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1 Introduction

Field model under consideration describes interacting fermionic and bosonic
fields, analogously to the Yukawa model, QED, QCD. First two theories allow
to detect its bosons (mesons and photons) along with their fermions. One does
not observe bosons that interact strongly with quarks. The unobservability of
isolated gluons is reasoned in QCD by color confinement. This is an additional
hypothesis rather than a theorem derived from QCD Lagrangian, e.g. see [1]
ch. 18.7, and [2, 3]. In the suggested model bosons are unobservable and this
is its exact corollary.

In the model several fermionic fields interact with several scalar fields by
means of a derivative coupling, see sect. 2. For the sake of convenience of the
model comparison with QCD the model fermionic fields will be called quark
fields. The corresponding particles will be called quarks.

It is supposed that the model scalar fields interact only with these quark
fields and do not interact with all other fields of the particle physics, e.g.
electromagnetic and leptonic ones.

Let us list some other peculiarities of the model. In place of renormaliz-
ability and asymptotic freedom of QCD the model has the property of being
partially solvable. This means that one can find exactly a subset of eigen-
vectors of the model total Hamiltonian H along with quark-quark potential,
see sect. 3. The model interaction is nonlocal and we assume that the the-
ory of interacting quarks need not be relativistic (of course the bound quarks
states, i.e. hadrons, must have relativistic description). Note also that model
is not gauge invariant just like the known Yukawa model of the meson-nucleon
interaction.

The model is specified by postulating its Hamiltonian H, see sect. 2. The
existence of the related Lagrangian is not supposed. As Weinberg noted “The
point of the Lagrangian formalism is that it makes it easy to satisfy Lorentz
invariance and other symmetries”, see [4], the preface to ch. 7, p. 292. As we
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do not assume Lorentz and gauge invariance the Lagrangian is not needed.

In sect. 3 the model is partially solved, using an unitary transformation of
its Hamiltonian H.

The important point of this paper is using the particle interpretation of
fields in terms of “clothed” particles and their creation-destruction operators,
see the review [5] and section 4. It is the “clothed” scalar bosons which will be

shown to be invisible, see sect. 5. Sect. 6 contains some concluding remarks.

2 The model Hamiltonian

The model total Hamiltonian H is the sum of its free part Hy and the inter-
action Hy: H = Hy + H;. Here Hy = Hos + Hgy, where Hyf is the fermion
part of Hy and Hy, is its boson part. The operator Hy s is the sum of ordinary
free Hamiltonians of several spinor (quark) fields, numerated by two indices:
quark flavor f = u,d,s... (up, down, strange, ...) and quark color i = 7Y,V

(red, yellow, violet)
Hoy = Z Z/d3zw}i(;¢)(d’ﬁ+ BMy)ysi(x) . (1)
Fo

Here y; is the column of Dirac components (Yif)u, £ =1,2,3,4 and w}i is
the row of Hermitian conjugated components (1); i
The boson part Hy, of Hy describes several free scalar Hermitian fields

wa(z),a=1,2,...
=35 5 [ @)+ Vo) Vo) + @), @)

The following nonlocal interaction Hamiltonian is postulated

/d3 /d3yZG x—y)ZZ{ Z 1/),:, o Q%ij(x)(%%%(y)

,J m=1,2,3
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Here G,(z — y) are formfactors, the interaction is local when G,(z — y) ~
6(z —y); o™ are the same Dirac matrices as in Eq. (1). In all Egs. (1)-(3) and
in the following = and y denote three-vectors: = = (z;, Ty, T3).

The interaction H; involves the same quarks fields as QCD. Similar to
QCD the interaction conserves the flavor (there are no vertices like Yiap,
¥isp, etc) and does not depend on flavor : the coupling constant of vertices
Yivuo, 1&31/1(190, ... are equal (gf; does not depend on f), e.g. cf. [1] ch. 18.7,
Eq. (18.7.5); [6] ch. 1, Eq. (1.9). In distinction to QCD the quark fields interact
with derivatives J,¢, of scalar fields and not with vector gluon fields B¥.

"The usual commutation and anticommutation relations for the Schroedinger

fields vy, @,, T, are postulated:

[Pa(@), Mo (2)] = 100 6(x — '), (4)
{riu(@), ¥} (') }4 = 858 8ywd(x — ') . (5)

Only nonvanishing commutators and anticommutators are written.

Remind that I do not suppose that a Lagrangian exists which would cor-
respond to the model Hamiltonian. Therefore the Egs. (4), (5) are not to
be deduced from a Lagrangian using the known cannonical procedure. The
equations are postulated as defining point of the model. The Egs. (1)-(5) to-
gether with general quantum postulates allow one to perform any quantum
calculations.

In the next section the following abridged notations will be used

Z Z Z Uin (@) 9% 1iu(2) | (6)
J™(z) = ZZ Zd)fzu ) 95bsin(x), m=1,2,3. (7)

YT

In terms of (6) and (7) the Eq. (3) may be written as

H; = /de/d3yZGa(x—y) {ZJ;”(x)B—??—T;(pa(y)+J2(:L‘)7ra(y)} - (8)

3



3 Hamiltonian unitary transformation

Let exp¢S be an unitary transformation, S being Hermitian. The unitaryly
transformed total Hamiltonian H — H' = exp(iS)H exp(—iS) may be calcu-
lated using the equation
1
H = H+[iS,H]+§[z'S, [¢S, H]] + ... (9)
= H0+H1+[iS,H0]+[iS,H1]+... (10)

Let us assume the following ansatz for S using the notation (6)
s= [ [ 43 6uls -9 Raeat). ()

Using the Egs. (4) and (5) one may verify that the sum of the second and third
terms in (10) vanishes
[iS, Ho) = —Hj . (12)
Note. Instead of postulating Eq. (3) for H; one may begin with postulating
Eq. (11) for S and then calculate H; using Eq. (12).
The Eq. (12) allows one to rewrite the r.h.s. of (10):

. 1. & 1 , ,
H _H0+§[zS,H1]+n§_:2(n [iS,...[iS, Hj]...].  (13)

— (n—1)!(n+1)

Now calculate the second term in r.h.s. of Eq. (13). Using the identity

[AB,CD] = A[B,C]D + [A,C]BD + CA[B, D] + C[A, D|B



and Eq. (4) one obtains

/ &z / d3yZGa(x _— / d*z' / d?’y'Z:Gar(x’ -y
[m Dou(s) I ) + e (y')]

/ Bz / dsy;(}'a(x—y) / &Pz’ / dSyI%:Ga’(I’ -
x {Z [72(a), 2] ult) oo )

m

[SaHI]

Il

X

+ [12(2), Jo(2")] @aW)ma (') + Jor (') T3 ()i0aar(y — y')} (14)

Further the commutators of “current densities” J° and J™ entering Eq. (14)

may be calculated using the identity
[AB,CD] = A{B,C}+D - {A,C}+BD - C{D,A},B+ CA{D, B},

and anticommutators of the fermion fields, see Eq. (5). The result is

[70(2), Jo(2")] = 6(z — 2) YD N 0, (2)(9°0% — 9% 9%)itriu(z)

fouionw
(15)
[79(x), Jo(a')] = 6(z — =) Z > Z ¥, (2)(9°9% — 9% 9%l ss(@) -
4] (16)

Both these commutators vanish if matrices g%, a = 1,2, ... mutually commute
[¢%¢%]1=0, Va,d. (17)

It is not difficult to verify that if (15) and (16) do not vanish then r.h.s. of

Eq. (13) will be infinite series of terms, containing products of fermion and

boson fields. Then the model will not be partially solvable and “clothed”

bosons will not be invisible. So we require that Eq. (17) must hold. In this case

[S, Hj] depends only on J (see the last term in curly brackets in Eq. (14), i.e.
S



depends only on fermion fields. Then [S, [S, H/]] = 0 because of [J2,J%] = 0

ar“a'

and ), in r.h.s. of Eq. (13) vanishes. So we obtain
1
H’=H0+§[iS,H1]=H0b+Hf, Hf=H0f+fo, (18)
_ L[ 3 0 0
Vi = —E/d z/d a:'Sa_:Fa(x =) (') (z), (19)
F(z —2) = /d3yGa(x — )Gz’ — ). (20)

For Hy; and Hy, see Egs. (1) and (2).

So H' does not contain terms describing interaction between boson and
fermion fields as well as boson-boson interactions. Because of [Hy, H'] = 0 all
well-known eigenvectors v, of Hg, are also H' eigenvectors. But the latter are
not eigenvectors of the starting Hamiltonian H because H # H'. But if 1, is

an eigenvector of H' then exp(—iS)i, is H eigenvector:
He—iwa — e—iSHleiSe—iS,wb — e-iSleb ~ e—iwa .

A successful representation of the obtained H ’ eigenvector and H itself will
be achieved in the next section using the so-called “clothed” boson and fermion
operators.

Note. In the case when only one fermion field is present the L.h.s. of Eq. (16)
turns into [jo(z), jm(y)], where jo and j,, are charge and current densities of the
fermionic field. S. B. Gerasimov called my attention to the paradox (anomaly)
by J. Schwinger connected with the equations [jo(z), jm(y)] = 0, m = 1,2, 3.
Due to them the commutator [jo(0), [H, jo(0)]] is zero. However, Schwinger
had pointed out a way of the calculation of the commutator mean value in
the H vacuum eigenstate 2 (H{2 = 0) which gives an essentially positive value
2(9, joH joS?) for this mean, see [7]. By the way he used the hermiticy property
(HP) of the kind

(0n, Aom) = (Apn, om)

in the case when A is the Hamiltonian H. It should be stressed that HP is not

valid for some states ¢,, and ¢,. For example, let A be the momentum operator
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p = —id/dz, ¢, be its eigenvector po(z) with zero eigenvalue (pg(x) = const)
and @, = f(z)po. Then

+00

(ot @)n) = [ do(=i)dffdz = il (o0) = §(~o0)]

This is finite and nonzero if e.g. f(z) = tanhz. Meanwhile HP gives zero

value for (o, p.f (x)o).
To resolve Schwinger’s paradox one must assume that HP is not valid in

the case A=H, v, =Q, o = jg(O)Q:
(Q, Hjg(0)2) # (HQ, j3(0)Q) = 0.

Indeed, it can be proved that (2, Hj2Q) # 0 if Eqgs. (5) are postulated. Proof:
It follows from [jo, [H, jo]] = 0 that Hj2 = 2joHjo — j2H. Therefore,

(9, Hj2Q) = 2(, joHjoR) > 0.

4 Introduction of “clothed” particles’ opera-

tors
Let us introduce new boson and fermion operators
(‘5 — e—isweis , 'I,Z — e—iS,l/]eiS . (21)

Rewrite H' = exp(iS)H exp(—iS) in the form H = exp(—iS)H’ exp(iS) and

express H in terms of the operators (21):
H=e""H'¢® = H(¢,9) = Hu(@) + Hy(9) - (22)
Here we used identities of the kind

—iS 2615 —

€ %) 2

e-zs(pezse—zsweis — ¢ .

The Eq. (22) means that the starting Hamiltonian H assumes the form of the
sum of the free boson part Hy,(¢) and purely fermionic part H f(1/~)) when being
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expressed in terms of @ and 9. Let us stress that Ho(p) and Hop() are the
same functions of their arguments, but they are different operators because
@ F .

Till now Hamiltonians had been represented as functions of fields. We can
introduce creation-destruction operators instead of fields using the well-known
expansions of ¢, m (in terms of the operators a, a') and of 1, %' (in terms of
b, d, b, d'), e.g. see [8]. The fields @, 9 have the same expansions in terms of
a, at and b, d, bf, df respectively:

a(k) = exp(—iS)a(k) exp(S), (23)

etc. All eigenvectors of Hyy(®) (being simultaneously H eigenvectors) can be

written as

Q, al(k)Q, Vi, (24)
' (ky)al (k2)Q, ki, K, (25)

etc. Here € is no-boson state, namely a(k)Q = 0, H;Q = 0.

The operators @, @' satisfy the definition of “clothed” boson operators (see
[5], sect. 2) because (24) are H eigenvectors. It was argued in [5] that just
the eigenvectors (24) (and not the “bare” states af(k)$2) are to describe the
observed no-boson and one-boson states. The Egs. (23) and (11) allow one to
find @' as functions of “bare” creation-destruction operators a, af, b, d, bf, dt.

However the transformed fermion operators b = exp(—iS)bexp(iS), etc.
are not “clothed”. Indeed, the states bf(p)Q are not H eigenvectors: fo(J))
(see Eq. (19)) contains the terms of the kind b7d"btb which transform b€ in the
state “one fermion plus fermion-antifermion pair”. Therefore, Hb!Q = H fBJfQ
is not proportional to b'Q2. The “clothed” fermion operators can be found
by means of sequential unitary transformations of the operator H; described
in [5], sect. 2. In particular, they take away from the transformed H; the
above terms b'd!b'b. The only important point for our purpose is that solely

fermion part H (%)) of the total Hamiltonian H (g, 1) must be transformed and
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the obtained “clothed” fermion operator b., d., b}, d} will be functions of the
tilded ones b, d, bt, di. Therefore, the absence of tilded boson-tilded fermion

interaction in H (@, 1) means as well that the “clothed” (observable) bosons

do not interact with “clothed” (observable) fermions.

5 “Clothed” bosons as particles of “dark mat-

ter”

I have supposed (see Introduction) that boson fields ¢, interact with the quark
fields only and not with other known fields. As was demonstrated in the pre-
vious section the “clothed” bosons do not interact also with “clothed” quarks
and among themselves. So, “clothed” bosons cannot be observable (detected)
because measuring devices use some kind of interaction.

Let us make here a reservation. If our bosons have nonzero masses y,, see
Eq. (2), then one must suppose that they interact gravitationally with other
non-zero-mass particles. This would allow one to observe macroamounts of
the bosons but not individual ones. So, our “clothed” bosons would satisfy

the definition of the the particles of cosmological “dark matter” [9].

6 Concluding remarks

Model bosonic fields ¢, manifest themselves only in generating fermion-fermion
interaction Vs, see Egs. (19) and (6). The interaction depends upon arbitrary
elements g;; of Hermitian matrices g* as well as upon arbitrary functions G,(z—
y). Note that the matrices g° entering Eq. (3) can be juxtaposed to the Gell-
Mann matrices Af; which are generators of color SU(3) group of QCD. However,
unlike A* only mutually commuting g%, a = 1,2,... must be used in order
that the model be partially solvable and “clothed” bosons unobservable. For

example, one may take the unit matrix as g' and an arbitrary Hermitian 3 x 3



matrix for g2 e.g. such that
>l = ive + iy + s + He.
]

(the flavor index is omitted).

Further investigations are to show if the suggested model may be used
instead of QCD as a theory of strong interaction of the known physical quarks
(remind that in this paper the term “quark” has been used to designate a
fermion of the model). It seems that some experimental facts (e.g. quark
confinement potential) can be described by the adjustment of 95 and Go(z—y).
However, the main task should be to strive for “falsification” of the model [10],
looking for such model consequences which would not be compatible definitely

with experiment.
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CxiienBanue (pepMHOHOB IOCPENCTBOM
HEeHaO/I0jaeMbIX CKAIIPHBIX 6030HOB

IIpennoxeHa Teopus HECKOIbKUX (PEPMHOHHBIX IOJIEH, B3aUMONEHCTBYIOLIHUX
C HECKONbKHMMHU CKaJIIPHBIMM NONSMH. Mogenb HeloKadbHas M YaCTUYHO pelae-
Mas IpH Hpou3BOIbHOM BbiGOpe ee dopmcakropos. IlokasaHo, yTo MmociaenHue
omnpenensoT ¢epMUoH-hepMHOHHBIE ToTeHIMansl. Habmonaemsle («onersie») 60-
30HBI MOJEH MMEIOT CBOMCTBA KOCMOJIOTHYECKOH «TEMHOH MaTepUH» U HE MOTYT
IETeKTHPOBAThCA B 3EMHBIX JIaOOpaTOpUAX. DTO SBNSAETCA TOUHBIM PE3YILTATOM
Mozenmy, B To BpeMs Kak B KXJI HeHab/m01aeMOCTh H30JIMPOBAHHbIX [NTIOOHOB 00~
SCHSAETCS TIOCPEACTBOM JONOMHUTENIBHON THIIOTE3bl O KOH(haliHMEHTE IIBETa.

Pa6ora BemonHeHa B Jlaboparopuu Teopernveckoit ¢usukd uM. H. H. Boro-
mobosa OUSU.
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A theory of several fermion fields interacting with several scalar fields is sug-
gested. The model is nonlocal and is partially solvable under arbitrary choice of its
formfactors. The latter are shown to determine the resulting fermion-fermion in-
teraction. The observable («clothed») bosons of the model have the properties
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