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1 Introduction

One-dimensional harmonic oscillator model with a monopole-monopole residual in-
teraction was suggested by Suzuki (1] in 1973 year. Using a mean field approach
and a small amplitude approximation he gave the qualitative explanation of the
nature of the recently discovered giant monopole resonance. However, the main
interest in this model is connected with the fact that it has the exact solution. It
is known that in a Hartree approximation the model is reduced to a time depen-
dent Schrédinger equation with a harmonic oscillator Hamiltonian, the frequency
of which is time dependent. Its analytical solution has been found by Popov and
Perelomov [2]. So we have here the rare example of the nonlinear problem having
the analytical solution. That is why the Suzuki model is widely used as a test for
different approximate methods to describe the large amplitude nuclear collective
motion [3, 4, 5]. The first attempt to treat this model without a small amplitude
approximation has been made by Kirson [6] who gave its algebraic analysis and
found numerically its "exact” solution. The interest to investigate a collective mo-
tion going beyond the usual RPA (small amplitude approach) has been spurred after
the experimental discovery of high-energy structures in heavy-ion grazing collisions
and their interpretation in terms of multiphonon excitations of giant quadrupole
resonances (7, 8, 9]. We consider this model with the aim to verify the possibilities
of the method of the Wigner Function Moments (WFM) in studying the large am-
plitude motion and nonlinear effects accompanying it. The simplicity of the model
allows one to observe the appearance of the anharmonicity in the collective spectra
and clarify some problems of quantization of classical equations of motion for the
collective variables describing giant resonances. Besides, using the WFM method
one is able to perform more extensive analysis of the collective aspects of the Suzuki

model.



2 Formulation of the method

The basis of our method for the description of collective nuclear dynamics is the

equation of motion for the one-body density matrix p(ry,rs,¢) = (r1|p(t)|rs) :

0 _

ih@t - [ﬁ’ﬁ]’ (1)

where H is the self-consistent one-body Hamiltonian depending implicitly on the
density matrix.

This equation is modified by applying the Wigner transform of the density
matrix [10]

fe.p.t) = [ s expl—ip-s/mple + 5x— 2,0 )

and of the Hamiltonian

HY (r,p) :/dss exp(—z’p-s/h)(r+§‘1:1‘r~ g) (3)
Using (2,3) one arrives at 11, 12]
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where the upper index on the nabla operator stands for the function on which this
operator acts. The right-hand side is just the brief notation of the infinite series
corresponding to the expansion of the sine-function. When one takes into account
only the first term of this expansion, one obtains the equation equivalent to the
Vlasov equation for the distribution function. If the Hamiltonian is a sum of a

kinetic term and a local potential V(r), its Wigner transform is just the classical

version of the same Hamiltonian

HY = p¥2m + V(). (5)
Then, equation (4) becomes
of 1 _2. (hoy oy
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Now we apply the WFM method to derive a closed system of dynamical equa-
tions for Cartesian tensors of second rank. This method has been suggested in
[13] and is described in detail in ref. [14]. Its idea is based on the virial theorems
of Chandrasekhar and Lebovitz [15]. So without going into details we integrate
equation (6) over the phase space {p,r} with the weights z;z;, piz;, p;p; to get the

following system:

d 1
—Ji]-(t)—a(L,-,j-;-Lj,,-) = 0,

dt
1 ov
L0+ 5 [ dpr) a3 rrp ) = () = 0,

Tj
d 1 ov
d_tHij(t)+ %/d{p,r} Itpia_l'j]ijf(r,p,t)

1d
2dt

0, (7)

where [d{p,r} = 4/(2xh)® [ d®p [d® and [...J;; means symmetrization with re-

spect to the indices ¢ and j ([a;b;];j = a;b; + a;b;). We have introduced the notation

Ji]'(t) = /d{P, I‘} :E,‘Zij(I', p,t)

for an inertia tensor,
L) = [ d{p.x} mis(e,p,0)

for a mixed momentum-position tensor and

IL;(t) = ﬁ/d{p,r} pip; f(r,p,t)

for the integral kinetic energy tensor.

We thus have derived a system of three dynamic equations for three collective
variables J;;(t), L ;(t) and II;;(t). It is necessary to stress that these equations are
exact because up to this moment we have not made any approximations. To close
this system of equations, one needs to represent the integrals involving derivatives
of the potential V(r) in terms of the three variables mentioned. This problem can
be solved rigorously in the case of V with quadratic coordinate dependence (which

is the subject of this paper).



3 Suzuki model

The microscopic Hamiltonian of the Suzuki model [1] is

where 7 is the value of the tensor Ji; for an oscillator ground state. Usually, it is
studied in a Hartree approximation. The time dependent mean field of the model
1s

Waﬂzgﬁﬁ+mﬁwMH—%ML (9)
where J = Jyi(t). It looks like the harmonic oscillator potential with the time
dependent frequency w?(t) = w?+ 2 k(J —z2). The exact solution of the Schrédinger
equation with such a potential has been found by Popov and Perelomov [2]. Roughly
speaking, it is the usual oscillator wave function whose arguments are modified by

the linear independent solutions Z; and Z; of the classical equation
7+ (t)Z = 0. (10)
One can write Z; and Z; in the form
Zy = r(t)e"Y,  Z, = 77,

with r(t) and y(t) obeying the differential equations

w?
P — +wi(t)yr = 0,
r

¥y—-W/r* = 0. (11)
The constant W, being proportional to the wronskian of eq. (10)
AW = 212y — Zy 74,

is determined by the Initial Conditions (IC).
Suzuki estimated the energy of the giant monopole resonance in a small am-
plitude approximation, neglecting the nonlinear effects of the model. They were
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considered in the papers [3, 4, 5] where this model was used to test the different
approaches to the investigation of the large amplitude collective motion. We pursue

just the same goal with our method.

3.1 Equations of motion

For the potential (9) equations (7) become

%J+ J [%wz - JO)] — I

Il
=

Il
o

I+ J [%wz +&(J = Jo)] (12)

with Jo = 22, I = II14(t). The time dependence of tensors is omitted for the sake of

simplicity. The second equation of this system is reduced to the integral of motion
I + %w'ﬁu g(J—JO)z =E, (13)

whose physical meaning is that the total energy of the system is a conserved quan-
tity. It is indeed easy to see that it is equal to the Hartree-Fock average of the
microscopic Hamiltonian (8), i.e. £ = (¥ | H | ¥). Another integral can be found
by multiplying the second equation of (12) by J and subtracting it from the first
equation multiplied by J

J(OI(t) — %j(ty =, (14)

where the constant ¢ is determined by IC. With the help of equation (14) one is

able to reduce the system (12) to the single equation

my Mmoo _ _f_Mmip_
T TS AT = d)) = 5 - P =0, (15)

Changing the variable J = Jor? this equation can be written in the form

/

F 4w (t)r —wrs =0, (16)

r3

where w?(t) = W [14+2k(r?=1)], &=« J02
mw

and ¢’ = 2¢/(mw?JE). One recognizes

immediately in this equation one of the above written equations (11), the constants
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W and ¢ being linked by the relation W? = w?¢’. If one supposes here ¢’ = 1 this
equation becomes identical to the corresponding equations of refs. [3, 4]. Such a
choice of ¢’ was dictated by their choice of the initial condition w(t = —o0) = w
which is not accidental - just this initial condition has been used in [2] to find the
exact solution of the problem. The analysis of the ¢’-dependence of equation (16)
allows one to find out new properties of the model.

Solving equations (13) and (14) with respect to II, one can rewrite the energy

in a more traditional form, as a sum of kinetic and potential energies

m., ¢ m , K 9
= — -+ — —(J — 1
E 8JJ +J+2wJ+2(J Jo) (17)
or in terms of r
E= %JO{P FWrt 4+ ¢+ R(r2 — 1)2). (18)
The r-dependence of the potential
m o, 2 0.2 (2 2
Vir) = Jw Jo[r® + ' /r* + R(r® — 1) (19)

for various values of & is schematically illustrated in Fig.1.

3.2 Equilibrium state and small amplitude approximation

By definition, at equilibrium the kinetic energy is equal to zero and the potential

energy is at its minimum. The equation determining the extremums of V(r) is
g(r)—¢ =0, (20)

where g(r) = r*[1 4+ 2&(r? — 1)]. The function g(r) is sketched in Fig. 2.

It is seen that in the case of £ > 0 the polynom (20) has only one positive root
for ¢’ > 0 which corresponds to the minimum of the potential (see fig.1). It describes
the stable equilibrium state which is more compressed (Je, < Jo) than that of the
harmonic oscillator when ¢’ < 1 and less compressed (Jeg > Jo) when ¢ > 1. Using

an analogy with equilibrium deformation, one can say that the system has positive
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static compression for ¢’ < 1 and negative static compression (dilatation) for ¢/ > 1
if one assumes that the oscillator ground state has zero static compression.

There is no necessity to analyse the situation with ¢’ < 0 (see however the
next section) because this integral of motion cannot be negative in the state of

equilibrium. Really, substituting J = 0 into (14) we find
Ceq = Jeqlleq, (21)

J and II being positive by definition; hence c., and ¢, are positive definite.

In the case of £ < 0 the polynom (20) has two positive roots if 0 < ¢ <
(1 — 2k)*/(27k%). The smaller root corresponds to the minimum of the potential
well and the bigger one corresponds to the maximum of the barrier. The latter
equilibrium state is metastable due to the finite value of the barrier height. For
k < —1 the equilibrium state has positive static compression independent of the
¢’ value. For & > —1 the equilibrium state has positive static compression when
¢’ < 1 and negative one when ¢’ > 1. The potential has no extrema, when ¢’ >
(1 —2k)?/(27k?), possessing only an inflection point at r? = (—¢'/&)'/3.

To find the energy of small vibrations around the equilibrium state, we apply
the linearization procedure. Writing equation (16) in terms of the new variable

y =r — re, and neglecting y? terms we find
4y’ [143¢ [l + 28032, — 1)] +w? [re, — /3, + 28(rS, — 1) = 0. (22)
This equation is transformed into
i+ 4L+ A3, — 2))y = 0 (23)
after taking into account eq. (20) satisfied by r.,. The corresponding eigenfrequency
is
0 = 2w, /1 +&(3r2, — 2). (24)
Assuming here Jy = 0, we reproduce the result of the paper [5]

0 = 2wy 14+ 5 g

€
mw?



Equation (20) is solved elementary when ¢ = 1. One positive extremum lies
at r* = 1. It corresponds to the maximum of the barrier for & < —1 and to the
minimum of the potential for £ > —1. Only this minimum was analysed in [3] and

[4]. From formula (24) one gets the corresponding expression for the RPA frequency
Q0 =2wV1+ k. (25)

Another positive extremum lies at r* = —(14 /1 — 8k)/(4%). It corresponds to
the maximum of the barrier for 0 > & > —1 and to the minimum of the potential

for < —1. The corresponding expression for the RPA frequency is
02 = w1 — 8% — 3v/1 — 8k). (26)

The strength constant & = —1 is the critical one. With this & the potential
has neither a minimum nor a maximum and the point r? = 1 turns out to be its

inflection point.

3.3 Analysis of the exact solution

To find an exact expression for the function J(t), it is convenient to use equation

(17). Its solution can be expressed in terms of the Jacobian elliptic function [16]
J(t) = m + (nz — m)sn’(@t + ). (27)
Here w = w\/m and 7); are the real roots of the polynom
P(J)= =T+ aJ* +a1J + ao (28)

with ay = 2Jo — mw?/k, a1 = 2E/k — J2, ag = —2¢c/k. The roots satisfy the
condition ny > 7, > n3 for £ > 0 and 7; < 7, < 93 for & < 0. The phase x is
determined by IC. The function sn(¢) is periodic with the period A¢ = 4K where

/2
d¢
K(k)= | ———=
() 0/\/1—kzsin2¢
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is a complete elliptic integral of the first kind with £? = 127 M There exists an
N3 —m
analytical expression for the Fourier expansion of this function [17]

n—1/2

snwt = Z g — sin(2n — 1) 5K iy

Here ¢ = exp(—7K'/K), K'(k) = K(v/1 — k2). This formula involves only the fre-
quencies proportional to odd numbers of the basic frequency ) = ;3_172 It is obvious
that sn? includes the frequencies nQ) with n even only. So the Fourier expansion of
the function J(t) will involve only one basic frequency 2Q and its satellites 4§, 6,
etc. Numerically, the frequency 2§} = ‘:I){—ﬁ can be rather different from the result of
the harmonic problem (24). So the effect of including the anharmonic term ~ J2(t)
into the system (12) is the transformation of the basic frequency €} into 20 and
the appearance of satellites n2Q. The equidistance of such a spectrum is evident,
characteristic of a bounded classical motion.

It is necessary to note the dependence of 2 on IC (also characteristic of a classical
motion). The roots of the polynomial (28) depend on ¢, E. These constants together
with the phase y are determined by J(0), J(0) and I1(0). Examples of such a
dependence are demonstrated in Table 1.

A very interesting situation arises at a sufficiently large value of J(O) when
the constant ¢’ becomes negative. If & > 1/2 and 0 > ¢ > (1 — 2&)%/(27%?2), the
polynom (20) has two positive roots (Fig.2) with r? < 1: the bigger one corresponds
to the minimum of the potential well and the smaller one corresponds to the top of
the barrier. In this case the time dependent single particle potential (9) is always

repulsive. This fact becomes obvious after rewriting (9) as
V(z,t)= %&’[1 +2R(r? — D]a? — mw?R(r? — 1)22/A

and noting that [1 + 2&(r? — 1)] < 0 for the considered area 0 < r? < =
Nevertheless, the system can possess a collective dynamic potential whose bottom

is lower than that of the equilibrium state. The corresponding condition Ve < Veq
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can be written as

2rl?ot + k(3rl?ot - 1)(r§ot - 1) < 2r§q + ’_‘(37"; - 1)(7‘2 - 1)7

€q

where 730, is the position of the minimum of the dynamic potential. After simple

transformations one gets
(rgot - T‘(fq){2 + R[E;(rgot + qu) - 4]} <0.

Taking into account that r{, is determined by ¢’ < 0 and rZ is determined by
c >0, it is easy to see from Fig.2 (the case & > 1/2) that rZ, is always smaller

than qu‘ Hence, one has
24 E[3(ry,, +r2,) — 4] > 0.

Substituting into this formula the minimal values for r7,, and r2,

2% -1 2% — 1

35 Teq (mln) = 2%

Thot(min) =

one finally obtains the condition & > 1/2 that is right our case.
In an analogous way one can derive the condition for the top of the barrier V;,,

to be higher than V,,
(thop - qu){?‘ + R[3(Tt20p + rzq) - 4]} > 0.

2 . 30 one has

It is obvious that r <72 ;

24 &[3(rl, + r2)—4] <0.

Taking into account that r7 , ~ 0, one obtains the following condition:

42k -1 4
2 £ = —r? (min).

T S 370k 3

Such a potential is shown in Fig.1 by the dashed curve. The eigenfrequencies
calculated for this potential well are shown in Table 1. The limits of variation of

¢’ are determined by the input excitation energy E: at some value of ¢’ the energy
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Eeq + E turns lower than the bottom of the potential well or higher than the top

of the potential barrier.

Table 1

Dependence of eigenfrequencies on the initial conditions.

(I) & =2, Eyp = 24 Mev,r2 = 1. (II) k& =2, Egp = 24 Mev

,r =0.752.
r: =0.5.

eq

(I) & = —0.5, Egp = 9.5 Mev,r2, = 1. (IV) & = —2, Egp = 15 Mev
1| ¢ 0 001 01 05 1
hQ | 925 14.13 17.91 21.84 23.98
| ¢ [-0001 -0.04 -0.08 -0.1 -0.11
hQ | 16.89 1596 14.55 13.31 12.18
M| ¢ | 094 0945 0.95 1 1.005
hQ| 553 7.04 758 950  9.60
| ¢ 47 5 75 755
hQ | 10.66 14.68 18.90 19.42 19.46

3.4 Quantization

Solving nonlinear equations of motion, one expects to find out anharmonicity ef-

fects. We have already observed the main effect of anharmonicity - the satellites

of the basic frequency that form the equidistant spectrum. However, such a re-

sult is contradictory to the practice of quantum mechanical calculations, where one

usually has some deviation from the precise equidistance. Hence, to obtain the

anharmonicity of the spectrum, it is necessary to quantize this model.

Its quantization is elementary because we have already the expression for the

energy of vibrations (17). Choosing ¢ = J and p = T—:IJ

variables, one can represent the Hamilton function in the form

with

Vigg ="

2

12

_p
H = Y +V(g)
C
W+ 5= Do),

as the canonically conjugate



It is easy to see that equation (15) coincides with the Hamilton equations ¢ = %—I;,
p= —8—1(;], that justifies our choice of canonical variables.

The quantum Hamiltonian can be produced following the Pauli [18, 19] pre-
scription , ,

H= =+ 205) + Vo)
This operation, however, does not complete the construction of the quantum Hamil-
tonian because it is necessary to solve the initial condition problem. Qur quantum
Hamiltonian will contain the constant ¢ which is determined by IC. Thus, the vari-
ety of initial conditions of the classical problem will generate a variety of quantum
Hamiltonians. However, the Hamiltonian which ideally describes the dynamics of
the nucleus should be unique.

We suppose that the solution of this problem can be found by taking into account
the principal difference between the classical and quantum descriptions of excita-
tions. Being an integral of motion (energy), the classical Hamiltonian changes each
time the initial conditions change. Hence, strictly speaking, all excited states and
the equilibrium (ground) state are described by different Hamiltonians. An abso-
lutely different situation prevails in a quantum case. Here all states (ground and
excited) are obtained as eigenstates of only one Hamiltonian. The ground state is
the only state that is described by the same Hamiltonian in both the cases. So it
is natural to use for quantization the classical Hamiltonian, derived for IC, which
correspond to the ground state. That means, that for our model we have to take the
equilibrium value of the constant c¢. This statement agrees with the conclusion of A.
Klein [5] that "the value of ¢ is related to the equilibrium value of ¢”. Furthermore,
it bears a strong resemblance to the stationarity conditions of Kan [20].

Two methods will be used to analyse the spectrum. The first one is the Bohr-
Sommerfeld quantization rule

[ P@rda = whin+ 3), (32)

L5t

where ¢; and ¢, are the classical turning points, P(q) = 1/2m*(E - V).
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Another method was suggested by Cambiaggio [21]. Its idea is in the self-
consistency prescription: The input energies must coincide with the Fourier spec-
trum of the action.

The results strongly depend on the values of ceq and k. In accordance with
the results of the previous analysis, three domains of & values must be considered
separately: £ >0, —1 <% <0 and & < —1.

Let us consider first the case: & > 0. The potential well here has infinite
walls and a minimum at the point J = J, (for ¢ty = 1) which corresponds to
an equilibrium state of the harmonic oscillator, i.e. the inclusion of the residual
interaction does not change the equilibrium state of the system that is characterized
by the inertia tensor J., = Jo and by the energy K., = mw?Jy. The spectrum,
being infinite, has very small anharmonicity. The calculations with # = 2 show
that the levels E, are positioned equidistantly with good accuracy up to a rather
large n. For example, the difference B, — E, = 23.984 practically coincides with
Erpa = 23.971 Mev. Small anharmonicity can be noticed at n ~ 100. So the
difference Eg; — E1g0 = 26.017 Mev demonstrates the anharmonicity Anh = (B0 —
Fi00 — Erpa)/Erpa ~ 8%.

The second case (—1 < & < 0) is more interesting. Here the potential (31)
has a minimum at the same point J = Jj (for ceg = 1) which also corresponds to
an equilibrium state of the harmonic oscillator. However, this state is metastable
because now the potential has the finite height barrier whose top lies at the point
J = —=Jo(1 + V1 =8k)/(48) > Jo. So the inclusion of the residual interaction
with —1 < & < 0 changes the equilibrium state of the system qualitatively without
changing its quantitative characteristics J,, and Eeq. The barrier height decreases
from oo to 0 when & changes from 0 to —1. Hence, the anharmonicity can be
rather large when % is close to —1. For example, at & = —0.5,¢;, = 1 the barrier
height is ~ 50 Mev. The potential well has four bound states, and the deviation
of the spectrum from the equidistant one is appreciable right from the beginning

(Table 2). Taking Ceq = 1.05, one obtains the barrier with the height =~ 22 Mev.
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The potential has only two bound states and the anharmonicity slightly increases
(Table 2). |
Table 2

The spectra calculated by the Bohr-Sommerfeld (B) and Cambiaggio (C) meth-
ods.
(Ila) ¢ =1, &k = —0.5, Erpa = 9.786 Mev, r2, = 1. (IIb) ¢ =1.05, & = —0.5,
Egpa = 8.975 Mev, r2 = 1.053. (II) ¢ = 1,% = —2, Epps = 14.891 Mev,
rZ, = 0.64.

E,-FEy, Ey—FE, E;—E, E;—E;
IIa | B| 9.489 9.151 8.749 8.243
C| 9.496 9.166 8.777 8.299
IIb | B| 8.557 8.032 - -
C| 8572 8.073 - -
IIT | B| 14.339 13.686 12.858 11.657
C| 14.355 13.723 12.939 11.870

The third case (K < —1) is of special interest because here the potential has
a maximum at the point J = Jo (for ¢, = 1). Its minimum lies at J = J,, =
—Jo(1 + /1 =8k)/(4%) < Jo. The well depth (or barrier height) increases from 0
to co when £ changes from —1 to —oo. Hence, a remarkable anharmonicity can be
observed in the vicinity of & = —1. For example, at & = —2 the well depth is = 67
Mev. Here there are four bound states and the deviation of the spectrum from the
equidistant one is strong, exactly as in the previous case, already for the low lying
states (Table 2).

It is seen from the table that the results found by the Bohr-Sommerfeld and
Cambiaggio methods are quite close, the difference between them increases together
with the anharmonicity. Such a behaviour is naturally explained by the fact that

both the methods are approximate ones.
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Fig.2. The function g(r) = r*[1 + 2&(r? — 1)] for various values of &.
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4 Conclusion

Let us list the main results of the paper.

The classical and quantum aspects of the analytically solvable one-dimensional
monopole model of Suzuki are revisited. The set of nonlinear dynamic equations
for monopole collective characteristics of a nucleus is derived from the TDHF equa-
tion by using the method of the Wigner function moments. The WFM method
reproduces the exact results for the collective properties of the model. It allows
one to perform a more extensive analysis of the classical aspects of the problem, to
look at the model from new sides (c-dependence of the solutions of the equations
of motion). The collective Hamiltonian, which generates these equations, is con-
structed. It is shown that the anharmonicity of the collective spectrum, being the
specific property of quantum systems, cannot be observed in classical ones. The
Hamiltonian is quantized by two methods. The choice of the initial conditions,
necessary for quantization of the model, is established. The calculations show that
the anharmonicity of quantum spectra depends strongly on the strength constant

of the residual interaction, being negligible for £ > 0 and rather big for & < 0.
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Bann6yues E.B. E4-2000-267
JIBixeHus 6omploii aMIuIuTyasl B Mogenn Cy3yKu

H3yqaroTcsd KjaccHYeCKHe W KBAHTOBBIE aCIIEKThl aHATUTHYECKH pelaeMoit
OIHOMEPHOH 4HCTO MOHOMNONbHONH Moaenu Cy3ykH, 4ToObl NPOSCHUTH HpoOIeMy
KBAaHTOBaHHUS KJIACCMYECKOro KOJUIEKTUBHOrO OBUXEeHUA. CucreMa THHAMHYECKHX
YPaBHEHMH U1 MOHOIIOJIBHOIO MOMeHTa gapa BbeiBoauTcs u3 TDHF ypaBHeHus
C IIOMOLIBIO METOIa MOMEHTOB (pyHKIMH BurHepa. OHa 103BOJISIET OIMCHIBATh MO-
HOIOJIbHbIE Kone6aHus Oonbluoi aMrutuTyasl. I1OCTPOEH M MPOKBaHTOBaH COOT-
BETCTBYIOIMH KOJUIEKTHBHBIH raMWIbTOHMaH. [JaH NETANbHBIA aHAIM3 aHrapMo-
HUYHOCTH KOJUIEKTUBHOTO CHEKTpa.

Pabora BbimonHeHa B JlaGoparopuu Teoperuyeckoit ¢usuku um. H.H.Boro-
mo6osa OHAU.

IpenpunT O6beAMHEHHOrO MHCTHTYTA ANEPHBIX HccaenoBaHuil. ly6Ha, 2000

Balbutsev E.B. E4-2000-267
Large Amplitude Motion in the Suzuki Model

The classical and quantum aspects of the analytically solvable one-dimension-
al pure monopole Suzuki model are studied to clarify the problem of quantization
of classical collective motion. A set of dynamic equations for a monopole moment
of a nucleus are derived from the TDHF equation using the Wigner function mo-
ments. They provide the description of large amplitude monopole vibrations.
The corresponding collective Hamiltonian is constructed and quantized. The an-
harmonicity of the collective spectra is analyzed in detail.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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