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1. Introduction.

There are two QCD processes mainly contributing to the production of a direct pho-
ton: the Compton-like process

q9 =g+ 1

and the annihilation process
g9t @

It was proposed in our paper [1] to use the direct photon production processes to
extract a gluon distribution function in a proton f9(z, Q?). It can be done by selecting
those “7+ jet” events which satisfy the criteria pointed out in [2] and [3] to suppress
the next-to-leading order diagrams with initial state radiation and the background to
the direct photon production from the neutral decay channels of 70,7, K, w mesons
and the photons radiated from a quark in the QCD processes with big cross sections
(like gg — qg, qg — qq and gq — qq scatterings).

A percentage of Compton-like process (1) (amounting to 100% together with
(2)) for different transverse energy EJ¢(~ E;”) and pseudorapidity 7¢t intervals
are given in Table 1:

Table 1: A percentage of the Compton-like process gg — v + ¢.

Calorimeter E;" interval (GeV)
part 40-50 | 100-120 | 200-240
Barrel 89 84 78
Endcap+Forward 86 82 74

In the table above the string “Barrel” corresponds to the Barrel region of the CMS
calorimeter (|| < 1.4) while the string “Endcap+Forward” corresponds to the End-
cap+Forward region (1.4 < |n| < 5.0).

Thus, an admixture of the processes with a gluon jet in the final state grows
from the left upper corner to the right bottom one, i.e. with a jet energy. Therefore,
to collect a clean sample of “y + quark jet” events sample it is necessary to reject
“y + gluon jet" events. This is most important in the Endcap+Forward region for
jets with E,J¢t > 100 GeV where the part of the “y+ gluon jet" events is more than
20% and where one can reach the smallest  values of the gluon distribution function
f9(z, @) (see [1D).

The idea of using the Artificial Neural Network (ANN) to discriminate quarks
from gluons was widely discussed in the literature ([4] - [8]). In [7], [8] the discrim-
ination procedure is described for ete™ reactions at /s = 29, 92 GeV with three
different Monte Carlo (MC) generators: JETSET, ARIADNE and HERWIG. After
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testing with a middle point criterion the network was able to classify correctly, on the
average, 85% of quark and gluon jets for a testing set. The MC independence of the
results was also demonstrated by training with the MC data simulated by one gener-
ator and by testing with the MC data from another. We also refer to [11], where MC
independence (JETSET/HERWIG) of the quark/gluon separation procedure based on
the moment analysis of jet particles is presented.

In [5] the ANN was applied to a set of pp events at /s = 630 GeV generated
with PYTHIA [12]. The UA2 calorimeter geometry was used there to classify quark
and gluon jets produced in the gg — gq, g7 — qq and gg — gg QCD subprocesses
alone. The 70 — 72% classification ability with respect to the middle point criterion
was reached there. In this paper we use the ANN approach to get the most effective
discrimination of quark and gluon jets in processes (1) and (2) selected by the cuts
given in Section 3 (and earlier in [2], [3]). The close results were obtained in [9]
by using two- and three-layered network for quark/gluon jets classification in the
pp — 2 jets events at /s = 630 GeV.

The study was carried out using the JETNET 3.0 package ! developed at CERN
and the University of Lund [4].

2. Artificial Neural Network.
2.1 Generality and mathematical model of the neural network.

ANNSs are often used to optimize a classification (or pattern recognition) procedure
and was applied to many pattern recognition problems in high energy physics (see
[5] - [8], [10], [17] - [19]) with a notable success. They usually have more input
than output nodes and thus may be viewed as performing dimensionality reduction
of input data set.

The ANN approach is a technique which assigns objects to various classes.
These objects can be different data types, such as a signal and a background in our
case. Each data type is assigned to a class which in the context of the given paper
is 0 for the background (gluon jet) and 1 for the signal (quark jet). Discrimina-
tion is achieved by looking at the class to which the data belongs. The technique
fully exploits the correlation among different variables and provides a discriminating
boundary between the signal and the background.

ANN s have an ability to learn, remember and create relationships amongst the
data, There are many different types of ANN but the feed forward types are most
popular in the high energy physics. Feed forward implies that information can only
flow in one direction and the output directly determines the probability that an event
characterized by some input pattern vector X (21, Z2, ...Z5) is from the signal class.

't is available via anonymous ftp from thep.lu.se or from freehep.scri.fsu.edu.



The mathematical model of the Neural Network (NN) reflects three basic func-
tions of a biological neuron:

e sum up all the information arriving at Output node
inputs of the node/neuron;

e if sum is greater than some threshold,
fire neuron;

e after firing, return to the initial state
and send a signal to each of the neigh-
boring neurons in the network.

Hidden nodes

The neuron with these characteristics is Input no&e.'x,( '
known as an elementary perceptron. The per-

ceptron is a simple feed forward system with ~ Fig. 1. Neural network with one layer
several input connections and a single output of hidden units.

connection.

Mathematically the output can be written as
1
O(z1,22,-2n) = 9(7; > wizi +6). 3
i

Here g is a non-linear transfer function and typically takes the following form (sig-

moid function) )
9= 15 o2 “

(z1,Z2,...Ty) is the input pattern vector, O is the output, w; and @ are independent
parameters called weights (which connect the input nodes to the output node) and a
threshold of the output node. 8 = 1/T is called inverse temperature and defines the
slope of g.

The pattern vector z; is multiplied by the connection weights w; so that each
piece of information appears at the perceptron as w;z;. Then the perceptron sums all
the incoming information to give Y w;z; and applies the transfer function g to give
the output (see (3)).

In a feed forward NN a set of neurons has a layered structure. Figure 2.1 shows
the feed forward the NN with one hidden layer that is used here. In this case the out-
put of NN is

1 1
O(z1, 2, Tn) =9(ijzg(f > wikzk +6;) +6), (5
k %

where w;y; is the weight connecting the input node k to the hidden node j and wj’s
connect the hidden nodes to the output node. §; and 6 are the thresholds of the hidden
and the output node respectively.
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2.2 Learning of the perceptron.

The behavior of a perceptron is determined by independent parameters known as
weights and thresholds. The total number of independent parameters in a neural
network with a single layer is given by:

Ning = (Nin + Nan) * Npn + Npe + Nyt (6)

where Nj, is a number of input nodes, Nop, is a number of output nodes, Ny, is a
number of nodes in a hidden single layer, Np; is a number of thresholds in a hidden
single layer, Ny is a number of output thresholds.

Learning is the process of adjusting these Nj,q parameters. During learning
every perceptron is shown examples of what it must learn to interpret. It is fulfilled
on the training set consisting of two parts: training data (a collection of input patterns
to the perceptron) and a training target, which is a desired output of each pattern.

Mathematically, the goal of training is to minimize a measure of the error. The
mean squared error function E averaged over the training sample is defined by equa-

tion (7) ; M N o)
= P 2
E—W;Z_jg(q - "), (7)
p=1li=1

where O; is the output of the ith node of the NN in equation (5); ¢; is the training
target (in our case, 0 for the background and 1 for the signal); N is the number of
patterns (events) in the training sample; N is the number of network outputs (N =1
for our case).

There are several algorithms for error minimization and weight updating. Most
popular are Back propagation, Langevin and Manhattan methods. In the last one
the weight is updated during the learning by the following rule 2

W41 = wt + Aw ®)

Aw = —n - sgn[0E [dw] )
where w is the vector of weights and thresholds used in the network; ¢ (¢ + 1) refers

to the previous (current) training cycle and 7 is the learning rate which is decreased
in the learning process.

3. Event selection and Monte Carlo simulations for the ANN analysis.

Our selection conditions for “y <+ jet” events are based on the selection rules chosen
in [2] and [3]. We suppose the electromagnetic calorimeter (ECAL) size to be limited
by |n| < 2.61 and the hadronic calorimeter (HCAL) is limited by |n| < 5.0 (the CMS
geometry; see [14] and [15]), where n = —In(tan(6/2)) is a pseudorapidity * defined

%see [6] for a more complete description
3not to be confused with the learning rate also designated by 7



through a polar angle 6 counted from the beam line. In the plane transverse to the
beam line the azimuthal angle ¢ defines the directions of E?et and E"?.

1. We select the events with one jet and one photon candidate with

EY>40GeV and EJ¢ > 30 GeV. (10)

A jet is defined here according to the PYTHIA jetfinding algorithm LUCELL “. The
jet cone radius R in the 5 — ¢ space is taken as R = ((An)? + (A¢)?)1/2 = 0.7.
2. Only the events with “isolated” photons are taken to suppress the background
processes. To do this, we
a) restrict the value of the scalar sum of E; of hadrons and other particles sur-
rounding a photon within a cone of R}, ;; = ((An)? + (A¢)?)1/? = 0.7 (“absolute
isolation cut”)
> B = B < Egiir; (1D
i€ER
b) restrict the value of a fraction (“relative isolation cut”)

S BB =€ < €y (12)
i€ER
c) accept only the events having no charged tracks (particles) with E; > 1 GeV
within the R, ; cone around a photon candidate.

3. We consider the structure of every event with the photon candidate at a more pre-
cise level of the 5x 5 crystal cells window (size of one CMS HCAL tower) with a cell
size of 0.0175x0.0175. To suppress the background events with the photons result-
ing from high-energy 7°, 7, w and K mesons we require > that

either (al) there is no high E; hadron in this 5x5 crystal cells window (at the PYTHIA
level of simulation):

E;hadr < 5 GeV. (13)

or (a2) the transverse energy deposited in HCAL in the radius R = 0.7 counted
from the center of gravity of the HCAL tower just behind the ECAL 5x5 window,
containing a direct photon signal, to be limited by (at the level of the full event simu-
lation; see below) :

EHCAL < 1 GeV. (14)

'PYTHIA'’s default jetfinding algorithm

SAt the PYTHIA level of simulation this cut may effectively take into account the imposing of an
upper cut on the HCAL signal in the tower behind the ECAL 5 x 5 crystal cells window hitted by the
direct photon (see [20]).




4. The events with the vector Etjet being “back-to-back” to the vector E_'.tv within
A¢ in the plane transverse to the beam line with A¢ defined by equation:

By jer) = 180° £ Ag (A = 15°,10°,5°) (15)

(5° is the size of one CMS HCAL tower in ¢) for the following definition of the angle
P(y,jet) BB* = BB . c03(P(y,jet)) With EyY = B, Bt =B’

5. To discard more the background events, we choose only the events that do not
have any other (except one jet) minijet-like or cluster high E; activity with the E;c"ust

higher than some threshold E;&¥%. Thus we select events with
Et < Bygith, (16)

where clusters are found by the same jetfinder LUCELL used to find a jet in the same
event.

The following values of cut parameters were used here:
El%r =5GeV; eyr=1% Ap<15% EE=10GeV. (17)

To obtain the results of this paper we used two types of the generations:
(a) by PYTHIA alone, based on the averaged calorimeter cell sizes Anx A¢: 0.087 x
0.087 in the Barrel, 0.134 x 0.174 in the Endcap and 0.167 x 0.174 in the Forward
parts;
(b) by CMSJET - the full-event fast Monte Carlo simulation package for a response
in the CMS detector [13] with the switched on calorimeter and magnetic field effects.

The following E" intervals were considered for both types of generations:
40 < E;" < 50, 100 < E;” < 120 and 200 < E;” < 240 GeV. Besides, for every
E," interval we separate the regions to which the jet belongs: Barrel (|77¢| < 1.4)
and Endcap+Forward (1.4 < |17¢| < 4.5). Since the jet is a spatially spread object,
some energy leakage from one calorimeter part to another is possible. To distinguish
cases when a jet is in the Barrel or in the Endcap+Forward regions the following re-
striction was added to cuts 1 — 5:

AEJ%|EJ% = 0 — for the PYTHIA level study; (18)
AEJ% | EJ¢ < 0.05 — for the CMSJET level study. (19)

Here AE,7® is the jet Ej; leakage from that part of the calorimeter in which the jet
gravity center was found.

4. Training and testing of ANN.

There are two stages in the neural network analysis. The first is training of the net-
work and the second is testing. NN is trained with samples of signal and background



events and tested by using independent data sets. Training of the network corre-
sponds to step-by-step changing of the weights wjy such that a given input vector
x@® (z1,Z2, ..., T,) produces an output value O®) that equals the desired output or
target value ¢() (see (5) and (7)).

The input parameters used in the Oth (input) layer of the network (Fig. 1) were
chosen as follows. In “Set 01” and “Set 02” we analyzed the jet information obtained
in PYTHIA simulation. In Set 01 we assigned E,, n and ¢ of the first E; leading
cell to the nodes z1, o and z3 respectively. Then we took the second leading cell
and assign its E, n and ¢ to the nodes x4, z5 and zg. The same was done for the
remaining 13 cells. So, we had 45 input nodes in total 6. In Set 02 we added 46th
input node with a number of charged tracks Niyq.k inside a jet with E;°* > 1 GeV.
For “Set 1” and “Set 2 we repeated the previous procedure but with respect to the
cells of jets found after the fast Monte Carlo simulation of the whole event by using
CMSIJET. Analogously, we had 45 and 46 (+Nirack information) input nodes for Sets
1 and 2.

To ensure convergence and stability, the total number of training patterns (events)
must be significantly (20 — 30 times) larger than the number of independent parame-
ters (see (6)). About 7000 signal (with a quark jet) and background (with a gluon jet)
events were chosen for the training stage, i.e. about 30 patterns per a weight.

0.7
06 quork jet
0.5
0.4 F
0.3 F
0.2 F S
0.1 F 2
oE \ e e
0 01 02 03 04 05 06 0.7 08 09 1

NN output

Fig. 2: Neural network output for quark and gluon jets that were found in the Endcap+Forward region,
40< E;" <50 GeV'.

After the NN was trained, a test procedure was implemented in which the
events not used in the training were passed through the network. The same propor-
tion of the signal and background events (about 7000 of each sort) was used at the

SThis input set is the same as in [5]. It was checked out that variation down to 10 or up to 20 cells
data at the input do not much affect the result.



generalization stage. An output was provided for each event and could be considered
as a probability that an event is either from signal or background sample. If the train-
ing is done correctly, the probability for an event being signal is high if the output O
is close to 1. And conversely, if the output O is close to 0, it is more likely to be a
background event (see Fig. 2 for the case of jets found in the Endcap+Forward region
and 40 < E;" <50 GeV as an example of a typical NN output).

5. The choice of neural network architecture and learning parameters.

To investigate dependence of the separation possibility on the learning parameters,
we trained a neural network with 7000 signal events and 7000 background events
found after the CMSJET simulation. In those events the direct photon E; was chosen
to be 100 < E;” < 120 GeV and jets were found in the Barrel region.

The network was tested with an independent set of 7000 signal and background
events. Sensitivity to different NN parameters was tested from the point of view of
the NN quark/gluon separation probability with respect to the “0.5-criterion” (point

0.5 of the NN output). These parameters are listed below and the corresponding plots
are given in Figs. 3 and 4.

e Number of training cycles
We varied the number of training cycles from 100 to 1000 to investigate the
effect of training on the network performance. The result shown in Fig. 3
indicates the network stability if more than 200 training cycles are used.

e Inverse temperature
The inverse temperature determines the steepness of the transfer function g(z)
(4). On the left-hand upper plot of Fig. 4 the quark/gluon separation probability
drops by 1% as one goes from 8 = 0.5 — 1to 8 = 1.5 — 1L.8.

e Number of hidden nodes
One hidden layer is used here because it is sufficient for most classification
problems [4]. Sensitivity of the quark/gluon separation probability to a number
of hidden nodes Nj, was tested with N, = 3 — 15. All resulting points fall
within 1% (71 — 72%) window (see Fig. 4) ”.

e Learning rate n
The learning rate 7 is a factor in updating the weights. We varied its value
between 0.0001 and 0.05 (see left-hand bottom plot in Fig. 4). The value =
0.005 was chosen for our analysis.

e Scale parameter Yscqle
The optimal learning rate 7 varies during learning while the network converges
towards the solution. The scale factor for its changing is determined by the

"To be exact, a bit better result is achieved with Np = 11.
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parameter Yscqle. The right-hand bottom plot in Fig. 4 shows that the optimal
performance is achieved at the default value Yscate = -1.

As was mentioned above, the Manhattan updating method was used here dur-
ing the training procedure. In Table 2 for the case of jets in the Barrel region
and 100 < E;” < 120 GeV (Set 2) this method is compared with other updating algo-
rithms with various values of learning parameters: learning rate 1) (Backpropagation,
Langevin) and noise term o (Langevin). It is seen that by varying 7 and o from their

Table 2: A dependence of the separation probability (%) using “0.5-criterion” on the method. CMSJET,
Set 2, Barrel region, 100 < E;” < 120 GeV.

Method Backpropagation Langevin

Parameters | n=1. | n=0.5 | n=0.1- n=1.0 | n=0.1-0.01 | n=0.01
1n=0.001 | 0=0.01 c=0.01 0=0.001

Probab.(%) 51 68 71 69 70 71

default values in the JETNET package (the first column for each algorithm) one can
approximately reach the value of the separation probability obtained by using the
Manbhattan algorithm (72%).

6. Description of the results.

As an example of the “0.5-criterion” application, Table 3 presents the discrimination
powers obtained after the simulation at the PYTHIA level and events selection ac-
cording to the cuts (10) — (18) of Section 3 for three various intervals of the direct
photon Ej.

Table 3: The quark/gluon separation probability (%) using “0.5-criterion”. Barrel and Endcap+Forward
regions. PYTHIA level simulation.

Simulation | Set E;" interval (GeV)
type No. [ 40-50 | 100 - 120 | 200 — 240
Barrel 01 74 76 79
02 75 77 82
Endcap+ | 01 70 69 69
Forward 02 73 74 75

The error is of order of 1.5 — 2% for all numbers in the table above.

We see that by using the “0.5-criterion” for the ANN output, when the output
node value O > 0.5 is interpreted as a quark jet and O < 0.5 as a gluon jet, the



network correctly classifies 75 — 82% (73 — 75%) of jets at the PYTHIA level in the
Barrel (Endcap+Forward) region with the input data that correspond to Set 01 and
Set 02 (see Section 4). The separation probability is seen to grow by 1 — 3% after
introducing the information on the number of tracks Ntrack, in the Barrel region. The
analogous increase for the Endcap+Forward region is 3 — 6%.

To give an understanding of such an improvement we plot, as an example, a
distribution of the number of events over the number of tracks with E; > 1 GeV
in quark and gluon jets, ie. Nf, . and NY ., for 40 < B, < 50 GeV and

track

200 < E;” < 240 GeV in the Endcap+Forward region (Fig. 5) 8. Due to the
larger probability of bremsstrahlung from a gluon than from a quark we obtain the
(Niack) / (Niloer) 1atio equal to 1.27 for 40 < E,Y < 50 GeV and 1.46 for

tr

200 < E;" < 240 GeV.
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Fig. 5: Distribution over the number of charged tracks with E;°* > 1 GeV for jets found in the
Endcap+Forward region: 40 < E;” <50 GeV (a) and 200 < E{" <240 GeV (b).

Figures 6 - 8 obtained after the full event simulation with the help of CMSJET
also explain the choice of the variables at the input to NN in Section 4. As is seen
from Figs. 6 and 7, E; of the leading cell (“Et1” in the plots) in a quark jet is, on
the average, 25 — 30% greater than in a gluon jet. The difference in E, for the next-
to-leading cells (“E+2” on the plots) in quark and gluon jets is about 10 — 20% (it is
smaller for jets with a higher ;). E, of a complete quark jet is also greater than E,
of a complete gluon jet (by 4 — 10%). Again, the difference becomes smaller with
growing jet E;.

Figure 8 shows a distribution of the averaged E; in quark and gluon jets over
the distance from the jet E; leading cell R_ic for all E;” intervals and calorimeter
regions considered in this paper. One can note that in all cases the averaged F; in a

8For a comparison, see also quark and gluon jet multiplicities found in experiments at DELPHI [21],
OPAL [22] and DO [23] collaborations.



quark jet up to R_ic ~ 0.12 — 0.14 is greater than in a gluon jet and, vice versa, the
averaged E in a quark jet for R_ic > 0.14 is lower than in a gluon jet.

It is more useful for practical applications to investigate the Signal/Background
ratios for different the NN output thresholds °. This analysis was done after the full
simulation with CMSJET and event selection according to cuts (10) — (19).

The Signal/Background ratios corresponding to the “Set 2” input NN informa-
tion are given in Table 4 for three E;” intervals and two calorimeter regions. As a
complement to Table 4, in Fig. 10 shows the quark selection and gluon rejection effi-
ciencies in the case of the full simulation for the same E," intervals and calorimeter
regions.

Table 4: Signal/Background. The full event simulation using CMSJET. Set 2.

Ey NN output cut

(GeV) Region 03 ]104]05706 [ 07708
40-50 Barrel 1451191 | 240 | 3.11 [ 4.19 | 6.16
Endcap+Forward | 1.41 | 1.81 [ 2.38 | 3.10 | 4.04 | 5.85

100 - 120 Barrel 1.72 | 2.63 | 3.26 | 4.04 | 4.59 | 6.37
Endcap+Forward | 1.75 | 2.19 | 2.95 | 3.61 | 4.21 | 5.41

200 - 240 Barrel 1.76 | 2.37 | 3.35 | 426 | 5.56 | 7.36
Endcap+Forward | 1.64 | 2.40 | 3.17 | 4.16 | 5.39 | 7.45

The Signal/Background ratio grows both with growing NN output threshold
value and with increasing E;” value (see Table 4). So, it grows from 2.4 to 3.2 at
the NN output cut O > 0.5 and from 4.0 to 5.4 at O > 0.7 for the Endcap+Forward
region. The curves in Fig. 10 show that for the last cut (O > 0.7) about 38% and
44% of the events with the quark jet are selected for 40 < E;” < 50 GeV and 200 <
E;Y <240 GeV, respectively, while about 66 — 67% of the events with quark jet are
selected at O > 0.5 for the both E;” intervals and the same calorimeter region.

The Signal/Background ratio dependence on the NN output cut at the PYTHIA
level is presented in Figs. 12 and 13.

It is also important for practical realizations to know a dependence of the Sig-
nal/Background ratios on the quark jet selection efficiencies. This dependence is
plotted in Fig. 11 for two extreme considered in this paper intervals E,” and two
calorimeter regions. We present two curves obtained with Set 1 and Set 2 of input
information after the full CMSJET event simulation (thin and thick solid lines) and
one curve (dotted line) obtained with Set 02 after event simulation at the PYTHIA
level.

%not only for the point 0.5 as in Table 3 above
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7. Some additional remarks.

The results obtained with the quark and gluon jets found in the CMSJET simula-
tion were compared with the results obtained after passing the quark and gluon jet
particles through the electromagnetic (ECAL) and hadronic (HCAL) calorimeters in
the CMSIM package [16]. The discrimination probabilities obtained after the cell
analysis in CMSIM are found to be in good agreement (up to 1 — 2%) with those ob-
tained in CMSJET. It was also found that almost the same discrimination powers can
be achieved both in CMSET and in CMSIM by using the network input information
about E; of the first, E;-ordered 15 ECAL and 15 HCAL cells (i.e. 30 input nodes)
instead of 45 input nodes as considered above (see Section 4).
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Fig. 9: Distribution over the number of ECAL (plots 1a and 2a) and HCAL jet cells (plots 1b and 2b),
N;ii¢ and NfE, for jets found in the Barrel region: 40 < E,” < 50 GeV' (1a, 1b) and 200 < E," <
240 GeV (1b, 2b).

The sensitivity of the network to some parameters is also noteworthy. So, the
network is able to classify correctly quark and gluon jets with respect to the “0.5-
criterion” in 65% (67%) of events with 40 < E,” < 50 GeV (200 < E;7 <240 GeV)
by using the Ny, variable alone. These results can be improved by 2 — 3% if we
also add to Nypqck two more input variables: the numbers of activated cells (towers)
in the ECAL and the HCAL belonging to quark and gluon jets. The distributions over
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those numbers are shown in Fig. 9 for two E;" intervals: 40 < E;” < 50 GeV and
200< E;7 <240 GeV. We see that mean number of the activated cells in the ECAL
for the case of gluon jets (Nj;,) exceeds that for the case of quark jets (N7,) by a
factor of 1.23 for 40 < E;” < 50 GeV'. This difference grows up to the factor of 1.28
for 200 < E;” <240 GeV'. And in both intervals the ratio of the mean numbers of the
activated cells (N, }/(N{,,) in the HCAL is about 1.16 — 1.17.
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Banpypun [I. B., Cxkaukos H. B. E2-2001-260
PasnencHue KBapKOBBIX M IIIOOHHBIX CTPYH

B IpoLlECCaX POXAEHH NMpAMbIXx ¢oroHoB Ha LHC

C MCIONb30BaHHEM METOJA HEHPOHHBIX ceTeil

B pa6ore ucronb3opaHa TeXHHKa HEHPOHHBIX CeTeil JUIA pa3feneHus KBap-
KOBBIX M INIIOOHHBIX CTPYH B Npoleccax gg—> q+yH ~qq — g+v Ha LHC. Pac-
CMaTpUBas HCHPOHHYIO CETh KaK TPHITED, HCIOJb3yd MOHTE-KAPIOBCKHMI IeHe-
parop co6pbituit PYTHIA u naker CMSJET 15 GbICTPOro MOAE/TMPOBAHHS OTKJIH-
Ka Ha cobbite B CMS-neTexTope, aBTOPHI OJYYMIH OTHOLIEHHS CHTHAN/GOH.

Pa6ota semonneHa B JlaGopatopuu snepHbix npo6aem um. B. I1. [xenenosa
OWsIN.

Coobuienne OGBbENHHEHHONO HHCTHTYTa SEPHBIX HccenoBanuit. y6ua, 2001

Bandourin D. V., Skachkov N. B. E2-2001-260
Separation of Quark and Gluon Jets

in the Direct Photon Production Processes

at the LHC Using the Neural Network Approach

A neural network technique is used to discriminate between quark and gluon
jets produced in the gg— g+v and gg — g +7 processes at the LHC. Considering
the network as a trigger and using the PYTHIA event generator and the full event
fast simulation CMSJET package for the CMS detector we obtain signal-to-back-
ground ratios.

The investigation has been performed at the Dzhelepov Laboratory of Nuclear
Problems, JINR.
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