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1 Introduction

In 1934-1937, P.A. Cherenkov performed a series of experiments where he observed
the radiation induced by v quanta propagating in water. He associated this radiation
with the electrons knocked out by photons from the medium atoms. S.I. Vavilov,
Cherenkov’s teacher, attributed observed radiation to the deceleration of electrons
[1]. At that time, P.A. Cherenkov agreed with S.I. Vavilov concerning the nature of
the radiation. According to him [2], ” All the above-stated facts unambigously testify
that the nature of the y luminiscence is due to the electromagnetic deceleration of
electrons moving in a fluid. The facts that v luminiscence is partially polarized and
that its brightness has a highly pronounced asymmetry, strongly resemble the similar
picture for the bremsstrahlung of fast electrons in the Roentgen region. However, in
the case of the 4 luminiscence, the complete theoretical interpretation is encountered
with a number of difficulties.” (our translation from Russian). In 1937, Tamm and
Frank showed ( the nice exposition of this theory may be found, e.g., in [3]) that a
charge uniformly moving in medium should radiate if its velocity v is greater than
the light velocity in medium ¢,. Since this theory corresponds to unbounded charge
motion in medium, the Cherenkov cone attached to a moving charge is infinite. In
1939, Tamm ({4]) considered the radiation of a charge which is instantly accelerated
at some moment of time ¢;, moves uniformly in the time interval ¢; < t < ¢, with
the velocity v > ¢,, and is instantly decelerated at the moment ¢ = ¢,. For ¢ <t
and t > i, the charge is at rest. Tamm obtained the remarkably simple formula
describing the angular-frequency distribution of radiation. Due to the instantaneous
charge acceleration, the Cherenkov shock wave is created instantly as well, and there
is no possibility to observe its formation. To remove this drawback, the charge
motions similar to that shown in Fig. 1(a), were considered in [5] and [6], in the time
representation. It was shown there that a complex consisting of the Cherenkov shock
wave and the shock wave closing the Cherenkov cone (and not coinciding with the
bremsstrahlung shock wave) is created at the moment the charge velocity coincides
with the light velocity in medium. Time evolution of this complex before and after
termination of a charge motion was also studied there.

After appearance of the Tamm-Frank theory, P.A. Cherenkov expressed his soli-
darity with it [7). The Vavilov explanation of the Cherenkov effect has given rise to
a number of attempts (see, e.g., [8,9]) in which the radiation described by the Tamm
formula was attributed to the interference of bremsstrahlung (BS) shock waves aris-
ing at the beginning and termination of motion. The Tamm problem, simultaneously
in the time and spectral representations was reconsidered in [10]. In the time repre-
sentation, it was shown that, in some interval of time, there is a shock wave associated
with the beginning of motion and the Cherenkov shock wave, and there is no shock
wave associated with the termination of motion (it is not still appeared). Thus, at
least in some time interval, the Cherenkov shock wave cannot be attributed to the
interference of the above BS shock waves. In the spectral representation, the motion
law shown in Fig. 1 (a) was considered in [10]. From the analytic solution found



there, it was shown that the accelerated and decelerated parts of a charge trajectory
do not contribute to the total radiation intensity when their lengths tend to zero
(despite the infinite acceleration and deceleration at the start and end of motion).
This means that the original Tamm problem, as a limiting case of motion shown in
Fig. 1 (a), describes charge motion on a finite space interval without recourse to the
instantaneous acceleration and deceleration. Despite the fact that for the motion
shown in Fig.1 (a) there are no jumps of the charge velocity and the acceleration
(deceleration) is everywhere finite, there are jumps of acceleration at the moments of
time corresponding to the start and end of motion and at the time moments when the
acceleration (deceleration) motion meets with the uniform one. The time derivatives
of acceleration are infinite at these moments of time. It was not clear to authors of
[10], whether these jumps contribute to the radiation intensity.

The goal of this consideration is to remove this insufficiency. For this aim, we
consider the charge motion law for which all time derivatives are everywhere finite
and do not exhibit jumps (Fig. 1 (b,c)). Despite this, the charge position remains
within a finite space interval. It is shown that radiation intensities corresponding
to Fig. 1(a) strongly resemble the ones corresponding to Fig.1 (b,c) when the para-
meters of motion laws are properly adjusted. Therefore, jumps of acceleration are
not essential, and one can apply analytic radiation intensities found in [10] for the
motion shown in Fig.1 (a) to the qualitative analysis of the motions depicted in Fig.1
(byc).

The plan of our exposition is as follows. In section 2, main computational formu-
lae are given, and the approximations used are discussed. The properties of motion
laws shown in Figs. 1 (b) and (c) are studied in section 3. Numerical calculations
presented in section 4 show that: i) for the motion laws of Fig. 1 (b) and (¢), the
radiation intensity falls almost instantly for angles exceeding the Cherenkov angle;
ii) for the motion corresponding to a zero final velocity (a moving charge is absorbed
in medium), the maximum of the radiation intensity is always at the Cherenkov an-
gle defined by cos 8, = 1/Bon (n is the medium refractive index and G is the initial
velocity) despite the highly non-uniform character of motion; iii) the frequency distri-
bution of the radiation (obtained by integration of the angular frequency distribution
over the solid angle) is proportional to the frequency (i.e., exactly the same as in the
Tamm problem). In section 5, analytic formulae obtained in [10] and describing the
motion laws similar to that of Fig. 1(a) are rewritten in terms of elementary func-
tions. It is shown that: i) instantaneous decrease of the radiation intensity for § > 6,
is due to the interference of uniform and non-uniform meotions; ii) the maximum of
the radiation intensity is always at § = 6,; iii) the appearance of two Cherenkov an-
gles defined by cos§; = 1/81n and cos 62 = 1/8,n should be expected for the motion
with the initial velocity $; and the final one 3, (where both $; and f; are greater
than 1/n). These facts were admitted in [10], but no satisfactory explanation was
given there. The discussion of the results obtained and their relation to the original
Cherenkov experiments is given in section 6. Finally, in section 7, we summarize the
main results of this treatment.



2 Preliminairies

Consider a point -like charge moving in medium with parameters € and p. Let the
charge velocity and trajectory be #(t) and £(t). For the definiteness, let it move
along the z axis. The flux of energy through the observation sphere S of the radius
r per unit frequency and per unit solid angle is given by
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r and @ define radial and angular positions of the observation point, and n = ,/ep
is the medium refractive index. When obtaining (2.1), it is implicitly suggested that
the charge motion interval lies entirely inside the observation sphere S.

However, Eq. (2.1) is not suitable for practical applications and the qualitative -
analysis of radiation intensities. Therefore, some approximations are needed. We
briefly enumerate them:

1. In the wave zone, where kr >> 1, one can disregard terms of the order 1/kr and
higher, thus obtaining

I.= v};l;’ cosp, I;= vdT —sin,
. vdT ¢ . vdr ¢
I = 7 —(1 -  cos O)costp, I, = 7 —(1 - ~ cos 6)sin .

Usually, this approximation is satisfied with a great accuracy. For example, for the
observation sphere radius r = 1m and the wavelength A = 4 - 107%¢m, kr is about
107.

2. When the observation sphere radius r is much larger than the motion interval,
one can disregard the ratio £/r everywhere except for the ¥ function. Then,

Ic=12=/vd'rcosz/), Iszlngvdrsirn/) and



2 e*unk?sin?0_, ., 2
o(0,w) = 55 = TSI 4 (1Y) (22)

Usually, this condition is fulfilled in a majority of experiments.
3. The most serious approximation is kL?/r << = (L is the motion interval). It
arises from the fact that the development of the k,r(R — 1) term occurring in ¢ has

the form

kn£%sin? 0

2r
The Tamm approximation is obtained when the last term in this expansion is ne-
glected. This is possible, if it is much smaller than 7 (since % enters into sines and
cosines). Then, 1 takes the form

¥ = wr — kné(7) cos . (2.3)

knr(R—1) = —k,€cos 0+

In realistic conditions, this approximation is not satisfied. For example, for A =
4-107%cm, L = lem and r = 1m, the discussed condition reduces to 400 << 1,
that is, it is greatly violated. The complications arising from the radiation inten-
sity measurements at finite distances and the analytic formulae removing the above
drawbacks were discussed in [11,12]. When the conditions 1-3 are fulfilled, the charge
uniformly moving on the interval (—zq,20) radiates with the intensity given by the
famous Tamm formula :

e?sin? @ [sin knzo(cos — 1/[3")]2
m2ne cosb —1/5, '

or(0,w) = (2.4)
As an example, in Fig. 2 we present the Tamm radiation intensity (2.4) and the one
taking account of a finite observation distance.

The aim of this consideration is to investigate the deviation from the Tamm for-
mula (corresponding to infinite acceleration and deceleration at the beginning and
end of motion) associated with smooth acceleration and deceleration of a charged
particle. Although the evaluation according to (2.1) takes into account finite dis-
tances effects, but it obscures smooth acceleration effects, which we intend to study
here. For this reason, we shall deliberately use (2.2) with ¢ given by (2.3).

3 Motion laws

We discuss the following two motion laws. The first of them is
Vo
)= —o
()= /)
Obviosly, v(t) = vg at ¢t = to and v(t) = 0 for ¢ — too. The charge position on the
z axis at the time t is given by

(3.1)

¢
(1) = /v(t)dt = votp tanh —t—
0 to
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It is seen that £ = 0 at ¢ = 0 and £(¢) — Lwotp for ¢t = +oo. Thus, 2vpty = L, where
L is the motion interval. The dependences v(t) and v(€) are shown in Fig. 1 (b).
The second motion law is

(1) = 1 + cosh(t1/to)
v = vocosh(tl/to) + cosh(t/to)”

(3.2)

Again, v(t) = vo at ¢ = tg and v(t) — 0 for t = +oo. The charge position on the z
axis at the time ¢ is given by

f cosh(t + t,)/2t0
§(t) = 0/"U(t)dt = vglo COth(t1/2to) In m
It is seen that £ =0 at ¢ = 0 and €(t) — Loty cothty/2ty) for t — +oo. Therefore,
2uot; coth t1/2ty) = L where L is the motion interval. The dependences v(t) and v(¢)
are shown in Fig. 1(c). It is seen that the ratio #;/to, for the fixed L, defines the
interval where v & vo. This motion law is much richer than (3.1). It is widely used
in nuclear physics to parametrize the nuclear densities [13,14].

4 Numerical results

Radiation intensities o corresponding to the motion law (3.1} for a number of 3y =
vo/c are shown in Fig. 3 side by side with the Tamm intensities o7 corresponding
to the same L,8; and A. It is seen that the positions of main maxima of ¢ and
or coincide for By > ¢, and are at the Cherenkov angle defined by cosf. = 1/Bon.
For By < ¢n, ¢ is much smaller than o7. For 8 > 6., o falls very rapidly and or
dominates in this angular region. For § < ., o is much larger than o7.

To see how the measurements at finite distances affect the radiation intensities, we
present, in Fig. 4, the radiation intensities corresponding to the motion law (3.1) and
evaluated at finite distances. The general formula (2.1) valid at arbitrary distances
was used for their evaluation. Side by side with them, shown are radiation intensities
corresponding to the the uniform motion on the same interval and described by the
Tamm formula (2.4). Comparing this figure with Fig. 2, we see that the modification
of radiation intensities due to the finite distances is minimal for the motion law (3.1)
and is essential for the Tamm problem (the origin of this discrepancy is not clear to
us).

Radiation intensities o corresponding to the motion law (3.2) for fixed vy = 1,
L =0.1cm, A = 4-10"%cm and a number of diffuseness parameters t1/to are shown
in Fig. 5 together with the Tamm intensities o7. The positions of main maxima are
at the Cherenkov angle 8.. For small ¢, /ty, the main maximum of & is much higher
than that of o7. They are approximately of the same height for ¢/t > 1. Again,
we observe that o falls almost instantly for § > .. On the other hand, ¢ and o7
approach each other with rising ¢, /to.



To see the influence of the value of the velocity vy at the origin, we evaluated
radiation intensities for t;/to = 107 fixed and various vo. In this case, v(t) is
almost everywhere zero except for the neighbourhood of ¢t = 0. We see (Fig. 6) that
radiation intensities corresponding to (3.2) are much larger than the Tamm ones.

It is instructive to compare intensities corresponding to Fig. 1(a) with the Tamm
intensities evaluated for the same (o, L and A (Fig. 7). The parameter z, is the ratio
of the path on which a charge moves non-uniformly to the total path. For example,
z, = 0.01 means that a charge moves non-uniformly on the 1/100 part of the total
path. It is seen that for rather moderate acceleration paths (z, = 0.1 and z, = .01),
the radiation intensities o fall rapidly for § > 6.. For smaller z,, o and or approach
each other (Fig. 7, c, d).

An important case is the motion with a final zero velocity. Experimentally, it is
realized in heavy water reactors where electrons arising in 3 decay are decelerated
up to their complete stopping, in the original Cherenkov experiments (see below),
etc. When the charge velocity is a linear function of time, the analytic solution in
terms of Fresnel integrals was found in [10]. Radiation intensities for different initial
velocities are shown in Fig. 8. It is easy to check that their maxima are always at
the Cherenkov angle ¢; defined by cos8; = 1/81n and corresponding to the initial
velocity v;. We conclude: the maximum of the radiation intensity at the Cherenkov
angle does not necessarily testify to the charge uniform motion with v > ¢c,.
Despite the highly non-uniform character of this motiom, the main maximum of
the radiation is at the Cherenkov angle #;. Analytically, this will be proved in the
next section. This means that under certain circumstances the bremsstrahlung can
imitate the Cherenkov radiation.

An important characteristics is the total energy radiated per unit frequency. It
is obtained by integration of the angular-frequency distribution over the solid angle:

or(w) = / v (w, 8)dQY. (4.1)

The integration of the Tamm intensity (2.4) over the solid angle gives the frequency
distribution of the radiated energy (see, e.g., [12])

d€
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Here to = z0/v, and si(z) and ci(z) are the integral sine and cosine. They are defined
by the equations

= [ [

In the limit wty — oo, (4.2) is transformed into the following expressions given by

Tamm:
2e%kzg 1 4e? 1 148,

Sr(w) = = “*Fg”a(ﬁ‘“ﬂn—l Y

for 5, > 1 and
1. 148,
ST( ) ﬂ In 1— ﬂn
for 8, < 1. Here k =w/fe, B, = ﬂn, and 2z, is the motion interval. Equation (4.3)
has a singularity at 8 = 1/n, while (4.2) is not singular. To see how (4.2) and (4.3)
agree with each other, we present them and their difference (Fig. 9 ) as a function
of the velocity 8 for typical parameters L = 2z = 0.1cm and A = 4 - 10~%cm. We
see that (4.2) and (4.3) coincide with each other everywhere except for the closest
vicinity of 8 = 1/n.

We integrate now angular distributions shown in Fig. 8 and relate them to the
Tamm integral intensitiy. Surprisingly, despite their quite different angular distrib-
utions, the ratio of integral intensities does not depend on the frequency (Fig. 10)
except for the neighbourhood of 8 = 1/n where (4.3) is not valid. For the charge
velocity v above the light velocity in medium c,, this ratio decreases as v approaches
¢n. For v < ¢,, this ratio begins to rise. Since decelerated integral intensities up
to a factor independent of w coincide with the Tamm one, the total energy for the
decelerated motion

~1) (4.3)

&= 72dw%

w1

radiated in the frequency interval (w;,ws) up to the same factor coincides with the
Tamm integral intensity.

Numerical calculations of this section show that: 1) radiation intensities cor-
responding to Figs. 1(b) and (c) fall almost instantly for § > .. 2) For highly
non-uniform motion with a zero final velocity, radiation intensity does not oscillates.
Its maximum is at the Cherenkov angle corresponding to the initial charge velocity.
This maximum shifts to larger angles with increasing initial velocity. 3) The integral
intensity obtained by integration of the angular intensity is a linear function of the
frequency (despite the highly non-uniform character of motion).



5 Analytic estimates

Let a charge move in the interval (z1, z2) according to the motion law:

1
z = 21+U1(t—t1)+ §a(t—t1)2. (51)

The motion begins at the moment ¢, at the space point z; and terminates at the
moment ¢, at the space point z;. The charge velocity varies linearly with time from
the value v = vy at t = ¢; up (or down) to valuev = vz at t = t3: v = vy+a(t—t1). Itis
convenient to express the acceleration a and the motion interval through 2y, 2o, vy, va:

When approximations (1-3) of section 3 are fulfilled (i.e., ¢ is of the form (2.3)),
the integrals entering into (2.2) can be taken in a closed form [10]. Using them, we
evaluate the intensity of radiation:

2k' n sin 0

o () = ———— /dz cos 1) + ( /dz siny,)?] =

2 12
- ﬂ{x — cos(u} — uf) + me’[(Ch = Cr)” + (52 — $1)'Ja:

2m%cen cos?
+v271a|(C; — Cy)(sinu2 — sinu?) — (S; — Sy)(cos u? — cos u?)]}, (5.2)
where we put Cy = C(u1), C2=C(uz), S1=S5(w), S2=5(u2),

_ k(zg — 21) | k(22 — z1)n]| cos | 1
aﬂ\Jn|cos€(,@22—ﬁ12)|7 UI_\J |82 — 33| (ﬁl_ncosﬂ)’

| k(22 = z1)n]| cos 0 1
“""J - ncosd

C and S are the Fresnel integrals defined as

S(z) = \/—;?_t/dtsint2 and C(z)= \/g/dtcostz.
0 0

Plus and minus signs in (5.2) refer to cos§ > 0 and cos 6 < 0, respectively. Further,
1 = vi/c and B; = va/c. When vy — v, = v, the radiation intensity (5.2) goes into
the Tamm formula (2.4) in which one should put zo = (22 — 21)/2.

Usually, the ratio of the motion interval to the observed wavelength is very large. In
this case, one can change the Fresnel integrals by their asymptotic values:

);

: 2 1 2
1 sine S(:c)—)——f—o—s—;f— for £ — 4oo and

2 \2rz
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1  sinz? 1 cosz?
C(z) — _2+_\/—§—;;’ S(z) — =3 Vors for z— —o0
(the fact that C(—z) = —C(x) and S(—z) = —S5(z) was used).
For the motion corresponding to fin > 1 and fan > 1, one finds that for k(z; —
z1) >> 1, the radiation intensity is given by:

e’nsin® 0{_1_[ B2 — B 2
4°(1 — Bincos )(1 — Ban cos §)

P12
(1 — Bincos 0)(1 — Ban cos §)

for 0 < 6 < 6, and 6 > 0,. Here we put

o, =
m2c

+

sin® 5} (5.3)

_ 2k(22 - 21)(51 + B2

6,=1 , 0,=1 , = 0—1).
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On the other hand, for §, < 8 < 6; one has
e?sin? 6 an cos @ cos 2us cos 2u,

o, =0.(5.3) +

PRl V] _
gt N ["’ﬁzncoso—1 ﬂlﬁlncosa_l]}. (5.4)

The term proportional to a? is much larger than the first and last ones everywhere
except for the angles close to 6; and ;. For these angles, the above expansion of
Fresnel integrals fails (since u; and u, vanish at these angles). These formulae mean
that the radiation intensity oscillates with decreasing amplitude for 0 < 8 < 6, and
0 > 6, and decreases rather slowly like

2.2 02
e’a sm2 0 (5.5)
men cos? §
for §; < 6 < 8;. The oscillating terms (first term in (5.4) and the term proportional
to a) are much smaller than (5.5). Exactly this behaviour of o, with maxima at 6;
and 03 and a rather flat region between them was stated in [10] where o, was taken
in the form (5.2). For 8, = 1/n, the above formulae predict intensity oscillations
for § > 6, and their absence for § < ;. Experimentally, the charge motion with
deceleration is realized in Cherenkov experiments with heavy ions [15] where energy
losses are essential due to their large atomic numbers. Formerly, analytic radiation
intensities for the decelerated motion with the velocity change small as compared
with the velocity itself were obtained in [11,16]. Numerically, decelerated motion
with a large velocity change was studied in [6,17]. However, our experience tells
us that pure numerical treatment of the problem without preliminary qualitative
analysis is not very productive. It seems that this section fills this gap.

A particular interesting case having numerous practical applications corresponds
to the complete termination of motion (82 = 0) . In this case,

e*n? sin® 0
4n2¢ (1 — Pincos 6)?

or =

(5.6)
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for 8 > 6, and

e*sin?é s Prancos@  cos2u,

o- = 0:(56) + rencos? 8 V2r  Bincosf — 1] (5.7)

for 6 < 6,. Here

_ 1 k(Zz et 21) _ 1
a= ﬁlwm, uy = \/k(z2 — z1)n cos (1 ﬂlncosﬂ)'

There are no intensity oscillations (since & >> 1 and, therefore, a* >> a) for § > 6,
and they are very small oscillations for § < 8, (they are due to the last term in (5.7)).
Figure 8 agrees with this prediction.

We clarify now why the radiation intensities disappear for 8 > 6, for the motion
shown in Fig. 1 (a). For this aim, we should evaluate the integrals I. = [ vdr cos

and I, = [vdrsin®y entering into (2.2). For ¢ in the form (2.3), I,=0 due to the
symmetry of the treated problem. Then, I, is reduced to

L=I"4+I 41" =21+ I" (5.8)

Here 12, I¢, and I* are integrals over the accelerated (—2p < z < —z;), decelerated
(21 < z < zp) and uniform (—z; < z < z;) parts of a charge trajectory, respectively.
Again, it was taken into account that I* = I¢ due to the symmetry of the problem.

The integral I corresponding to the uniform motion on the interval (—z; < z < 21)
is
r B
= sin
¢ k(1 - pBncosb)
Then, for § < 7/2, one gets

[%(1 ~ fncost)] | (5.9)

-z

= / dzcosyp = : {sin(u2 — 7) — sin(u? — ¥)+

n cos
o
aV2r{cosy(Cy — C1) + siny(S2 ~ S1)]}- (5.10)
For the motion shown in Fig.1 (a), u1, u2, , and « are given by
1 1
uy = —y\/k(z0 — z1)n cos OW, ug = \/k(z0 — z1)ncos (1 — m),
_ l[k(zo—zl)]l/2 k(zo — 21) B k(22 — z1)

o =

B8 ?n cos 8 I¢]
Changing Fresnel integrals by their asymptotic values, we get for k(zp — z;1) >> 1
and 8 < 0. (cosb. = 1/6n):

, v =kzoncosf +

n cos 6

1 (sinug_sinuf) Sy — 5 = —1— 1 (cosug_cosuf).
V2r© U2 u 7 V2 up Uy
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Substituting this into (5.10), we get

cos7y + siny Bn } v
= —ay kz (1 — . q1
I aV2r imeosg F(Bncosd=1) sin[kz;(1 — Bn cos )] (5.11)
To obtain I, one should double ¢ (since I? = I?) and add I* given by (5.9). This
gives

L=2I° 4+ ' = —ay2Zr X T90T 4
kncos 8

e2

o= 2men? 32
We see that for § < 6, the part of I? is compensated by the Tamm amplitude I¥. In
this angular region the oscillations are due to the (1 + sin 27) factor.
For 6 > 8., one obtains

sin® 9 .
k(zo — Zl)m(l + sin27). (5.12)

2 2 2
sin u2 sin u? 1 ,cosui cosu?
, Sa—8 =-— - .
\/—( ) 2 1 \/2—7F( s Uy )
Substituting this into (5.10), we get
1= — P Gnfka(1 — Brcos0)]. (5.13)

¢ k(Bncosd—1)
Inserting (5.9) and (5.13) into (5.8), one finds
=2+ TI'=0.

We see that for § > 6, the summary contribution of the accelerated and decelerated
parts of the charge trajectory is compensated by the contribution of its uniform part.
The next terms arising from the expansion of the Fresnel integrals are of the order
1/k(20 — z1) and, therefore, are negligible for k(2o — z;) >> 1. This behaviour of
radiation intensities is confirmed by Figs. 5 - 7.

The radiation intensity for § > . disappears for arbitrary z, satisfying the con-
diton zp — z; >> 1 and, in particular, for z; = 0. In this case, there is no uniform
motion, and accelerated motion on the interval —zy < z < 0 is followed by the decel-
erated motion on the interval 0 < z < zo. Equations (5.12) and (5.13) with z; = 0 in
them qualitatively describe Figs. 3 and 6 corresponding to a small length of uniform
motion.

It should be stressed again that these estimates are not valid near the angles 6; and
02 where the arguments of the Fresnel integrals vanish.

6 Discussion

As we have mentioned in the Introduction, P.A. Cherenkov being at first the follower
of Vavilov’s explanation of the nature of radiation observed in his experiments later
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changed his opinion in favour of the Tamm-Frank theory. What are the reasons for
this?

At first we clarify conditions under which the Cherenkov experiments were per-
formed. According to him, ”... the absorption of electrons in fluids was complete.”
([7], p-24). This means that we should apply numerical and analytic results of sec-
tions 4 and 5 corresponding to the charge motion with a zero final velocity.

There are three main reasons why Cherenkov abandoned the original viewpoint.
We concern them step by step.

1. ”For the radiation produced by electrons in fluids, the angle  (counted from
the direction of the electron motion) for which the maximum of radiation is observed
increases with increasing electron velocity. This dependence of 6 is just opposite to
that expected if one suggests that radiation of fluids is due to deceleration. For the
bremsstrahlung it is characteristic that the position of the intensity maximum shifts
towards the initial beam with rising electron energy” ({7], p.33).

However, numerical and analytic results of sections 4 and 5 and Fig. 8 demonstrate
that the maximum of the intensity behaves for the decelerated motion exactly in the
same way as in the Tamm-Frank theory.

2. 0n the fall of the radiation intensity at large angles.: - Again, we quote

P.A. Cherenkov: ” To the aforesaid about the azimuthal distribution of the intensity
should be added that the asymmetry of radiation relative to the plane perpendicular
to the electron beam is more pronounced for the observed radiation of fluids than
for the bremsstrahlung” ([7], p.34).
Turning to the motion laws presented in Fig.1, it was shown numerically and ana-
lytically in sections 4 and 5 that the radiation intensity falls more rapidly than that
described by the Tamm formula. For the decelerated motion with a zero final veloc-
ity, the falling of radiation is determined either by exact equation (5.2) (where one
should put #; = 0) or by analytic Eq. (5.7). The latter is infinite at cos§ = 1/83n,
while (5.2) gives o.(cos8 = 1/8n) = e*Ln(1 — 1/8%)/2¢) (L and A are the motion
interval and wavelength). The Tamm intensity at the same angle is much larger for
L/X >> 1: or(cos® = 1/Bn) = e2L*n(1 — 1/B2%)/cA? Comparing (2.4) and (5.7) we
see that for 8 > 6., o, and o7 decrease in the same way with the exception that or
oscillates, while o, does not (Fig. 8). It should be mentioned that there were no
angular intensity oscillations in original Cherenkov experiments.

3. The last Cherenkov objection concerns the frequency dependence of the inte-
gral intensity. Accordimg to him ”In both the cases, the same qualitative result is
obtained: the energy of the bremsstrahlung spectrum decreases at large frequencies.
For our purposes, it is enough to say that it does not rise with energy. On the other
hand, the experiment shows that, for the radiation induced by fast electrons, the
energy rises in proportion to the frequency, which, obviously, disagrees with results
following from the bremsstrahlung theory” ([7], p.33).

Turning to Fig. 10, we observe that the ratio of the bremsstrahlung integral intensity
to that of Tamm does not depend on the frequency. Since the Tamm integral inten-
sity rises in proportion to the frequency, the same is valid for the bremsstrahlung

" integral intensity.
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v(r) b v(z)

v v(u)

Fig. 1: Three types of motion considered in the text.

(a) Superposition of accelerated (—to < t < —t;), uniform (—#; < t < ¢,), and decel-

erated (t; <t < tp) motions. The drawback of this motion is due to the acceleration

jumps at t = +tp and ¢ = £¢;.

(b) The motion corresponding to v(t) = vo/ch?(t/to). Left and right parts corre-
t

spond to v(t) and v(€) where ¢ is the charge position (£(¢) = [ v(t)dt) at the time ¢.
0

It is seen that the charge position is confined to a finite space interval (—L/2, L/2).
(c) The motion corresponding to v(t) = vo[1 + cosh(#1/%0)]/[cosh(t/to) + cosh(t1/to)].
For large t;/to, the interval corresponding to the motion with a constant velocity
increases. The charge position is confined to a finite space interval (—L/2,L/2).
This motion is much richer than (b).
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Fig. 2: Angular radiation intensities (in units €?/c) corresponding to the charge
motion on a finite interval (Tamm problem). The solid and dotted lines correspond
to the radii -of the observation sphere r = lem and r = oo. The latter intensity
is decribed by the Tamm formula (2.4). The original angular intensities are highly
oscillating functions. To make them more visible, we average them over three neigh-
bouring points, thus, considerably smoothing the oscillations. This is valid for Figs.
2-7. The charge velocity is 8o = 1, the motion interval L = 0.1cm, the wavelength
A = 4-10"5%cm, the refractive index n = 1.5. The last three parameters are the same
for all subsequent figures.

14



d*8/dwdn
d*8/dwd0

0 10 20 30 40 60 60 70
¥(deg)

d*8/dwd0
d*&/dwdQ

—_
o
'y

60 0

Fig. 3: Angular radiation intensities corresponding to the charge motion shown
in Fig. 1 (b) (solid curves) and the Tamm intensities (dotted lines) for various values
of vg. For vy > ¢,, the maximum of intensity is at the Cherenkov angle 6, defined by
cos 8, = 1/Bon. The angle 6. decreases with decreasing vo. For 8 > 6. and fo > 1/n,
the radiation intensity falls almost instantly. This is explained analytically in section

5.
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in Fig. 1 (b) for 8o = 1 and various radii r of the observation sphere (solid curves)

and the Tamm intensities (dotted lines). It is seen that angular intensities are al-
most the same for any r. This is contrasted with the drastic r dependence of angular

intensities corresponding to the uniform motion (see Fig.2).
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Fig. 5: Angular radiation intensities corresponding to

the charge motion shown

in Fig. 1 (c) (solid lines) for By = 1 and a number of diffuseness parameters ¢, /.
Angular intensities approach the Tamm one (dotted line) for large values of ¢, /t.
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Fig. 6: Angular radiation intensities corresponding to the charge motion shown
in Fig. 1 (c) (solid curves) for ¢;/to = 1073 and a number of velocities vo. These
intensities are much larger than the Tamm ones (dotted curves).
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It is seen that angular radiation intensities approach the Tamm one (dotted curves)

when z, — 0.
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Fig. 10: The ratio of the integral intensity for the motion with a zero final velocity
to the Tamm integral intensity (4.3) for a number of initial velocities v;. Although
this ratio does not depend on the frequency (except for the velocity 8 = 0.67
close to the Cherenkov threshold 1/n), it strongly depends on $3; being minimal at
the threshold. To this frequency interval there corresponds the wavelength interval
(5-107%em < A < 10~*cm) which encompasses the visible light interval (4-10~%cm <



We summarize the discussion: it seems that the radiation observed in original
Cherenkov experiments is due to the decelerated electrons. Vavilov’s explanation
of these experiments supported initially by Cherenkov was correct. Probably, the
beauty of the Tamm-Frank theory concretely predicting the position of the radia-
tion maximum, its dependence on the electron energy and the medium properties,
frequency proportionality of the total radiated energy, the absence of concrete cal-
culations on the radiation of decelerated electron in medium (Cherenkov used ref-
erences treating bremsstrahlung in vacuum), and the similarity of the predictions
of the Tamm-Frank theory and bremsstrahlung theory in medium, enabled him to
change his opinion.

Aforesaid is related to the original Cherenkov experiments where the Compton
electrons knocked out by photons are completely absorbed in medium. In modern
experiments, high energy charged particles move through a medium almost without
energy loss. In this case, one can use either the original Tamm formula (2.4) or its
modification for finite observation distances [11].

7 Conclusion

1. We have evaluated radiation intensity for the Tamm problem with absolute con-
tinuous time dependence of a charge velocity. It is shown that the radiation intensity
is described by the Tamm problem when the length of acceleration region tends to
zero.

2. We have shown that the fact that the maximum of the radiation intensity lies at
the Cherenkov angle does not necessarily indicate the charge uniform motion with
a velocity greater than the large velocity in medium. In fact, we have shown nu-
merically and analytically that the maximum of the radiation intensity lies at the
Cherenkov angle even if the motion is highly non-uniform.

3. It is shown for the motion beginning with the velocity v; and terminating with the
velocity v,, that there are two Cherenkov maxima if both 8in and fG;n are greater
than 1. Only one Cherenkov maximum survives if one of these quantities is smaller
than 1. .

4. The radiation intensity for the charge completely stopping in a medium does
oscillate. Its maximum is at the Cherenkov angle 6. defined by cos 8. = 1/8n where
B is the initial velocity. The integral intensity is a linear function of frequency.
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Adanacses I'. H. u 1p. E2-2002-37
YucneHHOe U aHATNTHYECKOE PACCMOTpEHHE
co1axXeHHOH 3apaun Tamma

PaccmatpuBaeTcs ABMXECHHE 3apsafa B cpelie Ha KOHEYHOM MHTepBaie. [IBuxe-
HHE OIMHCHIBACTCA aGCOMIOTHO HENPEPhIBHBIMH (DYHKIHAMH BpEMEHH (3TO O3Hava-
€T, YTO HENPEPBIBHBI HE TONILKO CKOPOCTH, HO M BCE MX IIPOH3BOIHBIE 11O BPEMEHH).
Ins crmaxeHHOH 3agayd TaMMa HHTEHCHBHOCTh M3IY4EHHS pe3KO YOBIBaeT
IIPH yI7lax, NPEBHIIAIIIMX YCPEHKOBCKMI. AHATUTHYECKH TT0OKa3aHO, YTO 3TO CBH-
3aHO C B3aMMHOM KOMIIEHCaUMeH BKJIanOB PaBHOMEPHOTO M YCKOPEHHOTO JBUXE-
HUH. B BaXHOM I IPUMEHEHHUH Cllydae, COOTBETCTBYIOLIEM HYJIEBOH KOHEYHOH
CKOPOCTH, HHTEHCHBHOCTb M3JTy4€HHS MaKCMMalIbHA IIPH YEPEHKOBCKOM YIJIE, CO-
OTBETCTBYIOIIEM Ha4yajbHOH ckopocTH. MHTerpansHasd MHTEHCHMBHOCTH (IIONy4eH-
Has MHTETPUPOBAHUEM YIJIOBOTO PACIPENeSICHUsS IO TEJIECHOMY YIVly) ABISAETCS JIH-
HeHHOH (pyHKUHER 4acTOThI. DTH pe3yNbTaThl PUMEHAIOTCA K MEPBOHAYATBHBIM
9KCIIEpUMeHTaM YepeHKOBa C MOHBIM MTOIJIOLIEHHEM KOMIITOHOBCKHX 3/IEKTPOHOB
B BOZE.

Pa6ota BeimonHeHa B JlaGoparopun Teoperudeckoil ¢pusuku um. H. H. Boro-
mo6osa OHAN.

ITpenpunt O6beAMHEHHOrO HHCTUTYTA SAEPHBIX MccnegoBanuii. dybua, 2002

Afanasiev G. N. et al. E2-2002-37
Numerical and Analytic Treatment of the Smoothed Tamm Problem

We consider the charge motion in medium in a finite space interval. This mo-
tion is described by absolutely continuous functions of time (this means that not
only functions themselves but all their time derivatives are continuous as well).
For the smoothed Tamm problem, the radiation intensity suddenly drops
for the angles exceeding the Cherenkov angle. It is shown analytically that this is
due to the fact that contributions of accelerated and uniform motions to the radia-
tion intensity cancel each other. In a practically important case corresponding
to the zero final charge velocity, the radiation intensity is maximal
at the Cherenkov angle corresponding to the initial charge velocity. The integral
intensity corresponding to this motion (obtained by integration of the angular
radiation intensity over the solid angle) is a linear function of frequency. These
results are applied to the original Cherenkov experiments corresponding
to the complete absorption of Compton electrons in water.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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