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I. INTRODUCTION

Microemulsions are formed after the addition of surface-active molecules into the mix-
ture of two immiscible fluids (oil and water). The surfactants are spread at the oil-water
interface as a dense monolayer. The properties of the layer determine the phase behavior
and thermodynamical stability of microemulsions [1]. Within the Canham-Helfrich concept
of interfacial elasticity [2,3], the surfactant monolayer is characterized by the bending and
saddle-splay moduli x and &, respectively, the spontaneous curvature Cy, the surface tension
coefficient , and the equilibrium radius of the droplet, Ry. In addition, the free energy of
the droplet is determined by the pressure difference Ap (pressure inside the droplet minus
outside). In real microemulsions there is some distribution of the droplets in radii. The
polydispersity of this distribution, €, can be regarded as a microemulsion parameter instead
of Ap [4]. The number of these basic parameters lowers in the case when the microemulsion
is in the state of the so called two-phase coexistence (with the excess amount of the dis-
persed droplet phase) [4]. The determination of the above parameters has been attempted
by a number of experimental techniques [5]. However, different experimental methods yield
very different values of the parameters for the same microemulsion systems. For example,
there is some one order difference in the bending rigidity x determined from the Kerr-effect
measurements [6] and the neutron scattering associated with spin echoes [7] (for a more
discussion see Ref. [8]). We have shown in our recent paper [8] that the interpretation of the
neutron and light scattering experiments does not correspond to the reality. In particular,
the thermal droplet fluctuations in the shape are not appropriately taken into account in
the description of these experiments. In Ref. [8] we calculated the intermediate scattering
function that is used to describe the scattering from dilute microemulsion and emulsion
solutions. The theory consistently takes into account the droplet shape fluctuations to the
second order in the fluctuation amplitudes. Comparing the theory and experimental data
from the literature, we have found the microemulsion parameters to be in a notable dis-

agreement with the values determined in the original experimental works operating with



the previous theories that do not take (or take not appropriately) into account the droplet
fluctuations. So, the bending rigidities that we have extracted from the experiments are
significantly lower than the values found in the neutron spin-echo experiments [7,9,10] but
larger than possessed by the spinning drop measurements [11], the Kerr effect [6] or a com-
bination of dynamic light and neutron scattering [12,13]. It would be thus useful to have
adequate theoretical description of the different experimental probes of microemulsions.

In the present work the polarizability of a spheroidal droplet is evaluated. Having a model
for the polarizability tensor a;, of a microemulsion droplet, such experiments could be de-
scribed like the Kerr effect or the polarized and depolarized scattering of light, which could
serve as alternative probes of the droplet shape fluctuations and thus of the microemulsion
parameters. Similar calculations can be already found in the literature. In the paper [14]
the polarizability of an ellipsoid is evaluated, however, the shape fluctuations have not been
considered. In Ref. [15] the fluctuations of a spherical droplet are considered, however, those
calculations should be corrected. Moreover, they are carried out only to the first order in
the fluctuation amplitudes that is insufficient in some cases when the observed quantities
are represented by the products of the polarizability tensor components. In the next section
a brief phenomenological theory of the shape fluctuations of droplets is given. In Section
III the polarizability tensor a;y is found to the second order in the fluctuations. Then it is
applied to the description of the Kerr effect on microemulsion and the scattering of light. In

Conclusion, the obtained results and necessary improvements of the theory are discussed.

II. SHAPE FLUCTUATIONS OF SPHERICAL DROPLETS

Consider a flexible droplet having a spherical shape in equilibrium. The fluid of the
droplet is assumed to be incompressible and the equivalent-volume radius of the droplet is
Ry. The instantaneous shape of the deformed droplet can be described by the deviation of

its radius from Ry, in spherical harmonics,

f(ﬁv <P) = R(ﬁ1¢)/R0 -1, (1)



where
f(ﬂv (P) = Z ulm(t)l/lm('&a (P)? (2)
lm
with m = =, =l +1,...,], and 0 < I < ez ~ Ro/a, a being a typical molecular diameter.
It is assumed that the fluctuations are small, |f| << 1. For what follows we need the
correlation functions of the complex expansion coefficients iy, 4, = (—1)™u;_p,. The

shape fluctuations with different numbers [ and m are uncorrelated,
(u;mul'm’) = 6"’6mm’ <ulmu;m>7 (3)

and (U,) = 0 for [ > 1 [16,17]. When [ = 0 or 1, the coefficients wu;,, can be expressed
as quadratic combination of the rest of expansion coefficients, e.g.
oo = —(4m) 2 30 i %, (4)
I>1,m
that is a consequence of the constraint on the droplet volume (the ! = 0 mode corresponds
to the overall ”breathing” of the droplet). Analogously, the ! = 1 mode corresponds (to the
second order in u) to the translational motion of the droplet as a whole. The necessary time

correlation functions are as follows:

(un(O)wo(t) = oy 2o exp(-Ti) )
o =a—2kCs/Ry + kl(l + 1)/ Ry. (6)

Here, a = 0 + C?k/2 (o is the microscopic interfacial tension [4]). The decay rates I,
can be found in our previous paper [18] where the shape fluctuations of compressible surface
layers have been studied in detail (it is generally believed that the surfactant monolayer
behaves like an almost incompressible two-dimensional fluid; for I'; in the limit of incom-
pressible layers see also Ref. [19]).

Finally, the distribution of the droplets in radii as it follows, from the phenomenological

theory of the droplet formation [4] is-



(o) o expl— -1 = 1Y (1)

where R, is the mean radius of the droplets. The generalized Laplace condition [4]

relates the polydispersity & to the characteristics of the layer,

ksT

€= 8m(2k + &)

®)

Here, for simplicity, the two-phase coexistence is assumed, when o = (2k + R)R;2 =
kCs/ R For small € the distribution (7) has a sharp maximum around R, (Ro) ~ Rm,
and {(Ro — Rm)?) = €RZ,, neglecting small terms ~ exp(—1/2e).

For dense microemulsions the interaction between the droplets should be taken into account.
This is still an open question since the droplets do not interact like hard spheres [20,21].
Most often dilute solutions of droplets are studied when the effect of interaction is negligible.
The influence of the entropy of dispersion should be also included into the consideration.
Tt will change the polydispersity and the quantity o; from Eq. (6). There is no agreement
in the literature as to the concrete expression for the entropy. Within the random mixing
approximation one should add to the denominator in Eq. (7) a quantity 2kpTF(®), where
for small volume fractions ® of the droplets F' ~ In® — 1. The mean quadrate of the

amplitude of fluctuations does not explicitly depend on the function F,

(uip) = {(t-1)0+ 2)[163_?:’,.1(1 +1) - %]}_1_ .

III. POLARIZABILITY OF A DROPLET

As mentioned in Introduction, the polarizability of a fluctuating droplet was already
evaluated by Borkovec and Eicke [15]. However, that work should be corrected in many
aspects. First, the authors calculate the polarizability for a fluid droplet of infinite dielectric
constant € in vacuum. One finds a number of errors in these calculations. Then the authors
remark that the dipole field generated by a droplet of infinite € in vacuum is the same as

the dipole field generated by an ellipsoid. Based on this observation, they write the result



for a droplet with a finite dielectric constant in a dielectric medium simply using the known
result for a dielectric ellipsoid with small eccentricities [22]. In general, such a reasoning
is flawed. In particular, it is incorrect in our problem of finding the polarizability tensor
@ik, i, k = x,y, z, of a droplet, since a;;, should be in general calculated at least to the second
order in the fluctuations. This follows from the fact that the observed quantities correspond
to the products of the polarizability tensor components. Below the polarizability is evaluated
up to the second order in the fluctuation amplitudes.

Consider a spheroidal droplet whose shape is described by Eq. (1). The dielectric constant
of the droplet is ¢; and the outer medium is characterized by a constant ¢.. To find the
polarizability of the droplet, one has to calculate the electric field generated by the droplet
in an external electrostatic field FS. This means to solve the Laplace equation for the
potential ® inside and outside the droplet, together with the boundary conditions at the

interface between the two medii,
oD =9©  DP=DY, at r=Ry(1+]f), (10)

where D, is the normal component of electric induction, € = ¢;/e., and the indices ¢ and
e refer to the interior and exterior of the droplet. At infinity the resulting electric intensity

becomes E:. Let the initial field is oriented along the axis z. We then search for the solution

in the form
W = P 27‘ costd +r %:b&f,)YlM,
-1
& = —rcosd + Z_'_Zr‘zcosz?-f-r“zZaEf,)YlM, (11)
M

where we temporarily reduced the variables by replacing r/Ry — r and ®/EyRy — ®.
That is, the field is represented by a potential due to a perfect sphere plus a small addition
due to the distortion from the spherical shape. Such a deformation is described by the
terms containing small coefficients aﬁ{}) and be,). Only the dipole field is considered. To

satisfy the second boundary condition in Eq. (10) one has first to find the normal vector to



the deformed droplet interface. The normal is defined through the vectors 74 = 837 and
7, = 08,7, using Eq. (1),

?ﬂX?w

i v

Performing the calculation we obtain, to the second order in small f,
7V = (Va), {1 - J[(0f) + 5in29(3,./)7]}
+H(T@)o(f — 1)85S +sin™ 9(T @), (f - 1)3,f. (13)

When ®@ and &) from Eq. (11) are substituted in Eq. (13), the second boundary

condition from Eq. (10) becomes
-1
e b Yin = —2 3 ) Ving + 35 [2f cos® + B f sin o], (14)
% % €+2
Together with the condition of continuity of the potential,

-1
Z n 2fcos 9, (15)

Zbg\ff)ylM = Zag\?YlM -3
M M

one obtains, to the first order in f, the following equation for the determination of the

coefficients as\fl):

%:af,f}YlM =3£——_T_—;[fc0519+ 6+Lf%]‘sinﬂ]. (16)

Multiplying this equation by Yip and integrating over all angles ¥ and ¢, one obtains
the desired coefficients ag\’}). This can be easily done expressing the products ¥,,Yi, that
appear in the integrals through sums of spherical harmonics. These sums always contain
the Clebsch-Gordan coefficients (1100 | 10) [23] that are nonzero only for [ = 0 or [ = 2.
The | = 0 mode is excluded since it gives corrections of the second order in u,, or becomes
zero when differentiated with respect to ¥ (the second term in Eq. (16)). We have thus
only the spherical harmonics of order 1 and 2 so that the integration is easily performed in

elementary functions. In this way we find from Eqgs. (15) and (16)



o = 3 @

a
e—1 M

— VB = (17)

\/—(\/—6M0 + 0p1 + - 1)(

Quite similarly the response of the droplet can be considered when the external field
is oriented along the axes z and y. In Egs. (11) one has just to replace z = rcos®d by

x =ry/2n/3(Y},_y —Y11) and y = iry/2n/3(Y1,—1 + Y11), and repeat the calculations. Instead

of the coefficients agfl) we obtained

3 e—1,, 3 e—1
af) = \/——0(€+2) (g1 —uz), o) = + 10(E+2) (uz0 — V6us 15), (18)

.3 -1y, 3 e—1
af)”) = _Z\/—l-_a(f+2) (w 2,—1+U2l)7 a(ﬂ =t V 10(€+2) (u20+‘/_u2=‘52) (19)

The relation between the coefficients b%,) and a&f} is the same as for i = zin Eq. (17). The
set of the obtained coefficients a,s and by, fully determines the dipolar field of a droplet in the
first approximation in the droplet fluctuations. To find the second-order correction to this
solution, we act in the following way. We represent the searched coefficient as az; — apr+Apy
and by — bag+0p, where A and d are of the second order in the amplitudes u. Substituting
the solution (11) in Eq. (10) using (13), the two boundary conditions are obtained for the

unknown corrections A and §. Combining the two equations we obtain

2 2¢—3 ¥ 4e — 1
%{:AS\/I)YIM =" >ay (—17(—+7) 3 a7 0sYin0of + <550, Yine0,
—3%_1)_(;)—-;4)f2 cosd — ( - 21) sindfoyf + 3 uooYoo cos . (20)

Here, ag\’f,) are from Eq. (17). There is no need to search for the full solution of this

equation. All experimentally observed quantities that we construct using the solution for
the potential ® have to be in the final step averaged over the fluctuations u. Having this
in mind, and since we are interested in the solution correct to the second order in the
fluctuations, we can perform the averaging already in Eq. (20). By this way we obtain the
solution to Eq. (20) in a simplified form that however gives correct contributions to the

averaged quantities of the second order in the fluctuations:



afl=o AP =a= 2t g oy S il @

Analogously, quadratic corrections can be obtained in the cases when the external field

is oriented along the axes z and y. The change of the corresponding coefficients ays is as

follows:
AP =0, AP=31A AP =0 AP="A (22)

Now it is easy to obtain the polarizability tensor components, that is the main purpose
of the paper. Writing the solution (11) for ®© through the cartesian coordinates z,y, 2,
from the expression for the dipole field ®© = 7?/7‘3, the x,v, 2 components of the dipole

moment are

3 e—1  [3
— BRIy 2 (a®) — o / POk S I
d = BRY{ 5 (@ = af?), =it | = (a9 o), 5+ e, (23)

where the proper dimension is recovered. Comparing this expression with the definition

of the polarizability,
di =Y o Eox,
k

and using Egs. (17) and (22), one obtains the polarizability tensor components e, i = z, ¥, 2
in the laboratory frame. Analogously the rest of the components of the tensor a;y is obtained

with the use of Egs. (18), (19), and (22). The result is as follows:

Oy = Qo = — 107rR°(e +2)2(U2 -2 = Un),
3 /3 e—1
Qgz = Olzg = 5 WR(S)(H_—QV(Uz,—l - uzl),

3
Qyz = Oy = l_ 107rR0(e+2) (u2,-1 + ua1),

3€—1 3 /3 e—-1 2 ~

= 1 —p | — _ — = —_
Oz = Ry 51 +2v107re+2(u2’ 2% U = | 3uw) — A,
Y [ Sy — ( I i )= A4
v e+2 V107r6+2 Uz-2 + Uz + {3t ’




e—1 3 e—1 ~ ~ 1 [3e+2
14 —————ugp— A A=—oyf25T2A
6+2[ + \/%6-{-2“20 ]7 2\/;6—1 ) (24)

where A is introduced in Eq. (21). In the first approximation with respect to the account

_ p3
0y, = Ry

of fluctuation our expressions correct those from Ref. [15] where there were found for € — oo.
The dipole moment induced by an external field is the same as the dipole moment of an
ellipsoid with the main half-axes a = Ry[l + (2 + €2)/6], b = Ro[1 + (e2 — 2¢2)/6], and
¢ = Ro[l + (€2 — 2€2)/6], where the eccentricities e, and e, are e2 = M(—um +
Mugo), and e = \/1—5/2—7r(u22 + 4/3/2ugp), in the frame connected with the droplet and
with the axes along the main axes of the ellipsoid. The depolarization coefficients of such
an ellipsoid, n® = R}/3c;; — 1(e — 1), i = z,y,2, are 3n®) = 1 — (3//5m)ug, 3n® =
1+ (3/2v/5m) (uzo + v6uss), and 3n(®) = 1 + (3/2v/57)(ugy — vBugs), that follows from the
general formula for the dipole moment of an ellipsoid placed in an external field parallel
to the axis ¢ [22]. The contributions of the second order of the fluctuation amplitudes
change only the diagonal components of the polarizability tensor. Thus the polarizability
anisotropy, that is reflected e.g. in the Kerr effect, is determined solely by the ellipsoidal
fluctuations (the / = 2 modes, as already pointed out in Ref. [15]). The higher order terms
are determined by all kinds of the droplet vibrations with [ > 1. Outside the droplet the
resulting electric field is a sum of the applied field and a field of an electric dipole in the origin
with a dipole moment (when averaged over the fluctuations) (d) = dps[1 — (A)] parallel
to the applied field. Inside the droplet the mean field is oriented along Ez and its absolute
value is larger than that of a perfect sphere. This follows from the solution (11) for &,
that gives (Ey) = (E,) = 0,(E,) = 3Eo/(e + 2) — Eo\/3/4n(b§7), where (o) = (6{") < 0
(if b is calculated to the second order in fluctuations) is easily found using Eq. (17) and the

continuity of the potential.



IV. THE KERR EFFECT

The obtained polarizability of a droplet can be used for a simplest description of the
Kerr effect on droplet microemulsions. When the droplet is placed in an electric field, the
difference between the refractive indices n) parallel and n, perpendicular to the field can

be expressed in terms of the optical polarizabilities as

An=my — 3@ (o — a¥), (25)

3
~ 2R}
where @ is the volume fraction of the droplets and n, is the refractive index of the mi-
croemulsion continuous phase. Eq. (25) follows from the Lorentz-Lorenz formula simplified

for the case of low ® [24]. To obtain the statistically averaged quantity (An), we use the

full free energy of a dielectric body in an electric field [22],
1 (=
F-F=-= [B(D - By, (26)

where Fj is the free energy of the field without a dielectric body, and E is the field
changed by the presence of the body. Equation (26) is especially suitable since we have to
integrate only within the volume of the droplet. Finding the electric intensity inside the

droplet and performing the integration, one obtains

_ 3
FeFy= et 1R0E0[

e+2 2 27)

\/_ e+2 20]
Using the expansion exp[—(F — Fp)/kpT] to the first order in ugy and the polarizability
tensor components from Eq. (24) (with € = n? = (n;/n.)? for the optical polarizabilities),

we finally find the Kerr constant

(An) _ 81 Rjnee €—1

K= E2® ~ 407 kpT (e+2) (n2+2) (uo)-

(28)

This equation surprisingly agrees with that obtained in [15]. Using the distribution (7),
after the average over the droplet radii Rj has to be replaced by (R3) ~ R3 (1 + 3¢). The
estimation of the bending rigidity value obtained from the experiments [6] (see also Ref. [26])

is k & 1kpT. For the discussion of this result see, however, Conclusion.



V. DEPOLARIZED SCATTERING OF LIGHT

The effects of polarization anisotropy are well revealed in the experiments on the de-
polarized scattering of light [25]. Let the scattered field is propagating in the x direction,
and the initial field has a polarization 7i; = 2. Then the intensity of the depolarized light
(A} =17)is

Ivi = N{og2' (0)oys' (1)) Fu (@, t).- (29)

Here, F, is the self-diffusion correlation function of the droplet, @ is the wave-vector
transfer at the scattering, N is the number of droplets in the scattering volume, and ()
denotes the thermal equilibrium average over the ensemble of droplets in the absence of any
field. The polarized component of the scattered light is

Iyy = N{aZ'(0)aZk (1) Fs(Q, 1). (30)

Using Eq. (24), one finds

2TN 21
(=
n?+2

Iyy = )*(ujo) exp(—Tat) Fy(Q, 1). (31)

207 °
This expression differs from the equation found in Ref. [15] that contains an extra factor
ni. Analogously the intensity of the polarized scattering can be found,

PP (L) e (T —XAENE@D. ()

Iyy = NE§(

For the integral intensity of the scattering we have, in agreement with the formula for
cylindrically symmetric molecules [25], Iyy = I 150+§-IVH, where Irso = Na? is the isotropic
part of the scattering determined by the trace a of the polarizability tensor, and is easily

found from Eq. (24). One thus obtains for the depolarization ratio

IVH _ ﬂ(n2—1
I]so - 20m "n? +2

)*{uzo)- (33)

The account for the second-order terms in fluctuations is necessary in the determination

of the polarized and isotropic scattering. For example, for the system studied in Ref. [6]

11



(water - AOT - n-hexane microemulsion) with the parameters n, ~ 1.37,n ~ 1, VE & 0.12,
and x ~ 1kpT, the isotropic part of the scattering is determined by I;so = NR§(n? —
1)2(n? + 2)2(1 — 2(A)) with (A) ~ 0.4. In (A) itself the account for the I > 2 modes
is important: it represents about 1/3 of the [ = 2 contribution. Unfortunately, we have
no knowledge about experiments where the depolarized and polarized light scattering on

microemulsions were measured.

VI. CONCLUSION

In the present work the polarizability of a droplet has been calculated. It was assumed
that the shape of the droplet fluctuates in time and the result for the polarizability was ob-
tained to the second order in the amplitudes of these fluctuations. This could be important
when the relevant quantities are expressed through the correlation functions of the diagonal
components of the polarizability tensor, like in the scattering of light. Of course, the account
for the second order in fluctuations is unnecessary when the polarizability anisotropy is re-
sponsible for the measured effect. We proceeded from the solution of the Laplace equation
for a fluctuating droplet with a finite dielectric constant in a dielectric medium. We have
corrected the expressions for the polarizability found in Ref. [15] where it was calculated
to the first order in the fluctuations and for a droplet with infinite dielectric constant in
vacuum. The obtained formulae were applied to the description of the Kerr effect and the
depolarized and polarized scattering of light. The expression for the specific Kerr constant
is the same as in Ref. [15], a significant difference has been found in the expressions for
the intensity of the scattered light. A comparison of the theoretical results with the Kerr-
effect experiment on microemulsions gave an estimation of the bending rigidity constant of
about 1kpT for microemulsions consisting of droplets with relatively large radii [6]. How-
ever, this estimation should be considered with serious doubts. First, the experimental error
in obtaining the Kerr constant by extrapolation of the data to zero concentration of the

droplets is large so that the estimation is not very reliable. The radius of the droplet was



determined by standard dynamic light scattering (DLS) experiments. It is known that the
DLS technique is rather problematic in the determination of microemulsion characteristics
(see the discussion in Ref. [8]), especially it concerns the radius of the droplets. It is al-
ways larger than the radius obtained from other techniques like the scattering of neutrons.
Since the signal measured in the Kerr-effect experiments is very sensitive to the radius, it
should be determined with a high precision. Moreover, the polydispersity of the droplet
distribution in radii becomes very important. In the work [6] it was first assumed for the
polydispersity that /¢ (from small-angle neutron scattering experiments by other authors)
varies from about 0.25 to 0.30. In Erratum to Ref. [6] the value for /¢ was changed to about
0.12 (based on reports from the literature on experiments using light scattering techniques).
To our opinion, all the characteristics should be determined in one series of experiments on
the same system. From available techniques the small-angle neutron scattering seems to be
the method in which the basic characteristics of the microemulsion droplets are well fixed.
Other experimental techniques, like the Kerr-effect measurements or light scattering meth-
ods, could serve as alternative probes for these characteristics. For these purposes, however,
the description of the methods should be improved in comparison with the approach pre-
sented in this communication. On the basis of our analysis of the DLS experiments [8], we
propose that on the first place the inclusion of the finite thickness of the surfactant layer,

with dielectric and optical properties different from its environment, is needed.
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Juce! B. E17-2001-165
[Monsipu3yeMocTh XUAKUX Kanenb U addext Ksppa
Ha MHKPO3MYJIbCUSIX

PaccMoTpeHs! cihepouiasibHble XUAKHE KAIlIH, HaXOMSALIHECS B IPYrod XKMIKO-
cru. C yyeToM TeIUTOoBBIX (iryKTyaluii ¢popMBbl Kamellb PacCUYUTaHa HX HONIpU3ye-
MOCTH 0 BTOPOTO HOPSAAKa IO aMIUTUTyaaM duykryaiuil. HalineHsl KoppesauuoH-
Hble (PyHKIIUH KOMIIOHEHTOB TeH30pa NojgpuzyeMocTd. C UX IOMOIIBIO OMHCAHBI
IOJISIPM30BAaHHOE U JCTOJIIPU30OBaHHOE paccesHue cBeTa U 3ddekt Keppa Ha Mu-
KpoaMyJbcusax. M3 cpaBHeHHMS pe3y/lbTaTOB TEOPUM M JIMTEPATYPHBIX HAaHHBIX
o M3MepeHH0 KOHCTaHThl Ksppa oueHuBaercs M3ruOHas XeCTKOCTb MOHOCIIOS
cypaxTaHTa, pa3fensiomero ¢assl Maciaa ¥ BOAbl B KaleNbHbIX MUKPOSMYJIbCHAX.

Pabora BeinonHeHa B Jlabopatopuu Teopernyeckoit ¢usuku uM. H.H.Borosmo-
6oBa OMAN.
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Lisy V. E17-2001-165
Polarizability of Fluid Droplets and the Kerr Effect
on Microemulsions

Spheroidal fluid droplets immersed in another fluid and thermally fluctuating
in the shape are considered. The polarizability of the droplet is evaluated up
to the second order in the fluctuation amplitudes. The correlation functions
of the polarizability tensor components are found and used to describe the polar-
ized and depolarized scattering of light, and the Kerr effect on microemulsions.
By comparison of the theoretical results with the Kerr constant measurements
from the literature, we estimate the bending rigidity of the surfactant monolayer
that separates the oil and water phases in droplet microemulsions.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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