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1 Introduction

During the last decade the number of wavelet applications increased drastically in
various scientific fields, in high energy physics (HEP), in particular [1, 2]. Wavelet
transform (WT) is demanded when one needs simultaneous knowledge of various
signal frequencies, and also the time location of these frequencies.

Being a local integral transformation, WT overcomes two main shortcomings of
the Fourier transform:

e Being nonlocal and having infinite support (—oo,00), Fourier transform re-
quires a broad band of frequencies to decompose even a short signal;

e The distortion of a single harmonics in Fourier space affects, after reconstruc-
tion, the whole signal /image in coordinate space.

The main idea of the wavelet transform is to decompose the function under consid-
eration with respect to a functional basis built by dilations and shifts of a single well
localized function, called a basic wavelet.

For effective computer implementation of wavelet algorithms, the shifts and di-
lations should be in mutual concord. Fortunately, for a wide class of functions, used
as basic wavelets, such algorithms exist. They have a pyramidal structure reducing
by factor 2 the number of degrees of freedom being calculated at each step. These
algorithms are usually referred to as fast wavelet transform (FWT).



Accomplishing of a wavelet analysis usually means the following:

1. make a proper choice of a wavelet type;
2. fulfill a wavelet filtering for denoising, removing pedestals and extracting some
features of analyzed data. It is carried out by

(a) transforming data to the wavelet domain;
(b) applying desirable cuts on wavelet 2D-spectrum;
(c) making inverse transform.

Wayvelet applications to analyze 2D-patterns in the phase space of nuclear-nuclear
events with the high multiplicity allows to reveal or emphasize some local properties
of individual events inherent, say, for jets, as correlations or the presence of a dense
group of particles.

In this paper after a long write up of one- and two-dimensional wavelet formal-
ism and computational details we introduce a new version of the WASP (Wavelet
Analysis of Secondary Particles angular distributions) package. The first version was
described in [3] and successfully applied for data analysis [4].

Let us remind that WASP is a C++ program aimed to analyze angular distri-
butions' of secondary particles generated in nuclear interactions. (It is designed for
data analysis of the STAR and ALICE experiments.) It uses a wavelet analysis for
this purpose and the vanishing momenta wavelets are chosen as a basis [5]. WASP
version 1.2 allows one to perform both one- and two-dimensional wavelet analysis.

2 One-dimensional wavelet transform

2.1 Continuous WT

Formally, the wavelet transform of a function f(z) € L*(R) 2 is a projection of f to
the basic wavelet ¢ dilated by factor a and shifted by b:
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where Cy is the normalization constant for a given basic wavelet 1. It can be easily
evaluated by substituting (1) into (2) and making Fourier transform

o(z) = /_oo exp(zwx)q@(w)fdﬁ

. 2m

!Other kinds of distributions can also be processed after minor corrections of WASP code.
2L*(R) is the square-integrable functional space.
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of each term of (2), if the function % is chosen so that the integrals are finite:
i 2
Cy = / %dw < 00, (3)

where Fourier transform of ¢(w) is denoted as ¢(w).

The admissibility condition (3), which provides a possibility of a function v to be
used as a basic wavelet v, is rather loose. That is why there exist a lot of different
basic wavelets invented by Daubechies [6], Meyer [7], Mallat and others [8].

2.1.1 Gaussian wavelets
Amongst all differentiable functions used as wavelets, the derivatives of the Gaussian

d» _.»
_ n+1 —z2/2
gn(z) = (-1)" prel =2 p >0, 4)
also called the wvanishing momenta wavelets, for their property [ g,(z)z™dz = 0,
m < n are of high importance. Roughly speaking, the g,(z) wavelet, when used
for the analysis of a function f(z), is most sensitive to the singularities of the n-th
derivative f("(z). The normalizing coefficients for g, family are C,, = 27(n — 1)!.
The Gaussian itself (go) is not an admissible wavelet for it does not satisfy the
condition (3).
It follows from the definition (4) that
d gu()
=y, ) 5
) g (2) )
Other recurrent relations, valid for Hermitian polynomials also hold for g,,.
The localization properties for g, family can be evaluated explicitly. In general
case the continuous wavelet transform with basic wavelet 1 is centered at t* and has
the window width 2A:

* = L ooz z)|?dz
v = e ©
1 oo 2 2 V2
Ay = m{/_@(x—t) |w<x>|dz} . )

So, the wavelet coefficients Wy (a, b)[f] are localized within the time window
[b+at” —aly, b+ at™ + aly]. (8)
At the same time its Fourier spectrum is localized within the frequency window
w* 1 w

|
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Therefore, wavelet transform unfolds the signal locally in both time and frequency.
It is worth noting, that the ratio of the central frequency w* to the window width is
scale independent

*

w*/a A 9)
QAJ}/(L QAU;
The detailed study of localization properties of wavelet transform can be found in

[6]. As an example, let us present the window widths for two first wavelets from the
vanishing momenta family (4). Using the definition (7):

. 1/2

1 lo o]
Ay, = 7 / lgn(@)Pdz p lgalla = / |gn (2)[?dx
”gn”2 -
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and Gaussian integrals

/0012"exp(—ax2)dx= (—1)" (%) T

—00

for two first wavelets we get

Wavelet | Ly-norm Window width
5 loilla =74/ V2 | A, =V3/2
92 llgalls = v/3/4n'* | Ay, = \/7/6

2.1.2 Examples

As the first example of how wavelets work, let us take a harmonic signal constructed
by superposing the low-frequency one with the small fraction of the high-frequency
one and then contaminating it by uniformly distributed random noise, see Fig. 1.
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Fig. ;' Sample of a signal comprised of two harmonic components: a) without noise,
b) contaminated by noise



Let us perform gy-wavelet transform (widely known as "Mexican hat") of the
contaminated signal. Fig. 2 (left) presents the wavelet spectrum. The shade-plot
provides a powerful tool, which helps to display the structure of the signal. The
set of wavelet coefficients can be presented as a projection of 3-dimensional surface
W = W(a,b) onto the a-b plane. Coefficients with higher values are shown in light
colors, the lower ones in dark. Although the wavelet spectrum is very informative,
it often brings too much visually redundant information. To make it more contrast,
the gray-scaled image is often transformed to the so-called wavelet skeleton. Lines
on the skeleton correspond to local maxima of the wavelet coefficients.

"li‘ig. 2. Wavelet spectrum (left) and its skeleton (right) calculated for the signal
shown in Fig. 1b. Horizontal axis corresponds to the time parameter (b), vertical one
— to the scale parameter (a).

In the next figure the results of the final go-filtering of the same signal are shown.
First, we accomplish go-filters with four selected scales only: 32, 64, 128 and 256.
The result of the inversion is the signal in fig. 3a. When our signal was processed at
scales 1, 2, 4, 8 and 16 its inversion gives result in Fig. 3b.
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' Fig. 3 Extracting data with g, filter from the signal of Fig. la: a) low frequency
component, b) high frequency component.

It is seen that the filter allows to extract both components of the original signal.
Thus selecting properly the scales of the wavelet transformation it is possible to
highlight the components of desired scales. It should be pointed out here, that with
the same signal the simple Fourier filter would fail. It could be done, in principle,
as well by applying a Fourier filter, but as two-step procedure: to select the high



frequency short-living sin-wave you should, first, extract the low-frequency wave and
than subtract it from the signal. The wavelet filter allows a direct extraction of the
desired component.

'Fig. 4: Skeleton of the signal after denoising by g wavelet. Comparing to Fig.2
(right) shows the disappearance of all short noise fractions smaller than a = 2.

Another important application of wavelets is signal denoising. The procedure
of denoising consists of nullifying wavelet coefficients with small amplitude before
inverse transform. The g, skeleton of the signal after such denoising is shown in
Fig. 4. As one can see, its typical high-frequency part produced by noise is efficiently
suppressed. Then the inverse transform would enhance the corrupted signal back to
its original view in Fig. la.

2.1.3 Implementation in WASP

The direct evaluation of the convolution in the direct (1) and inverse (2) wavelet
transform may be performed numerically but is expensive in memory and CPU
time. At the same time, the self-similarity property of WT suggests the methods for
constructing fast and effective algorithms. The straightforward way of WT imple-
mentation is to restrict the calculation on a discrete sub-lattice

a=uay, b=nbyag, wheremn€e€Z, by#0,

and set the dilation step greater than unity ag > 1. The bi-parametric family of
wavelets U (b, a)1(x) becomes then a discrete set

Ymn () = ag™ (a5 ™z — nby), (10)
labeled by two integers m,n € Z.
An inverse discrete transform

ﬂﬂ:AiB

Z<¢mn7 F)tmn () + error terms, (11)

turns to be numerically stable, if for some A > 0, B < oo

AIFIP < D7 bmns /I < BIIFII
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If it is the case, the basis 1), is called a frame. In general, a frame is not orthogonal:
only the case A = B =1 gives orthogonal decomposition in (11).

However, if the analyzed signal consists of a discrete set of measured counts
{hr, k=1, N}, we can realize two discretization schemes using the explicit integra-
tion formula of explicit integration of Gaussian wavelets over bins to speed up the
computations.

For a discretized signal

=%§}@-M% (12)

(1) is written as

Wla,b)f = Zw (””’“ =1, (13)

and it looks like the Parsen-Rozenblatt estimates of the unknown probability density
over a sample (see [9]). (13) is nothing but the “averaged sum” of the wavelets
¥ [(zx — b)/a] compressed to the size a and “placed” at points zy.

The formula (13) does not contain integral and this fact allows one to speed-up
the wavelet transform algorithm for discretized signals like (12). Thus, (13) is just
what is used in WASP for the wavelet analysis.

However for gaussian wavelets (GW) especially there is one more way to improve
this algorithm [5]. Having a discretized signal {hx, k = 1, N}, one can define

Wy, (a, b) |Zm/%<av%

where z, = 2o + k Az.
Due to (5) we can replace the integral by the difference

W b)hzﬁkz:hk s (220 s (“”)] (14

To speed up calculations it better to rearrange the summands:

a Zo—b — Tp—b
Wy, (a, b) h = N [hlgn—l (”Oa—> + ) (hrpr = i) gn ( ka ) -

- ~hN Gt (ZNG_ b)] . (15)

That gives about a double gain in speed in comparison with (14).
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However this expression is still rather slow to evaluate and could be used only
for obtaining a few coefficients. For example, applying (15) to calculate Wy, (a, b;) h
while a is fixed, but b runs over M values b; = by +j Ab, j =0, M — 1 one needs to
calculate M (N + 1) values of the wavelet g,_; in points z’“—;bl Nevertheless, if we
restrict the choice of the shift steps, as

A/
Ab==2 neN (16)
n
or
Ab=nAz, neN (17)
it can speed up the calculation process. For instance, in the first case (16) to calculate
Wy, (a, b) h one needs to obtain g,_; in points 2=t 4 28 (kn — j). The GW argument
is identically defined by the integer index (kn — j). All possible combinations of &
and j give N+ Mn+1 of different values. This number is growing much slower with
the growth of N and M, than in the case of calculating by the formula (15). Thus
we consider the values of g,_; as the vector with n/N + M + 1 components

g = {gn—l (mo — bo) + -Aa—b(/m —J)}-

The input discrete data can be also considered as the vector with N + 1 components

h* = {hy, hy — hy, hg — hy, ..., hy — hy_1, —hy}.

Then the raw of wavelet coefficients one can obtain as the scalar product of vectors h*
and g, where components of g** are obtained from g* just by selecting components
with indexes kn — j.

In the second case (17) one has the vector W, (a, b;) h with nN + M + 1 com-
ponents and should replace everywhere Ab and kn — j by Az and k — jn.

The next substantial resource of increasing the speed of calculations is based on
the practically compact support of the GW in space.

2.2 Discrete WT

The main idea of a discrete wavelet transform is to represent a given data as a
decomposition using basis functions v, = 279/2¢(279t — k), ¢;x = 279/2¢(279t — k).
They are constructed as scaled and shifted two basic functions:

e a scaling function ¢;
e a wavelet function (or “mother wavelet”) 1.

Both these functions should have a locality in time/space and frequency domains.
The purpose is to get the following decomposition of a source data:

f@) = sebrr(@) + > > digthi(@i)
k=1

j=1 k=1
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where IV is the number of samples in data sequence, and L is the decomposition
level. As the result, we can describe our signal in terms of coefficients s, and d;k,
where s, are called approximation coefficients, d; are details at the j-th level of
decomposition. The way how to get this representation of the signal is shown on

Fig. 5.

i s0-original signal ___ ==

| s1-approximation ||  d1-details |

| s2  ||d2- details]|

A
| s3 |[ d3 |

' Flg 5. Wavelet decomposition scheme

/Dﬂ\@ |
\@/@. High pass ] n
Fig. 6: Scheme of one decomposition step

Each decomposition step realized by using two filters: hy — low pass filter and
gx — high pass filter. Filters h; and g; depend on functions ¢ and 1 as follows:

-1 -1
$(x) =223 hp(w — k), p(2) =223 g2 — k) .
k=0 k=0

So, hy and g, are solutions of these scaling equations, where | means the length of
filter. The Fig. 6 shows one decomposition step.



2.3 Data filtering

The filtering is carried out in three steps:

1. calculate the set of wavelet coefficients;

2. cut off the spectrum (e.g set to zero all coefficients which values are less then
prescribed threshold);

3. perform the inverse wavelet transform of the obtained spectrum.

N Figi. 7. Wavelet thresholding rules

One of the useful properties of WT is its ability to denoise a data by thresholding.
There are two basic methods yielding a good result:

e “hard” thresholding rule. If A is a threshold value, the rule looks like

y—=0, y<N
Y=Yy, y> A

o “soft” thresholding rule:

sign(y)(ly| = A).0, y <A

Both "hard"and "soft"rules are represented on Fig. 7.

2.4 Lifting scheme

Lifting scheme is fundamentally other approach to building wavelet decompositions, proposed by
W.Sweldens [10, 11]. Wavelet transform is said to be the way to decorrelate data. The wavelets
generated by translations and dilations of one function are called first generation wavelets. This
idea is extended by lifting scheme, which is a new tool for constructing of biorthogonal wavelets.
The lifting scheme inherits the idea of FWT of applying low-pass and high-pass filters sequentially
to the data array in place. The lifting scheme makes it in an optimal way, sometimes increasing the
efficiency of calculations by factor 2, the inverse transform becomes just the reversing the order of
operations with substitution + by -, and vice versa. Since lifting scheme does not rely on Fourier
Transform (FT), it can be used even in cases where translations and dilations can’t be used.

10



Flgé- One step of the lifting scheme.

Follow W.Sweldens [11], let us assume that we have a signal and we need to make a decom-
position of this signal into a non-correlated parts. First we separate the signal into a two equal
parts, by putting all even points into one array, and all odd into another. If the data in the source
signal are correlated, than the first array contains some information about the second one. Let us
denote these two arrays by A and +, respectively. Thus the first stage of the lifting scheme is two
separate data into two classes. The second stage of the lifting scheme is to find a data-independent
prediction operator, such that v = P(X). Let us call it prediction. If the second array is functionally
dependent, the prediction P is exact, if not, we can substitute the array v, in place, by the differ-
ences, called wavelets: A = A + U (7). Let us call this update rule. The procedure is then recursed
storing the lost details in place of removed data. On each stage of reconstruction the lost details
are added to the result of prediction.

As it shown by I. Daubechies and W. Sweldens, the realization of the lifting scheme generates
an orthogonal wavelets of the Daubechies family.

3 Two-dimensional wavelet transform

3.1 WT via fast Fourier transform (FFT)

The wavelet image of a function f(x),x € R? is a scalar product of a representation
of the affine group acting on R?:

x'=aR’x+b, U(a,b,0)y(x) = itb (R_gx — b)

lal a

where RPx = (z cos §—ysin 6, x sin 4y cos 8). So, the definition of wavelet coefficient
taken with the basic wavelet 1(x) is:

_¢Xx—Db

Wia b0l = [ o (R0 s

For practical purposes it is faster to evaluate the convolution (3.1) in the Fourier
space using FFT algorithm.

W(a,b,0)[f] = a / exp(ibk).¢) (aR™k) f(k)d’k
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It is possible to simplify the calculations it is possible to use rotationally symmetric
basic wavelets ¢ = 9(|x]). In this case there will be no dependence on the angle
variable 6.

One of the wavelets of most common use is the Mexican Hat wavelet

Y(x) = [2 - xAx].e 7, (k) = [det A (kAT ke 3kA T

For the rotationally symmetric case (A = al)), the Mexican hat wavelet (3.1) is
simplified to

P(x) = (2 — x?) exp(—x2/2), (k) = k? exp(—k?/2) (18)
The scheme of the practical implementation of the evaluation of
W(a b)) = o [ explibl)d (ak) f1 K
was as follows:

1. Evaluate Fourier transform of the original image f(x) — f(k) by means of
FFT algorithm (Numerical Recipes library was used)

2. Multiply the f(k) at each point by (ak)2exp(—(ak)2/2).

3. Taking the inverse FFT of the result.

The normalization factor a of (3.1) was dropped in the numerical code.

3.2 Discrete WT

7F1g 9: Two dimensional wavelet decomposition.

One step of a wavelet transform of a signal with a dimension n higher than one is
performed by transforming each dimension of the signal independently. Afterwords
the n-dimensional subband that contains the low pass part in all dimensions is trans-
formed further. The 2-dimensional case is presented on the Fig. 9. The areas denoted
by letters:

"v— vertical coefficients, the basis function — ¥ (y)¢(z);

"h— horizontal coefficients, the basis function — ¢(y)y(z);
"d— diagonal coefficients, the basis function — 9(y)¢(z);
"s— approximation coefficients, the basis function —¢(y)¢ ().
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4 WASP user’s guide

WASP provides an user-friendly Graphical User Interface (GUI) which makes it
quite easy to use. Both visualization and GUI are implemented based on some of the
ROOT classes. So, WASP requires ROOT [12] to be installed first. However, WASP
classes, that are not related to visualization or GUI, are ROOT-independent. In this
user’s guide we show how to work with WASP (version 1.2) using GUL

4.1 Graphical User Interface

To get started, first WASP must be installed and compiled. Then just type wasp in
your command line. WASP main window (see Fig. 10) appears. It has two panels.
The raw event is visualized as a simple histogram on the left, the corresponding
wavelet spectrum is shown on the right.

e
.
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=
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e
-

-

.
-

-

| §
1 A i %
1 . .

e

L .
~ Fig.10; Main Window

Click the Open item in the File pop-up menu to choose input data file. The
Reopen item in this menu allows one to open the same file again (e.g., when the
end-of-file is reached). Note, that the implementation of the WASP implies the
following input file format. The file is read line-by-line. If the line contains at least
two numbers, the first of them is interpreted as a polar angle in radians, the second
one — as azimuthal angle in radians (moreover, it is transformed to be in [0, 27]
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if necessary), the rest of the line is ignored. Other lines are interpreted as event
separators.

Use Next, Prev, Next 10, Prev 10 buttons on the left-hand panel of the main
window to get the needed event from file (these functions are duplicated as items
of the Tools menu, moreover, there is an All item in it which allows one to collect
events from a data file). One can use event selection feature tuning it by clicking
the Filter item in the Options menu to skip events that do not satisfy the chosen
settings. Event selection dialog is shown on Fig. 11.

One can choose the raw event representation by clicking Picture button on the
main window left-hand panel and the wavelet spectrum representation — by clicking
Picture button on the right-hand one. Instead of clicking Picture buttons one can
choose corresponding items in the Options menu. Corresponding panels are shown
on Figs. 12a and 12b.

pectium repiesentation
iy

R e T3
|2 - second derivative of gauss (Mexican Hat)

e

T
eudorapidity distribution

~ Fig.12: Event (a) and Wavelet Spectrum (b) Representation Dialog

The default event representation is pseudorapidity distribution. The histogram
ranges are calculated automatically over each event. They can be fixed by hand
using the panel shown on Fig. 12a instead, moreover, a histogram title, x-axis and
y-axis labels can be chosen (Fig. 10 shows defaults). Note, that the x-range fixed for

14



one-dimensional histograms does not affect on the obtained wavelet spectrum, since
it is built over the whole sample directly (without histograming). It is just a zoom
feature. The y-range fixing option is not used for one-dimensional histograms. On
the contrary, the two-dimensional wavelet analysis takes into account the histogram
with its ranges, calculated automatically or fixed by hand.

The default one-dimensional wavelet used for transformation is the second deriva-
tive of the Gauss function (“Mexican Hat”). The x-range and the x-axis label are the
same as for the raw event histogram. The default scale-range is from 0 to 1/3 x-range.
It can be fixed manually using the panel shown on Fig. 12b instead, moreover, a
wavelet spectrum title and scale-axis labels can be chosen (Fig. 10 shows defaults).

nalysis o

A

ng’{;
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-
=
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B -D.1
“0.1-0.08-D.06-D.04-D.02 0 0.020.04 0.06 0.00 0.1 +0.1-D.00-D.06-0.04-0.02 ¢ 0.020.04 0.06 0.00 0.1

Fig. 13: Image Filtering. Five levels of decomposition are used here. Wavelet coeffi-
cients of the first four levels (“high frequencies”) are nullified before reconstruction.

The Slice/Filt button has two functions. First, it allows one to view the wavelet
transform of one-dimensional signal at a chosen scale parameter (the last one is set
by a slider and controlled by a text entry). The corresponding view shown in [3] is
omitted here. Second, it allows one to view the filtered image of a two-dimensional
signal using discretized wavelet transform (see Fig. 13).

The Energy button allows one to draw wavelet energy spectrum: |W,/(a, b)|2
(where a is a scale parameter, b is a number for one-dimensional signals and a
two-dimensional vector for two-dimensional ones). The Scalogram button gives
a scalogram: [ |W,(a,b)|* db.
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The Wavelet button allows one to draw wavelet spectrum with a better resolu-
tion or just redraw it (after Slice/Filt or Energy buttons are pressed, e.g.)

? Wavelel Analysis of Secondary Particles angular distiibutions

o
R

g
B

ML FEVE EITH FRTE NS NTRE FTUN RTINS R T

1-0.08-D.0G-0.04-0.02 0 0.020.04 0.05 0.08 0.1

Fig 14:  Application of the 2D “Mexican Hat” wavelet. The view of the wavelet
transform of a two-dimensional signal at a chosen scale parameter (the latter is set
by slider).

The two-dimensional “Mexican Hat” function is used in WASP for the wavelet
transformation of two-dimensional signals (see above). This transformation is per-
formed after the Wavelet button is pushed (see Fig. 14).

Both Save buttons are used for saving corresponding images to EPS-files: file
“en_r.eps” for raw event image and file “wsn_r.eps” for wavelet spectrum, where n is
an event number in data file, r is an event representation number according to the
panel on Fig. 12a.

The Dump button is used to save a wavelet spectrum matrix to the ASCII file
(the x-axis grid z; is written first, then the y-axis one y;, and finally corresponding
wavelet coefficients, line-by-line, from the minimum of y to the maximum). The file
“wemn_r.dat” is created when the Dump button is pressed (n and r have the same
meaning as above).
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Aurraiickuit M.B. u nip. E10-2001-205
WASP: naker s aHaiu3a YIJIOBBIX pacIpefe/IeHui

BTOPHYHBIX YaCTHII C ITOMOIIbI0 BEHBIET-NIpeoOpa3oBaHys.

Bepcus 1.2. Onucanne METONOB U PYKOBOACTBO IOJIb30BATENs

WASP — nporpamma Ha C++, npeaHa3sHayeHHas Ul aHaIM3a YIJIOBBIX pac-
Ipee/IeHi BTOPUYHBIX YaCTHL, POXNAIOLIMXCA B ANEPHBIX B3aMMOIECHCTBHAX.
IIporpamMma OCHOBaHa Ha UCIONIb30BaHUM BeiiBleT-IpeoOpa3oBanus. JaHHas pabo-
Ta Mpencrasiser coO0H PYKOBOACTBO IIOJIb30BaTeNs, BKJIIOYalollee OMUCAHUE HC-
[OJIb3yeMbIX B MPOrpaMMe MaTeMaTHYeCKUX METONOB U aJITOPHUTMOB, TpahudecKo-
ro uHTepdeiica U Kilacca 3agay AAEepHOM (PU3MKH, Ha KOTOPBI OpPHEHTHPOBaHA
nporpamma.

Pa6ora BoinonHeHa B Jlaboparopuu MHGOPMaLOHHBIX TeXHONOIHUi 1 B JIa6o-
paropuu sinepHeix peaxumit um. I.H.®neposa OMSIH.

Coobmenue OObeIMHEHHOTO HHCTUTYTA SePHBbIX HccnenoBanuil. ly6na, 2001

Altaisky M.V. et al. E10-2001-205
WASP (Wavelet Analysis of Secondary Particles Angular

Distributions) Package.

Version 1.2. Long Write Up and User’s Guide

WASP package is a C++ program aimed to analyze angular distributions
of secondary particles generated in nuclear interactions. WASP package is based
on wavelet transform algorithms. This work includes the user’s guide, description
of algorithms and mathematical methods, graphical user interface. We have also
analyzed what problems of nuclear physics can be tackled with WASP.

The investigation has been performed at the Laboratory of Information Tech-
nologies and at the Flerov Laboratory of Nuclear Reactions, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 2001
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