follows we work in the quasiparticle representation, defined by the
canonical Bogoliubov transformation:

a;—m = 1Lja;_7n + (—l)j—mrvjaj—m' (2)
The Hamiltonian (1) can be represented in terms of bifermion quasiparticle

operators (and their conjugate ones) [5, 30, 31]:
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We introduce the phonon creation operators

Qf = 35 (W25 ATG53 ) = (CDY9% AGT A - ). (3
i
where the index A denotes multipolarity and pu is its z-projection in the
laboratory system. One assumes that the ground state is the ERPA phonon
vacuum | 0), i.e. Qi | 0) = 0. We define the excited states for this
approximation by Qj\'ﬂi | 0). The following relation can be proved using
the exact commutators of the fermion operators:
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where ¢, = ¢; + ¢y and ¢; is the quasiparticle distribution in the ground

state: ¢; = T (0 | o, 05m | 0) (27 + 1)"!. The quasiparticle energies (g5,
the energies of the ERPA excited states (w,,), the chemical potentials (\;),
the coeflicients (u,v,1),p) of the Bogoliubov transformations (2), (3) and
the quasiparticle distributions in the ground state (¢;) are determined from
the following non-linear system of equations obtained by using the general
equation of motion approach [1, 11]:
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where N(7) is the number of particles. The variations datjy, and 6Q)),; have
the following form:
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The system of equations (4)-(9) can be derived using various approaches,
c.g. [14]. For ¢; = 0 the system of equations (4)-(9) reduces to the usual
BCS and RPA equations with the p-h and p-p channels [5, 30].
~ The equation (5) have been obtained under the assumptions:

<0| {O‘jim’, ’ [H’ ajm]} Ojrm Ojymy | 0> ~ 0, (10)
(O] [H, o] tjumy | 0) = €556 m,jym (11)
<0| {[H, Od;'m] ,ajlml} O‘;;m'aj’lm’l | 0) ~ gjqj/éjrrl,jlm16j’m’,j’lm’1' (12)

If we put ¢; = 0 then these approximations correspond to the procedure of
the linearization of equations. One can derive the equation (9) using vari-
ous methods [12, 16]. Using the completeness and orthogonality conditions
for the phonon operators one can express bifermion operators AT )
and A(jj’; ) as
> Xi A—p N

AT ) = (1 = qjjf);(wj}/QLi + (=)o @Que)  (13)
It is necessary to point out that the solutions of the system of equations
(4)-(9) obey the following equalities:

<O| [Q/\pia [H7Q:\|_ui’H |O> ERPA — w’\iéiil’ (14)
<O|HQ§1M11&QL}122’2 0> ERPA 0.

The proof of these statements is analogous to that in the usual RPA case
(2]

As it was shown in Refs.[17, 24, 29] the ERPA calculations give a better
agreement with experimental data for the characteristics of the low-lying
states than the RPA ones.

4 Generalized QPM equations

The GSC affect not only the RPA, but they also should change
the quasiparticle-phonon coupling (see Refs.[24, 27, 29]). To take into ac-
count such effects we follow the basic ideas of the QPM. Hereafter we



generalize the extended QPM equations [24, 27, 29]. As it was shown in
[32] the pairing vibrations give a negligible contribution to ¢;. On the
other hand the two-phonon configurations including the pairing vibration
phonons have an energy essentially higher than the configurations con-
structed from usual vibration phonons. That is why we do not take into
account the coupling with the pairing vibrations (A = 0) in what follows.

The initial Hamiltonian (1) can be rewritten in terms of quasiparticle
and phonon operators in the following form:

H = hy + b} + hQQ + hQB, (15)
ho + hf =3 ejal, ajm,
jm
hgg = hi + hy + hs,
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The coefficients of the hamiltonian (15) are given in Appendix A. The term
hgp is responsible for the mixing of the configurations. While constructing
the hamiltonian (15) we have neglected the terms ~: B(jj; A\) B(j1jy; A+,
which do not lead to coherent effects and the energy corrections due to these
terms are small in spherical nuclei [5, 33].

The commutation relations HQhQﬂ ,Qﬂa HQT,CH] ,Qﬂ and
|Qs, [QF, Q3] are calculated by using the transformation (13).

[Q1,Q35].QF] = S K (4123)Qs + K(4123)QF (16)



[[@F,QF]. Q7] =2431&"3(41|23)Q4+I{2(41I23)QI ‘<17>

Qs [QF. Q3] = 24: K5(41123)Q4 + K4(41]23)QF (18)

These coefficients are of fourth-order in phonon amplitudes. In what
follows one needs the coefficients I';, Ky, Iy, K4 only. They are given in
‘Appendix B. We obtain the anharmonic corrections taking into account
these commutation relations.

Hereinafter the ground state is approximated by the ERPA phonon
vacuum. Using the ERPA phonons as a basis the wave functions of the
excited states of even—even nuclei can be written as:

(>\l/4 /\,Lw|0> (19)

where
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The wave functions (19) have the normalization condition

SRV + Y X PUNIv)PE(I) x (20)
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We use the equation of motion method to diagonalize the hamiltonian (15)
(O] [0, [H, 2, ]] 1 0) = B, (0] [6Q, ,,] 10),

where the variation 6€2),, has the following form
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The variational principle yields a set of linear equations for the unknown

wave function coefficients R;(Jv) and PAA‘[;(J v)

(W) (p) =2 (7 ) () e



with the additional condition (20). The matrix U” is a transpose of the
matrix (/. The number of linear equations (21) equals to the number of
one- and two-phonon configurations included in the wave function (19).
The notations introduced above are

Wl gl ()‘) = <O] [Q)\,Lti' ) [Hanpz” IO>7 (22)
Wil (V) = (1) (23)
(0] [(QA;u;ngAqugiq)A# , [H’ (walilQLW?)M” |0),
Ui raiy ) = (O] [Quais [, (@0 Qi) ]| 100, (24)
Iiil = 6i’,i7
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Now we calculate the matrix elements (22), (23) and as a result we get

i 1 2J'+1) 1
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The matrix elements (22), (23) have been evaluated by keeping all terms
containing the first power of coefficients K, K; and products K K, only. We
took into account also the terms containing the products K K that include
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the 13y terms. The other terms including the products K K; are smaller
and they are neglected. The terms with products K;K; were not taken into
account for these matrix elements because they have no 14,¢3p terms. It
should be pointed out that the matrix element (25) differs from the phonon
energy in contrast with the ERPA case (see Eq.(14)). This difference is
due to the approximations (10),(11),(12). The corrections to the matrix
element (14) include phonon amplitudes of the next orders. Only the terms
hy and hg of the hamiltonian (15) contribute to these corrections. Then,
these corrections become zero if » = 0 (see the explicit form for X, K7,
K,). It should be mentioned that we do not use so called quasidiagonal
approximation for the coefficients K and K.

The values AT are anharmonic shifts of energies of the two-phonon
conﬁgurations due to the Pauli principle corrections, where AZ* = AD) +

AW + AW},
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One can prove that Aw} > Aw) and Aw; > AW} in the case 1 > .
Moreover, the shifts Aw@ and Aw§ become zero if ¢ = 0. It is necessary

> K (ig, i | M Agia) KA, o | )\1-1'1,)\22'4)>) .
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to emphasize that only the terms hy and hg contribute to the shifts Awﬁ
and Aw). The shifts Aw) and Aw} have been neglected in our previous
papers. The matrix elements coupling one- and two-phonon configurations
(24) are

UN i iy (N) = ZU&? (Ni,7) + Ua 3t (Ni,7) +
(=1)M N U3 (i) T (ML 7).

where

iy 1 .
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53\1117 ( ) % <Lh]2 + LJZJ] )) ?

. 1 .
Up ) (N, 1) = (1)t f¢<2xl+1>mz+1> S T (1=gjp) %

2 J1J2J3

Ao

fju'z At A2 A (E/\m(> Aviy, i ﬁ/\zw() Ai /\m)
Vo J1 3 Jo Jij2 (79]2]399]3]1 J2J1 jagi Wings ) 0
VR

U§;§1(A7¢, T) = A ZA (U7 (N, T)EANiNgiy | Aviy, Aaia)+
14! 37‘3
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X
A+ 1
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J!

M A2 AN (o n
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VS VD N R
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The terms including the coefficients K in (29) were neglected in the papers
[24, 27, 29].

Solving the system of equations (21) we obtain the energies (E,) of ex-
cited states and the coefficients R;(Jv) and PAA;,Q(J v) of the wave function
(19). These equations are more general than ones derived in [24, 27, 29].
They have the same form as the basic QPM equations [5, 34]. The GSC
change phonon energies wy;, the anharmonic shifts of two-phonon configu-
rations and the matrix elements coupling one- and two-phonon configura-
tions. In the case when ¢/ >> ¢ the system of equations (21) can be reduced
to the system of equations of the extended QPM (24, 27, 29]. If we put
gj=0,X;=0and K; =0 we get the usual QPM equations with taking
into account the Pauli principle corrections [5, 31, 34]. In the case when
¢ =0, K =0 and K; = 0 we have equations describing coupling of one-
and two- RPA phonons without taking into account the Pauli principle [5].

5 Anharmonic shifts of two-phonon configurations

Now we discuss the correspondence between the QPM equations presented
above and the diagrams of the Nuclear Field Theory (NFT) [3, 35]. For
the sake of simplicity we compare these approaches for the hamiltonian (1)
including the average nuclear field and the isoscalar particle-hole residual
forces only. Besides that, we put ¢j = 0 in the system of equations (21),
Le. conventional RPA phonons are used as the QPM basis in this case.
The NFT is a formulation of many-body perturbation theory with vi-
brational modes summed to all orders in RPA. Its building blocks are RPA
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phonons and the single particle degrees of freedom which are described in
the Hartree-Fock approximation. The coupling between them is treated di-
agramatically in the perturbation theory. Diagrams illustrating first order
coupling between the surface vibrations and the fermion fields are shown
in Fig. 1. The wavy lines are phonon propagations, while the particles and
the holes are depicted by the arrowed lines. The lowest-order anharmonic
terms of NFT contributing to the energy of two-phonon states are repre-
sented by fourth-order diagrams shown in Fig. 2 [3,35-39]. These graphs
are called butterfly-type (A,B), trapezoid-type (C,D), and diamond-type
(E,F) diagrams. For each diagram shown in Fig. 2 there are 5 other dia-
grams which are obtained by changing the direction of the phonon lines.
One can rewrite the system of equations (21) in the space of two-phonon
states. The diagonal approximation for the matrix element W), fl (A)
(W, jl (A) = b0 Wil (X)) enables one to find the coefficient R;(Jv) from the
first equation of the system (21). Substituting it into the second equation
of this system one can get the following secular equation to find energies

det H <5i’2,i2 Wi (A1) + 6y, Wi i ()\2)> O 00 0,
6’\'1v/\26)\/z«\1 (_1)/\1+/\2+/\ <61/211 Wi z; </\2) + 6i/17i2 Wy Z (/\1)> +
AT (N, il | Aty Aada) — AU Nyiy, Nyt | Ayiy, Aoia) — E,| =0,
where
L{Ai' y (A) L{)\/i'l 1l (A)
AUMNGi, Nt | iy, Agia) = 3 —indeiz VN A Xoiy
(Agin, Aiy | Avit, Aain) Zl: WiV = B,

It is seen that the values AU and Aw are anharmonic shifts of two-
phonon states. The term hgp does not contribute to the energy shifts of
A, while it results in the energy shifts of AU. Furthermore, the term hgn
contributes to the scattering vertices (see Fig.1 (A), (B)) only. A proof of

this statement is similar to one of [38]. For example we consider terms AK
(see (26)) and AU, (see (30)):

AI&"\(/\42'4,/\31'3 | )\1i1,/\2i2) =

lz Z Y/\aislé (7_) + 7/\3i5i3 (7_)
4 = 0 4/)}1/_\31'33}‘;\3%

Ua22 (Nis, 7) Up}% (Xis, 7)

AUM Ngiz, Aaig | Agig, Ajig) = il >
2 Ohsis, M |t Xiin) = 28 Wi (\) - E,

(30)

K (A\siy, Mg | A1y, Agly),
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Figure 1: Diagrams illustrating the first order coupling between the surface vibrations
(wavy lines) and the fermion fields (arrowed lines).
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Figure 2: The NFT diagrams describing the lowest-order interaction between two phonons
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Figure 3:  The QPM diagrams (A) and (B) illustrating the anharmonic shifts
AKNAgig, Aais | Ay, Aota) and AU (Aaia, Agiy | Aoty Mzp) of energies, respectively.
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The anharmonic shifts of energies AK’\()\42'4, Asis | A171, Agiy) and

AU (N33, Miy | Agiz, Aiip) can be illustrated by the QPM diagrams [5, 31]
shown in Fig. 3 (A) and (B), respectively. If the intermediate phonon
line (i5) in these shifts are changed by the two-quasiparticle state lines
(iie. ¥ =1 and ¢ = 0), then these shifts can be represented by the
fourth-order diagrams of the NFT (Fig. 2). In this case the term AK
corresponds to the butterfly-type diagrams, while the term AU, can be
presented as the diagrams of the trapezoid-type and the diamond-type.
Using the same method one can prove that the shifts Aw and AU (see
(26-28,30)) correspond to diagrams shown in Fig.2 (A), (B) and Fig. 2
(C), (D), (E), (F), respectively. The shifts Awy and Awy correspond to the
butterfly-type diagrams.

6 Conclusion

A consistent treatment of the ground state correlations beyond the RPA
including their influence on the pairing and the phonon-phonon coupling
in nuclei is presented. A new general system of nonlinear equations for
the quasiparticle phonon model is derived. It is demonstrated that this
system contains as a particular case all equations derived for the QPM
early. The new additional Pauli principle corrections resulting in the an-
harmonic shifts of energies of the two-phonon configurations are found. It
is shown that the anharmonic shifts due to the Pauli principle corrections
correspond with butterfly-type diagrams of the nuclear field theory, while
the anharmonic shifts due to the matrix elements coupling one- and two-
phonon configurations give rise to the trapezoid-type and diamond-type
diagrams of the NFT.

Acknowledgments

We are grateful to Profs. W.Nawrocka, A.I.Vdovin for fruitful discussions.
This work has been partially supported by the Bulgarian Plenipotentiary
grant for 2000.

16



Appendix A

The coefficients of the hamiltonian (15) are given by the following expres-
sions:

L Al
—X—/\u (7_) .))2

(DY (7) + DY (r) 24 () + DX () 227 (1)

Z¥(r) = @ (DY () (1= 17 (7)) + F* (v) + (DY (r) + DY (7)) x

(zil )= 2 () + BN (N8 (1) - B (a7 (1) +

J/“ (148 (1)) = B (1) + (Dﬁi/ (r) — Dfl (r)) X

Y (r)+ 2 () + 0 () B (1) =t (1) B (7))

Au Ry A i Xi X
FD 2= (1)~ B (r) + (DY (r) — DY (7) x
(2 (1) = 22 () + 87 (1) B (r) = 4} (1) FY ()

y/\i _ 2(2)\ + 1)2

T i A, ph Aph ; A ph Aph)\\ 2
(D () (") 4+ 70 + DY (=) () = £{2))

i A, A, i \ A, (App
” DY (r) <h£) pp)_*_,g(l pp)) + DN (=7) (hg pp) —/«.,(1 m))

A \T) =+ Nph N ph ; N ph A ph
DY (7) (56" + £ + DY (=r) (56 = k)

n= {+7_}
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F,\z (r) < (App) K(A z?p> + FM( ) <K8A,pp) _ H({\PP))
(

t/\l( )
; T oh Yok ; o ok
D)i (T)< ( p)+h( p))+D3 (—T)<'€o p)_,{g p))
ny = {0, 1,2}
Jjj
DY (1) = X7 (1 = a0 (W F 23)
i
R r) =X (1 = ggule
i’
FIM Z fj)\/ 1 —q;;) ( - Uj(]_/)> d);\;'
FQ/\i(T):Z;Tf;\j’< qn)< (+)_U( ’)> (’OJJ
i
215?5) = ujujy £ vjvy uﬁ) = Ujvy + vju g

Appendix B

The coefficients K have the following form:

ANy . cN Ap
IX (/\2227A121 ' )\]ll,A‘ZZQ) - Z C’\llul’\l'UZC)‘llﬂa)\/z#/z X

Haphaphyr o
e T Y ! ! . .
K (N pts, 1H1% | ALpt, Agpata),

K7 (Nyiy, Nd' | My Aaia) = /(20 + 1)(2X + 1)(2N + 1)(2X, 4 1)

J1oJ2 Ay
S (L= ) (=1)Faethe okl 8 g g b
J1J2J3)4 )\ )\2 J
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¢)‘I21/2¢)‘212¢ My Agis N i +
Jij2 7 jaj2 ¥ jaja J1J4 99]1}2(’9]3]29%3]4(’9]1]4

(_1)J&+jz+j3+j4+/\+/\g+)\’+)\’2+,]{ A Ay T }{ Xy T
J2 Ja J3 J2 Ja 1

Aoihy  Noiy 1A Aty 1 Agiy
( Juz‘fjjwz%m%an_lez Js]»%uzl(p]m ’

Y . K _ Ay )\/,L
K (Nyi, Nydy | Arins dgig) = 3 CXo = Oy, X

1y fhy
AM—p1 - [ VA ] . .
(-1) Ki(Agpyin, Njpydy | Apadn, Agptada),

K (Nyaly, Ni' | Xy Agig) = /(20 4+ 1) (209 + 1)(2N 4+ 1)(2X, + 1)

. A A, T
Z (1 — .4)(_1)]1+J3+)\+/\2 { ‘ ‘2 / } x
iufedais ! ji Ja Js

J )\I A '] N Ay | A Ai Aoia Abi
<(_1) {]2 ]’4 ]‘1 <¢j4]1¢]2]1<’9ﬁ;32w]4jsz - 97]4]199]22J1¢122]23 p]f}f) +

!
A /\ J ll Aoy '7l2 _ A Aals /)\ﬂy
Ja jo i Jle 1411 j2ds Piajs 9’]2]199]4]19‘9”3 jaga ) |

’,— / ./ . . _
K3 (Xyiy, Ajiy | Avin, Aoia) = 30 C,\Wl,\MC’X — Ny X

Hapzfiy o

MNo—pi=1 1~ . . . .
(=1 Ry (N X | Aipris, Aapisia).

K Ny, N1 | Xiy Agidn) = /(2N 4+ 1)(20g + 1) (2N + 1)(2X + 1) x

J1Ja A
2 (1= gy (IR Gy X
Jij2jaja Ay J

Aoiy s Aaia Ay

A 919
( iz Visja 99]3]41/]1]4 99]1]299]%]21/}]3]499]1%) +
Y
(__1)jl+j2+j3+j4+)\+/\2+/\'+)\'2+J Ay T Ay T «
J2 Ja )3 J2 Ja
/\217 /\212 /\lq Agio
(93]1}2 Ja]z“ph]‘; ]3]4_(’0]1J2 l/Jajz 1#]1]49933% ’
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/ . .
K3 (Xoih, Nyil | Avin, Aaig) = 37 C',\lm,\2 MC)\'—//)\' , X

Hifeafiys ot

M—=pi+Xo=pa=1 = NI 10 NI . .
(=1) Ky(Aopiyiy, Ayphdy | A, Agpugis),

I (A, Ni X Agi) = /(20 + 1) (20 + 1)(2N + 1)(2X, + 1)x

J1 J2 A
3 (1= gy (=1t it G e W
J1J2J3Ja A Xy J

Ayihy Aoiy Ay ) Aoy
< J1Jz <70]3]299]3]41/}]114 <1‘7]1]z¢]312 w]a]q 11]4 +

(_1)jl+j2+j3+jq+«\+/\z+/\’+)\’3+J{ /\ )TQ J }{ /}' Ay J}x
J2 Ja J3 J2 Ja

Al Aoty N7 Abih  Aois //\1
<<’911]2 ¢]3]2 93]1]4 ]3]4 - d]l]Z ¢J3J2 ]1]49‘9]3]4 )
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Ceseproxun A.Il., Boponos B.B., Kapanxos [I. E4-2000-257
Koppensuuu B 0CHOBHOM COCTOSHHH K AHTapMOHMYHOCTb BUOpaLMii

Ilpencrasnen meron, no3BonsoWMil COMIACOBaHHO TPaKTOBaTh KOPPENSILHH
B OCHOBHOM COCTOSHHMH 3a NpENeNaMH IPUMEHAMOCTH MPUGIHXEHHs CITy4aiHbIX
as. [Ipu 3T0M OIHOBpEMEHHO YUMTBIBACTCS BIMSHME STHX KOPPEJIALMIA Ha Criapu-
BaHHE M CBA3b CO CIIOKHBIMH KOH(Hrypauusimu. BriBenena obimas crcrema Henu-
HEHHBIX ypaBHEHMH IJId KBa3H4aCTHYHO-pOHOHHOM Monenu (K®M). ITokasaHo,
4TO 9Ta CUCTEMa YpaBHEHHII CONEPXMT KaK YacTHbIH Ciyyaii ypaBHeHnus K@M, no-
Jly4eHHbIe paHee. HalneHbl HOBbIE MONpPABKH, BO3HUKAIOLIHE H3-3a y4era NpUHLK-
na Ilaynu, KOTOpble MPUBOAAT K CHBHram ABYX(POTOHHBIX KOHGHTIYpaIIHii. Obcy-
KHaeTcd B3aUMOCBA3b MeX/y 06061eHHbIMU ypaBHeHHs M KDM 1 TeopHueH saep-
HBIX IOJIEH.

Pabora Bemonnena B JlaGoparopuu Teopernueckoii ¢usuku um. H.H.Boro-
no6osa OUSIU.

Coobuenne O6bennHeHHOro MHCTHTYTa SAEPHBIX Hccnenosanuii. ly6Ha, 2000

Severyukhin A.P., Voronov V.V., Karadjov D. E4-2000-257
Ground State Correlations and Anharmonicity of Vibrations

A consistent treatment of the ground state correlations beyond the random
phase approximation including their influence on the pairing and phonon-phonon
coupling in nuclei is presented. A new general system of nonlinear equations
for the quasiparticle phonon model (QPM) is derived. It is shown that this system
contains as a particular case all equations derived for the QPM early. New addi-
tional Pauli principle corrections resulting in the anharmonical shifts of energies
of the two-phonon configurations are found. A correspondence between the gener-
alized QPM equations and the nuclear field theory is discussed.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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