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One understands a cluster as either ªa number of things of the same kind
growing together or a number of ... particles, objects, etc., in a small, close
groupª [1]. If a number of objects in a cluster or the cluster mass increases in time,
then this process is called coagulation (aggregation). Usually coagulation process
is considered as the merging of two colliding particles. We will consider also a
dissociation (fragmentation) as a process inverse to coagulation. Those processes
are united in terms nucleation or clusterisation very often. That originates from
the generality of mathematical description for kinetics of such phenomena rather
from actual microscopic details. On the one hand, we can see those approaches
in course of investigations on molecular and submolecular level, in theories of
condensed matter, nuclei and nuclear chains [2]. On the other hand, disperse
systems are considered in astronomy (forming of cosmic objects), atmospheric
science, chemistry, etc. [3].

For example, expanding universe is formed not at once. The clusters grow
by coalescence of smaller clusters. Their growth kinetics is similar to the kinetics
of coagulation. In what follows we formulate basic equations and outline the
methods for their solution. Moreover, one could expect that theoretical tools
which have been developed to describe physical systems, may be exploited in
other ˇelds, such as the ecology of computation [4] or biology, economics,
transport problem, etc. [5, 6].

Consider the kinetics of formation of G cluster using a picture of one-track
motorway. We assume that the starting conˇguration is G independent cars on
motorway, the leading one being the slowest, and no one can pass the other.
Initially each cluster contains one car.

The process begins at t = 0. On passing some time t, the G cars group
in clusters containing g1, g2, . . . , gs cars. These clusters continue to coalesce.
The problem is formulated as follows: to determine the time evolution of the
probability ws(g1, g2, . . . , gs; t) to ˇnd in the system s clusters g1, g2, . . . , gs

whose masses are subjected to the constraint:

s∑
k=1

gk = G. (1)

Thus, we study the systems of constant mass or of ˇnite number of particles.
The paper is organized as follows. In Section 1 we explain the stochastic

motion of our objects, obtain the probability of ˇnding out the system in the
state of exactly s clusters and dependent on time average number of clusters by
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means of introducing a generating function. Later on, we formulate a master
equation governing the time evolution of the probability of ˇnding the clusters
of various masses (Sect. 2). We solve that problem applying Laplace's transform
with respect to t to the master equation (Sect. 3). Then we ˇnd the probability to
detect a cluster of assigned mass g by summation of ws over all gk irrespective of
the distribution of other participants, excepting the selected one (Sect. 4). Some
properties of those convolutions are due to morphism between a set of generating
functions with a product and a set of w(g) with convolution (see Appendix, too),
that depends on the structure of semigroup with unit. In the following we consider
processes of similar fragmentation (Sect. 5), aggregation and similar fragmentation
going together (Sect. 6), and the process with an arbitrary fragmentation (Sect. 7).
In conclusion, we discuss the results.

1. NUMBER OF CLUSTERS: PURE AGGREGATION PROCESS

Let γ be the rate of elementary coalescence act; two adjacent clusters produce
a single one (for instance, a dimer is formed when a car catches up another one).
We assume that γ is gÄindependent. Then we may characterize the situation
by the number of intervals between adjacent clusters. If there are s clusters in
the system, the number of intervals is s − 1. Each coalescence act annihilates
one interval. The number of ways to do this is exactly equal to the number of
intervals.

Let W (s, t) be the probability of meeting exactly s clusters at the time t,
then:

dW (s,t)
dt = γ[sW (s + 1, t) − (s− 1)W (s, t)]. (2)

This equation should be supplemented with the initial conditions:

W (s, 0) = W0(s). (3)

In particular, if initially there were exactly G independent cars, the function

W0(s) = ∆(s−G), (4)

with ∆ being Kroneker's delta:∆(0) = 1 and ∆ = 0 otherwise.
Equation (2) may be solved by introducing the generating function:

F (z, t) =
∑
s

W (s, t)zs−1. (5)

Combining of Eqs. (2) and (5) gives:

∂tF = (1 − z)∂zF. (6)
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The rate γ is included into the deˇnition of time. The initial condition for initially
monodisperse system is rewritten in terms of z as:

F (z, 0) = zG−1. (7)

The solution of Eq. (6) with the initial condition (Eq. (7)) has the form:

F (z, t) = [1 − e−t(1 − z)]G−1. (8)

The probability W (s, t) is thus expressed in terms of binomial distribution:

W (s, t) = Cs−1
G−1e

−(s−1)t(1 − e−t)G−s. (9)

There are no problems to ˇnd the time dependence of average number of clusters:

s̄(t) = ∂zzF (z, t)|z=1 = 1 + (G− 1)e−t. (10)

2. MASS DISTRIBUTION AT PURE AGGREGATION PROCESS

In analogy with the kinetics of disperse systems we shall refer to gk as the
cluster mass. Our objective now is to formulate the master equation governing
the time evolution of the probability ws(g1, g2 . . . gs; t) to ˇnd the clusters of
masses g1, g2 . . . at the time t. This equation is formulated as follows:

dws

dt
=

∑
[g′],k

ws+1(g1 . . . g′k, g
′
k+1, g

′
k+2 . . . g′s+1)∆(gk − g′k − g′k+1)×

×∆(g′k+2 − gk+1) . . .∆(g′s+1 − gs) − (s− 1)ws. (11)

The meaning of the terms on the r.h.s. of Eq. (11) is rather apparent. The rate of
losses is simply proportional to the number of empty intervals (the rate constant
γ is included in the deˇnition of time). The gain occurs each time when two
clusters of masses g′k and g′k+1 coalesce producing a new cluster of mass gk.
Other ∆-s simply restore the numeration of gi clusters with i < k for the system
of s clusters.

Of course, initial conditions to Eq. (11) should also be speciˇed. We again
assume that initially there were G single cars:

wG(1, 1 . . . 1, t = 0) = 1 (12)

and all other probabilities are 0.
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3. SOLUTION TO BASIC EQUATION

On applying Laplace's transform with respect to t gives instead of Eq. (11):

(p + s− 1)w̄s(g1, g2 . . .) =
∑
[g′],k

w̄s+1(g1 . . . g′k, g
′
k+1, g

′
k+2 . . . g′s+1)×

×∆(gk − g′k − g′k+1)∆(g′k+2 − gk+1) . . .∆(g′s+1 − gs), (13)

where barred w̄ stands for the Laplace transform of w(g1, g2 . . . ; t). The last
equation of this set is readily solved (Eq. (9)) to yield:

w̄G = 1
p+G−1 . (14)

Now let us try to seek for a solution to Eq. (11) in the form:

w̄s(g1, g2 . . . ; , p) = 1
(p+G−1)(p+G−2)...(p+s−1)As(g1, g2 . . .), (15)

where the coefˇcients A are independent of p and satisfy the following set of
recurrence relations:

As(g1, g2 . . .) =
∑
[g′],k

As+1(g1 . . . g′k, g
′
k+1, g

′
k+2 . . . g′s+1)×

×∆(gk − g′k − g′k+1)∆(g′k+2 − gk+1) . . .∆(g′s+1 − gs). (16)

A useful sum rule immediately follows from Eq. (16):

Qs = sQs+1, (17)

where Qs =
∑

As(g1, g2 . . . gs) (summation goes over all g), or

Qs = (G−1)!
(s−1)! . (18)

In fact, the expression As(g1, . . . , gs) depends on s only. It does not depend on
a distribution of numbers g1, . . . , gs upon conditions

∑s
k=1 gk = G, gk ≥ 1 are

conserved.
It can be seen from Eqs. (11), (13), (9) and (2) that the problem under

consideration splits into two subproblems. The ˇrst one is a time evolution
problem. It deals with transitions between different states of the system and
connects each three nearest adjacent states. Second subproblem is of scrutinizing
mass spectra. It is a pure combinatorial task. In fact, we have to do with some
population dynamics. Mass spectra at instant t originate from the interchange
of generations at G given and the proper weights depend on the whole set of
possible transitions from s + 1-states into the s-state under consideration.

Under induction method one has:
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Fig. 1. Generation scheme for G=6

• AG(1, . . . , 1) = 1 is a unique value;

• the number of terms in formula (Eq. (16)) is equal to
s∑

k=1

gk − 1 =
s∑

k=1

gk −
s∑

k=1

1 = G− s

for each s ˇxed and k ˇxed. Under the inductive assumption one can write
down As+1(g′1, . . . , g′s+1) = As+1. From this it follows that As(g1, . . . , gs) =
(G− s)As+1 irrespective of a speciˇc distribution of g1, . . . , gs.

The recurrence equations obtained just now As = (G− s)As+1,
AG = 1 have solutions

As = (G− s)! (19)

The time dependence may be readily restored on using the inversion

1
(p+s−1)(p+s)...(p+G−1) −→ 1

(G−s)!e
−(s−1)t(1 − e−t)G−s. (20)

Equations (16), (17) and (20) readily reproduce Eq. (9) .
The ˇnal result is formulated as follows:

ws(g1, g2, . . . gs; t) = e−(s−1)t(1 − e−t)G−s∆(G− g1 − g2 − . . . gs). (21)

4. SINGLE-CLUSTER DISTRIBUTION AT PURE AGGREGATION
PROCESS

Here we ˇnd the probability to ˇnd a cluster of mass g irrespective of the
distribution of other participants. To this end we sum ws over all gk except one
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(g1, for example):

w(g, t) =
∑
gk

ws(g, g2, . . . gs; t)

= e−(s−1)t(1 − e−t)G−s
∑
gk

∆(G − g − g2 − . . . gs).
(22)

Using the identities

∆(q) =
{

1, q = 0
0, q = 1, 2, ...

}
= 1

2πi

∮
dz
zqz ,




0, q = 0

1, q = 1, 2, ...




= 1
2πi

∮
zdz

zq(1−z) ,

1
2πi

∮
dz

zr+1(1−z)R+1 = Cr
R+r = CR

R+r,

(23)

one ˇnds the convolution in Eq. (22):

w(g, t) = e−(s−1)t(1 − e−t)G−s 1
2πi

∮
zs−1dz

zG−g(1−z)s−1z =

= Cs−2
G−g−1e

−(s−1)t(1 − e−t)G−s.

(24)

Some important properties of the convolutions are discussed in Appendix.

5. SIMILAR FRAGMENTATION PROCESS

Let us consider process of pure fragmentation (dissociation, decay) of clus-
ters. We assume inner cluster structure at t = 0 to be similar to the original
picture at t = 0 with G cars of unit-mass and, thus, with G− 1 intervals between
those (Sect. 1). An analogous assumption relates to all the s clusters at t �= 0.
It means the similarity of inner and outer cluster structures. Let us deˇne a
cluster size as the number of particles conˇned into the cluster. If γ is the rate
of elementary fragmentation act and a fragmentation rate is proportional to the
cluster size without unit, i.e., the number of possible rupture places is equal to
the number of inner intervals, the equation

dW (s,t)
dt = γ[(G− s + 1)W (s− 1, t) − (G− s)W (s, t)], (25)
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with initial conditions

W (1, 0) = 1; W (s, 0) = 0, if s �= 1, (26)

describes the process announced. The r.h.s. of Eq. (25) consists of a gain term
due to decay of clusters belonging to s − 1-cluster state and a loss term due to
decays of those clusters belonging to s-cluster state, that produces the clusters
pertaining to s + 1-cluster state. Equation (25) can be solved using generating
function introduced by equation

∂
∂t F(z, t) − (−z2 γ + z γ) ∂

∂z F(z, t) = γ (z G− z −G + 1)F(z, t), (27)

with the solution
F (z, t) = − (z+e(−γ t)−e(−γ t) z)G

−z−e(−γ t)+e(−γ t) z
. (28)

Of cource, one recognizes a usual Poissonian process here. It seems contextual
and, hence, quite reasonable to name such a process as a similar fragmentation
(process).

For example, for G = 5

W1 = e(−4 γ t), (29)

W2 = 4 e(−3γ t) − 4 e(−4 γ t), (30)

W3 = 6 e(−2γ t) − 12 e(−3γ t) + 6 e(−4γ t), (31)

W4 = 4 e(−γ t) − 12 e(−2γ t) + 12 e(−3γ t) − 4 e(−4 γ t), (32)

W5 = 1 − 4 e(−γ t) + 6 e(−2γ t) − 4 e(−3 γ t) + e(−4 γ t). (33)

The average number of clusters read as

s̄(t) = ∂zzF (z, t)|z=1 = e(−γ t) + G (1 − e(−γ t)). (34)

6. PROCESS OF AGGREGATION AND SIMILAR FRAGMENTATION

Let us consider a process when a cluster growth goes conjointly with a similar
fragmentation. Let γ1 and γ2 be the constant rates of elementary coalescence act
and elementary fragmentation act, respectively,

dW (s,t)
dt =

γ1[sW (s + 1, t) − (s− 1)W (s, t)]−
γ2[(G− s)W (s, t) − (G− s + 1)W (s− 1, t)],

(35)
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Fig. 2. W functions versus time for pure aggregation process. G = 5

with initial conditions

W (1, 0) = 1; W (s, 0) = 0, if s �= 1. (36)

The r.h.s. of Eq. (35) consists of gain terms due to coagulation of clusters from
the (s + 1)-cluster state and dissociation of those clusters belonging to (s − 1)-
cluster state, and loss terms due to simultaneous coalescence and dissociation of
clusters belonging to s-cluster state. To make things more clear we could rewrite
Eq. (35) in the form

dW (s, t)
dt

= (γ1sW (s + 1, t) + γ2(G− s + 1)W (s− 1, t))−

(γ1(s− 1)W (s, t) + γ2(G− s)W (s, t)). (37)

These equations can be solved using generating function introduced by the
equation

∂
∂t F(z, t) − (−z2 γ2 − z γ1 + z γ2 + γ1) ∂

∂z F(z, t) =
γ2 (z G− z −G + 1)F(z, t),

(38)

which solution is

F (z, t) =

γ ( z γ2+γ1 e(−t γ) z−γ1 e(−t γ)+γ1
γ )G/

(z γ2 + γ1 e(−t γ) z − γ1 e(−t γ) + γ1),

(39)

where
γ = γ1 + γ2. (40)
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Fig. 3. W functions. Process of aggregation and similar fragmentation. G = 5, γ = 1.1,
γ1 = 1, γ2 = 0.1

For example, for G = 5

W1 = .6830134554 (e(−1.1t) − 1)4, (41)

W2 = −2.732053822 (e(−1.1t) − 1)3 (.1 + e(−1.1 t)), (42)

W3 = 4.098080732 (e(−1.1t) − 1)2 (.1 + e(−1.1 t))2, (43)

W4 = −2.732053822 (e(−1.1t) − 1) (.1 + e(−1.1 t))3, (44)

W5 = .6830134554 (.1 + e(−1.1 t))4. (45)

The average number of clusters is read as

s̄(t) = ∂zzF (z, t)|z=1

= 1 − γ2+γ1 e(−t γ)

γ + G (γ2+γ1 e(−t γ))
γ .

(46)
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7. PROCESS WITH AN ARBITRARY FRAGMENTATION

Let us assume an inner cluster structure to be beside itself under aggregation,
i.e., it does not depend on the cluster size and hence, number of inner intervals
(see Sect. 6), except for the unique case of the unit size that stops the process.
Roughly speaking, cluster becomes structureless under aggregation. In that case
a rational supposition is that a fragmenation rate depends solely on the cluster
state index or, the same, on the integer number of clusters in that state. Let γ1

and γ2 be constant rates of elementary coalescence act and fragmentation act,
respectively. The corresponding equation is read as

dW (s,t)
dt = γ1[sW (s + 1, t) − (s− 1)W (s, t)]−

γ2[(1 − ∆(G− s))sW (s, t) − (s− 1)W (s− 1, t)],
(47)

with initial conditions

W (1, 0) = 1; W (s, 0) = 0, if s �= 1. (48)

Fig. 4. W functions. Aggregation with an arbitrary fragmentation. G = 5, γ = 1.1,
γ1 = 1, γ2 = 0.1

This system may be solved for each G. If, for example, G=5,

W (s, t) =
∑G

i=1 Cie
λitAsi, (49)
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C = [.4472135953, −.4472135955, −.4472135956, −.4472135954, −.4472135958],
(50)

λ = [−10.95389430, −5.731178750, −2.571635009, −.7432919279, 0], (51)

A =




.01096020981 , .1137666455 , −.4309667436 , .7753739038 , −.4472135953
−.1090967701 , −.5382503358 , .6773224210 , .1990447401 , −.4472135950
.4283919843 , .6781456172 , .3605539786 , −.1630940161 , −.4472135954
−.7774690197 , .1935516685 ,−.1596960607 ,−.3641110314 ,−.4472135955
.4472135955 ,−.4472135956 ,−.4472135953 ,−.4472135953 ,−.4472135957


 .

(52)

8. RESUME

In the present paper we have been concentrated on kinetics of cluster forma-
tion. It does not matter whether a motorway, a computational network, space dust
or glass is a real environment to perform such a script. The known technical and
natural phenomena of block (jam) or aggregation (coagulation) and the progress
of those have been considered as processes of clusterisation (nucleation).

Our kinetics models of the latters take into account both aggregation (co-
agulation) and fragmentation (decay) processes. Previous studies of nonlinear
LotkaÄVolterra systems [7] brought us to a search for the possible way of a
linear description of those very complicated and nonlinear situations. One can
substitute a dynamical description of some system with a stochastic one. When
we deal with a system of a ˇnite number of particles, a natural way the above
substitution to be done is in the use of a language of that system enumerated
states. A state is characterized via population number and probability function to
reveal the system itself in this state exactly. Of course, that probability ought to
depend upon a probability of something else to be befall. In the case considered it
could be an act of coalescence or decay (dissociation, fragmentation, etc., where
term used depends on an applied province). Thus, we have just met a product of
probabilities. What can one do?

A probability (rate) of the above acts could be dependent on or independent
of the system states or its particular attributes. In a case of such a dependence
one can say nothing without a special investigation. On the contrary, the rates
independence from the above circumstances makes the situation a linear one in
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respect of a state probability function. Let us take into account that the rates
may be independent not only of space coordinates but cluster size, too (e.g., if
coalescence/fragmentation depends on only valency of some chemical clusters).
It leads to our key mathematical assumption. It consists in constancy of the above
rates. This is why we get linear analytically solved master equations of cluster
growth kinetics, which are also an evolutionary type equations.

Use of generating function is the very method to solve most of those prob-
lems. But it becomes out of use when a structure uniformity of terms in the r.h.s.
of equations discussed is violated as the result of combining aggregation and
fragmentation terms, i.e., owing to violation of Markovian semigroup structure of
those r.h.s. The latter, as well as symmetry, momenta and other questions not in-
cluded in this sketch will be considered in more detail in papers to follow, as well
as some details of the utilization of a MAPLE-program, which have been used to
obtain some analytical results. It should be memorized, that we considered two
types of fragmentation: similar fragmentation and arbitrary one. They lead to
different results. Such a difference can be realized in terms of a manifestation of
distinction between collective and more discrete additive properties of cluster on
a very abstract level far off a speciˇc nature of the latters.

Present work is one of the stream originated from famous Smoluchovski`s
articles [8]. A number of details and some literature index could be found out in
lectures of Lushnikov [9].
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APPENDIX

Let
N0 = 0, 1, 2, ...,

a(n) = an, n ∈ N0,
A = {a : N0 → R},

F = {f : C → C, f(z) =
∑

n∈N0

anz
n}.

(53)

The reversible mapping Z : A → F

f = Z(a) so as f(z) =
∑

n∈N0

a(n)zn
(54)
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has the inverse mapping Z−1

a = Z−1(f) so as a(n) =
∮
f(z) dz

zn+1 , n ∈ N0. (55)

The convolution ◦ is operation on the set A such as

c = a ◦ b iff c(k) =
k∑

j=0

a(k − j)b(j). (56)

The mapping Z is a morphism of semigroup (A, ◦) to semigroup (F, ·). Z
maps the convolution ◦ to product · :

c = a ◦ b → Z(c) = Z(a)Z(b). (57)

The associative and commutative semigroup (A, ◦) has the unit ∆:

∆(0) = 1, ∆(n) = 0, n �= 0,
Z(∆) = 1, Z−1(1) = ∆.

(58)

Here is a useful formula

(a1 ◦ a2 ◦ . . . ◦ an)(m) =
∑

{jk∈N0}
a1(j1) . . . an(jn)∆(m− j1 − . . .− jn)

(59)
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