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1 Introduction

We consider here theoretically neutron channeling in a planar system like
the one shown in fig. 1 (in more details it will be considered in the next
section). This system consists of two layers on a substrate, and optical
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Figure 1: A mirror for measuring resonant neutron channeling.

potential of the system is shown in fig. 2 (without Cd). The channeling
takes place in the second (“resonant”) layer, which has low optical poten-
tial. In the figure it was supposed to be Ti, because Ti has a negative
optical potential or potential well of depth ug (fig. 2). The substrate has
a positive optical potential uz. For example, it can be Cu, as shown in
fig. 1. Substrate is usually thick enough for the waves channeled in Ti
were totally reflected from it. Above Ti there is a “tunneling” layer. It
also has a positive optical potential (u; in fig. 2) to hold channeled wave
inside Ti. This potential can be even higher than that of the substrate
(u1 > ug). For example, as shown in fig. 1, the tunneling layer can be Ni
with potential higher than Cu. However it must be thin enough for the
outside wave to penetrate (tunnel) into the resonant Ti layer. Atop the
system there is shown a Cd layer, which absorbs neutrons, and prevents
feeding of the channel along its length from outside.

V(z

‘ll*""—lg -

N, |
|

Ug z

f

Figure 2: Stepwise potential of a multilayer resonant (MR) system. The z-axis is directed
along normal to the surface of the multilayer system.

Such multilayer systems are well known (see for instance [1]), however
there is no good understanding, how external wave is coupled to the chan-
neling one. It is understood what happens, if the channel is a micro
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waveguide, in which the wave is an eigen mode. In this case the wave
is totally reflected from both sides, and the waveguide is fed from outside
through its entrance orifice at the edge surface or through a special wedge.

In our case the channel is not a perfect waveguide because its upper side
is slightly permeable. So, instead eigen modes we have resonant ones, and
the channel is fed just through the upper side. In this case we know well
the wave function in the system under illuminated part of the upper surface
(to the left of Cd in fig. 1), but we do not know, what is the channeling
wave, how it propagates under nonilluminated area, and how it is matched
at the interface between illuminated and nonilluminated parts. These are
the main questlons we address to in this paper.

The micro waveguides are well known for x-rays [2, 3, 4] where they are
used for microfocusing, which is applied to mlcrodlffractlon microimag-
ing and microspectroscopy. . Modern powerful synchrotron sources highly
stimulated research in this field.

Neutron sources are considerably less powerful, and a single micro wave-
guide, if fed through the entrance, gives too low intensity because of too
small area of the entrance hole. So it is interesting to look for the channeling
in a geometry like the one shown in fig. 1. '

First observation of neutron channeling [5] in thin films had shown that
such experiments are feasible and worth of further theoretical and experi-
mental consideration [6, 7, 8, 9, 10].

Experiments on neutron channeling in thin-film neutron wave guides
were discussed in papers [11, 12, 13, 14, 15]. In the present letter we
present some different approach. We show how to relate extinction of
neutron flux along the channel with tunneling through the first layer, and
how to find distribution of neutrons outgoing from the channel [11, 13].

The problems of channeling in MR systems are tightly related to the
problems of reflection from them, which are studied by reflectometry. The
resonant structure of the MR systems shows itself in interference pattern
of reflectivity even at subcritical reflection, when normal to surface compo-
nent E, of the total energy of the incident beam is in the range 0 < E, < us.
However this pattern has well pronounced resonant minima only when the
system has high absorption in the middle layer.

Experiments on subcritical (E < ug) reflection were reported in [16,
17, 18, 19, 20]. The depth of minima of reflectivity curve (dependence of -
reﬂect1v1ty on neutron energy) was enhanced by special choice of mater-
ial with high absorption for layer uy, or by embedding a thin absorbing
layer into the resonant one. Experiments were also performed with polar-
ized neutrons and magnetic layers where spin rotation played the role of .
absorption.



In the next section we consider reflectivity of resonant systems and
channeling in them. ‘

2 Wave function in a multilayer system

We shall treat multilayers by method of multiple reflections presented
in [21, 22, 23], which is applicable to scalar and magnetic systems. This
method is analytical one, and it is more appropriate for our analysis than
the other methods like [20, 24, 25], which, in our opinion, are more appro-
priate for numerical calculations.

We denote z the coordinate along the mirror and z the coordinate along
normal to it. The wave function in the middle layer us under area illumi-
nated by the incident plane wave exp(ik,z + ik, z) is equal to

V(z,z) = A(k,)[exp(ike. 2) +exp(ika.la) pas(kaz) exp(—ika.(2—12)] exp(ikza(:),)

: 1
where ko, = \/k2 + ug, k, and k, are the components of the neutron wave
vector, and pa3(k.) is the reflection amplitude from the totally reflecting-
layer uz inside the layer us. The factor A(k,) is determined by the equation

 A(k.) = T2 + pa1pas exp(2iks;ls) A(:), (2)

which shows that the wave propagating toward the substrate is the sum
of the wave penetrated through the tunneling layer from outside (the first
term), and the wave reflected from the tunneling layer (the second term).
The term 7y is transmission amplitude through barrier u; from vacuum
into the layer ug, and p; is reflection amplitude in the layer ug from the
barrier u;. From (2) it follows

Alk:) = 1 — parpasexp(2iko.ly)” - . )

2.1 Neutron resonances in MR systems

Since reflection from us is total, the amplitude po3 is of the form py3 =
exp(i¢as). After substitution of this py3 and pa1 = |pa| exp(idg1) into (1)
the denominator becomes

1 — pa1pes exp(2iko.ly) = 1 — |pa1| exp(2ika.la + i¢23 +iga1).  (4)

It has minima at points k,, which satisfy the equation

2ka.ly + pos(kaz) + Bar(ke:) = 27m (5)



with integer n. At these points, which correspond to resonances, the am-
plitude A(k,) of the wave function (1) has maxima. The magnitudes of the
maxima are larger the closer is |pg;| to unity, or the smaller is transmission
amplitude |ro|.

Let us see how large are these maxima. If we neglect the losses we
have the law of energy or flux conservation, which is the same as unitarity
condition represented by the relation '

k2z|p21|2 + |T21|2kz = k2z; - (6)

where 7y; is transmission amplitude through barrier u; out the layer us,
and k,, ko, are normal to MR components of the neutron wave vector in
vacuum and inside the uy-layer. The relation (6) leads to

2 2 9 vz
— 1—|r 2% ~ 1—=|r <
for |721 < 1.

From detailed balance theorem it follows that probability of transmis--
sion from vacuum into ug-layer, and backward are equal. It gives

|T12[*k2z /K2 = |71z / Ko _ (8)
This leads to 791 = (kg,/k.)712. Substitution into (7) and into (3) with

account of (5) gives

. T12 2
k)| = 72l
L—|pa| |7l

> 1. 9)
For |791| &~ 0.1 we have at resonance |A(kz)|2 ~ 400.

2.2 Mechanism of particle accumulation in the resonant layer

We can easily understand the mechanism of wave function enhancement
at resonances in the us-layer. Indeed, at resonances the wave

exp(iky.la) pas(k.) exp(—iko,[2 — 1o))

in (1) going from substrate toward u;-layer after reflection at the point
z = 0 becomes equal to

exp(2iko,ly) pas(k;) pai(k.) exp(ike,2) = |p21|vexp‘(ik22z)

because of (5), i.e. it positively interferes with previous wave exp(ikg,2)
and enhances it. :



Such enhancement facilitates penetration of the external wave into us-
layer. It means that reflection amplitude of the external wave decreases,
and we want to prove that this is indeed so. :

Let us consider the resulting amplitude of the outgoing wave consisting
of two parts: the directly reflected incident wave with amplitude p;s and
the one, which is transmitted into uy layer, then reflected from substrate
and transmitted back into vacuum. The amplitude of the second wave is .
equal to 719791 pa3(k;) exp(2iks,ls). Thus resulting reflection amplitude is

LT
14 T2 |P21I],
P21P12

where in the last equality we took into account (5). It is easy to show [22,
26] that :

P12 = p12 + Tiam21 pas(k.) exp(2ikols) = pra (10)

o1 — 791 €Xp(—2k1,l1)

Y ro1 exp(—2k1.11)

= 11
Pr2=1" ro1721 €xp(—2k1.l1)’ 1 — roiro1 exp(—2k1.l1)’ (11)
o — tortig exp(—Fkyl1) _ tartio exp(—ki.l1) (12)
R RN exp(—2k1,l1)’ 1 — ro1rg1 exp(—2ki i)’ ’
kz - iklz k2z - iklz
= - R k = —_ k2
7"0‘1 k. + iky,’ r21 Fas + k1, 1 Uy — Ry,
R N | P 2iky,

o= kz + iklz, a= k?z + Z.klz, 0= kz + z.klz, 12 k?z + Zkl(zl,?))

where r;; denotes reflection and t;; transmission amplitudes for a potential
step from level u; to level ui, and Iy is the width of the u;-layer.

For real potentials ui, us we have my;79/pa1p12 = —|m91712|/|p21p12]-
Substitution into (10) gives .

7. (19

P21 = p12
[ |P P21|

or |p12] < |pi2|. It shows that indeed the wave passed through the resonance
layer compensates a little bit the directly reflected one. '
However at energies E, < ug reflection is always total independently of
the E,, thus the amplitude in the resonant layer should be accumulated
to such a level that the wave transmitted through w; into vacuum would
overcompensate the directly reflected one and bring the module of the-
resulting reflected amplitude to unity. Indeed, if we multiply the second



term in the brackets of expression (14) by the resonant factor 1/(1 — |pa1),
we obtain :

R
: papizl 1 — |pal
P12 |P12P21| — | pa1|(|pr2pa1| + |7'127'21|) __ P2 (15)
|p12p21| 1 — |pal |pral’

where we used relations

|p12p2n| + |Tigmar| = 1,
and |p12| = |p21|, which directly follow from (11,12). Expression (13) shows
that the resulting reflection is indeed total.
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Figure 3: Matching the wave function at £ = 0 in two parts of a multilayer mirror, and
distribution of outgoing neutrons over position sensitive detector PSD."

2.3 Channeling in the middle layer

To start discussion of our ideas for the channeling let us consider a system
slightly different from that one shown in fig. 1. It will be easier for us,
if illumination is stopped by absorbers arranged as shown in fig. 3. It
is easier because boundary conditions under nonilluminated area remain
the same as under illuminated one, which means that resonant conditions
remain the same. In the case of fig. 1 reflectivity in resonant layer from
upper side under nonilluminated area is different from that under illumi-
nated one, and positions of resonances should be slightly shifted. It leads
to some complication for matching at interface between illuminated and



nonilluminated parts. In our geometry the front of the incident wave is
limited by an absorber, and the posmon sensmve detector (PSD) does not
see the illuminated part of the mirror.

Under illuminated part of the mirror (z < 0) the wave function inside -
the layer ug is equal to .

Ye(x, 2) = A(k:)[e™22 + el p (ky, ) e )] exp ik, z), (16)

where k, is the component along z-axis of the wave vector in the incident
wave above the mirror, and the coefficients A, py3, and wave number ko,
are the same as in (1).

The wave function under nonilluminated surface is a solution of the
Schrodinger equation, which we can represent in the form:

(U8 ('r z) = A[exp(ikézz) + exp(ik12212)p23(k’22) exp(_ikéz(z - l2))] exp(ik;x),
(17
where A = A( k ), and k2 + k2 = k? 4 uy. If we take ki, = kg, — i/c),
where kg, = \/k2 + us, then k, = k% +2ikky, = k, + ikks,/k,, where
k? = k? — k2. The imaginary part, & > 0, should be chosen in such a way
that : - .
pa1(ky,) pas(ky,) exp(2ik,le) = 1. (18) .
This form matches well the wave function (17) to the right and (16) to the
left of section £ = 0. Some mismatch because of x gives some reflected
wave going to the left from section z = 0. However for small x, and we
shall soon see, when it is small, the reflected wave is also small, so we shall
neglect it for now.

The equation (18) is the same as (2) but with 75 omitted. When it is
satisfied, the wave function has the same dependence on z at every pomt x,
and only its amplitude |A| contains a factor, which, because of imaginary
part of k., exponentially decays along z-axis:

' 1 k
exp(ik,z) = exp(ik,x) exp (__2%:)" 2o ;'nki:. (19)
In the case when |pa;| — 1 < 1 the magnitude of & is small and we can
neglect it in amplitudes ps3 and py;. Then (18) is represented as:

|21 (k.)| exp(2ikg.ly + ichos + ichoy + 2kly) = 1. (20)

For k. satisfying condition (5) we obtain |ps;|exp(2&ly) = 1, which gives
the magnitude of x: . :

k2z

|T21(k22)| 4l k‘

_ 1 L ke 2
K——Q—hln(lpzl(kwﬂ) Tk, |T12( ol (21)



where relations (7,8) were taken into account. Thus k < kg, & 27/l; when
|712)? < 8mks, k., which is always satisfied, so our approximation is always
very well justified.

Let us estimate the range z. = k;/2ks,k = 2lok,/k,|m21|? of expo-
nentially decaying factor in (19). For neutrons with wavelength 4 A, in .
particular, the grazing angle of incidence is small (we need total reflec-
tion from substrate), so k,/k, = 1073. Thus z, = 2 - 10%ly/|7|2. For
|791] & |712| & 0.1 and I, = 2000 A we have z, = 4 cm.

2.4 Intensity distribution over nonilluminated surface

All the above formulas were obtained for a single incident neutron. Then its
flux over unit area of entrance surface is proportional to k,. For intensity
Iy we need to renormalize the coefficient A by factor \/Iy/k. Then the
number of neutrons crossing in a unit time the cross area of resonant layer
at some point x under nonilluminated surface of the mirror is

Iy
1) = T = 3 [ expl-afz), (2

where w is the width of the mirror surface along y-axis.
From (17) it follows that

| (2)|? = 4| A|? cos® (ko.[z — lg] — ia3/2). (23)

Substitution into (22) gives integral

nmw
nmw

/c0s2(x)dx =5 where x & kg, 2,
0
and n is the integer of the resonance kol = nw. Thus (22) is

J(z) = 210%wl2|A|2 exp(—z/z). (24)

From (24) it follows that the total number of neutrons crossing per unit
time the section of the channel uy at the point z =0 is

ke
k ‘
At resonance, when (9) is valid, for w =1 cm, |A|?> = 400 and I = 2-107°
cm we have J(0) ~ 10721.

J(0) = 2062 wly| A (25)



Now we can calculate the total number of neutrons that go out through
an element wdz of the nonilluminated surface at point z:

dJ(z I J(0
dgv )d:c I:wdeAl |721| %k, exp(— x/xe) = ie)e_z/z“dx.

| (26)

If nonilluminated area is infinite in « direction, then total number of outgo-

ing neutrons is equal to the integral over dz from 0 to co, which is naturally
is equal to J(0).

The above result is valid for monochromatic and collimated neutrons

with precisely resonant normal component k? of the neutron energy. If

spectrum is not monochromatic, we should replace (25) with the expression

dIo(k ) ks, 9

s k wly| A%, (27)
where I is the resonance width. This width is calculated as follows. Let us’
denote phase (5) as ®(k.), then the resonance condition (5) looks ®(k,) =
27n, where n is an integer (n > 0) called resonance order. Near n-th
resonance the exp(i®) in the denominator (4) can be approximated as

dJ(z)=—

J(0) =

. o ly .
exp(i®) =~ 1+ zﬁ(E E)~1+ zk2z(E E,), (28)
where E = k2. Substitution into (3) gives
iC
Ak:) = 55 T (29)
where
k?zl - |P21| |T21|2kz 2kz k?z
P = 2L ~ ~ s C = T T 30
bolenl 2 SRR Ol Y

and we approximated d®/dE as 2l3(dky,/dE) = lQ/sz, because of weak
dependence of phases ¢93 and ¢9; on energy. '
Substitution of (30) and (9) into (27) gives

’ dIO(k2)
J(0) = i —=wk,. - (31)
For estimation we can replace dIy/dk? = I(] /K2, k, = 7/ly, and accept

w=1cm,ly=2-10"% cm, then we obtain

J(0) = 4Iy— E ~ —10w12 2 x 107° Iy, (32)



which means that the experiment is feasible for I oc 107 n/sec/cm?.
For distribution of exit neutrons over nonilluminated surface in experi-
ment with geometry shown in fig. 3 we, according to (26), can expect the

count rate
dJ(.’L') _ _]'-_‘J(O)e-—:c/:ne ~ 4
dr k? z, - T,

and for above parameters we get

Iowlgeuz/ze., (33) .

dJ/dz ~ 0.5 x 107°I, exp(—z/z.)

sec cm’

For the experiment with the geometry shown in fig. 1, we can get the
similar estimation though matching under Cd is worth because of change
of reflection amplitude py; — ph; at the upper surface of the layer us and
consequently some shift of the resonant value of ky,. This matching will
lead to excitation of several modes under Cd and reflection from the section
at the point z = 0 to the left.

The above considerations can be generalized to the case, when absorb-
tion in the layers and scattering on inhomogenieties and interface rough-
nesses are not negligible. In that case all the formulas must be multiplied
by the ratio ‘

. I‘\2

(C+Ty)%
and the extinction length z, should be changed to X,, where

1 1 1

Xe o Te :121,'
I'; and z; describe losses because of absorbtion and scattering on rough-
nesses and inhomogenieties.

We can also easily generalize the above considerations to magnetic mul-
tilayer systems with noncollinear magnetization of nearby layers. See, for
example, [23, 25].

3 Summary

We considered neutron channeling in a multilayer system. We applied to
it simple analytical algebra, and we have shown how to match illuminated
and nonilluminated areas in resonant layer. For matching we used the
anzats (17), which represents wave function of channeled neutron under
nonilluminated area. This wave function precisely satisfies Schrodinger
equation in the resonant layer, is almost identical to the wave function
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on the other side of matching cross area, and detérmines the extinction
rate of the channeling function along the channel in the absence of losses
in the resonant layer. It is trivial to add losses, if they are present, and
we leave it to a reader. Our estimations show that a neutron channeling
experiment is feasible. For cold neutrons with nonmonochromatic intensity
Iy we can expect count rates of the order 10751;, which are measurable in
sufficiently good background conditions. For x-rays situation on one side
is considerably better because of high luminosity of x-ray sources, but on
the other side it is considerably worse because of high absorption of x-rays
in matter. However these two factors can cancel each other and for x-rays
we can expect the good feasibility too.
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