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The parametric driving is well known to be an efficient way of
compensating dissipative losses of solitons in various media. Examples
include surface solitons in vertically oscillating layers of water [1, 2];
light pulses in optical fibers under phase-sensitive amplification [3] and
in Kerr-type optical parametric oscillators [4]; magnetisation solitons
in easy-plane ferromagnets exposed to oscillatory magnetic fields in
the easy plane [5]. A serious problem associated with the parametric
energy pumping, however, is that the driven solitons are prone to
oscillatory instabilities which set in as the driver’s strength exceeds a
certain — often rather low — threshold [6].

With a few notable exceptions, the parametrically driven solitons
considered so far had the form of pulses decaying to zero at spatial
infinities. These were solutions of the nonlinear Schrédinger (NLS)
equation with the “self-focusing"nonlinearity:

Wy + Yo + 2092 — Y = hip — iyip. (1)

(Eq.(1) governs the amplitude of an almost-harmonic stationary wave
oscillating with half the frequency of the driver.) However, in a number
of applications the amplitude equation of the parametrically driven
wave turns out to have the nonlinearity of the “defocusing"type:

Wy + $¥ze— | % 2 Y+ = hp — iy (2)

The localised solutions forming in the defocusing media are domain
walls, or kinks, also known as “dark solitons"in the context of
nonlinear optics. The purpose of this note is to explore the stability
and bifurcations of the parametrically driven kinks and their bound
states.

In fluid dynamics, the “defocusing"parametrically driven NLS (2)
describes the amplitude of the oscillation of the water surface in
a vibrated channel with large width-to depth ratio [2, 7]. (On the
contrary, the “focusing"equation (1) pertains to the case of the narrow
channels.) The same equation (2) arises as an amplitude equation for
the upper cutoff mode in the parametrically driven damped nonlinear
lattices [8]. In the optical context, it was derived for the doubly
resonant x(? optical parametric oscillator in the limit of large second-
harmonic detuning [9]. Next, in the absence of damping, stationary



solutions ¥ = My +¢M, of eq.(2) minimise the Ginzburg-Landau free
energy for the anisotropic XY model, F' = [ Fdz, where

F = 3(8:M)* — (1 + h)M? + IM* + 20 M2 + Fo,

and M = (0, My, M;). This model was used to study domain walls
in easy-axis ferromagnets near the Curie point [10]. Nonstationary
magnetisation configurations were considered in the overdamped
limit: ¢ = —§F /6% [11]. The damped hamiltonian dynamics 3); =
—i6F /&% — yi provides a sensible alternative; this is precisely our
eq.(2).

Before proceeding to its solutions, we show that for vy = 0
equation (2) has yet another magnetic interpretation. Consider a
quasi-one-dimensional ferromagnet with a weakly anisotropic easy
plane (M,, M), in the external stationary magnetic field along M,.
The magnetisation vector M = (M., My, M,) lies on the sphere,
M?2 = M¢, and satisfies the (damped) Landau-Lifshitz equation [12]:

h 0
TMMT_MXSM/de_)\MXMT, (3)
W = %(35M)2+§M3+52QM12—HM2+W0. (4)

If the anisotropy parameter e is small and the field H is close to SMj:
H = My — €q, the vector M will stay close to the northern pole of
the sphere. We assume ¢ > BMj/2 and let

M, +iM, = (2¢/8)Y%s¢

with
s = gMy — BME/2.

Assuming that the relaxation constant X is @(el/2) or smaller, and
that M depends only on “slow"variables = (es?/2aMg)/2¢ and
t = (2ep08%/hMo)T, q.(3)-(4) reduces to eq.(2) with h = BMZ/(2s?)
and v = 0. Note that the resulting NLS equation is undamped —
although the original Landau-Lifshitz equation did include a small
damping term.

Solutions of eq.(2) with nonvanishing asymptotics approach, as
|z| — oo, the flat solution ¥(*) = Ae~% where

A= 1+/h2-4)12 ¢
2

% — 1 arcsin(vy/h). (5)



This flat solution is stable for all A > v > 0. One nonhomogeneous
solution is also available in literature [2, 7, 9]:

¥ (z) = Atanh(Az)e ™, (6)

For reasons explained below we call it the Néel wall. Our first goal
here is to demonstrate a remarkable stability of the Néel wall. We let

¢(113, t) = ’lﬁN(IE) + (5’!,[1((1), t)7

where
§p(z,t) = [w(X) + v (X))~ DT, (7)

X = Az, T = A%, T' = A~%y and u is complex. Linearising eq.(2) in
small d7) we obtain an eigenvalue problem

(Lo+e)v=(p—T)u, Liu=—(p+T)v, (8)

where € = 2 — 2/A2 and Lo and L; are the Schrédinger operators with
familiar spectral properties:

Lo = —10% —sech?X, L; = Lo+ 2tanh’X.

Introducing v? = p? — I'? and w = v~} (4 I")v, we eliminate T from
the eigenvalue problem (8):

(Lo + €)w =vu, Lju=—-vw. (9)

Now we will show that v? < 0 for all 0 < € < 2, so that u2 < I'? and
all perturbations decay to zero as t — oo.

The operator L; has a zero eigenvalue, with the associated
eigenfunction yo(X) = sechX, and no negative eigenvalues.
Consequently, on the subspace R defined by

[uwe(x)ax =o, (10)

there exists an inverse operator L' and so (9) becomes
(Lo + €)u = =2 L1,

X .



with Lo + € symmetric and Ll‘]L a positive operator. The smallest
eigenvalue —1¢ is given by the minimum of the Rayleigh quotient:

(11)

To prove that —12 > 0 it is sufficient to show that the minimum of
the quadratic form [wu(Lo + €)udX is positive on R [13]. Assuming
that u(X) are normalised by [u?dX = 1, the minimum is attained on
the solution u(X) to the nonhomogeneous boundary-value problem

(Lo + €)u(X) = nu(X) + ayo(X), (12)

where 7 and o are the Lagrange multipliers. The minimum equals 7
— provided 7 and « are chosen so that the u(X) satisfies eq.(10) and
the normalization constraint.

The operator Lg has a single discrete eigenvalue Eg = —% with the
eigenfunction zo(X) = (1/v/2)sechX, and the continuous spectrum of
eigenvalues E(k) = k2, with

_ ik + tanhXe_

w(X) = ——— ke _oo <k < oo. (13)

Expanding yo and u over the complete set {zo; 21} gives
w0(X) = Yoo(X) + [Y(R)z(X)dk,
w(X) = Upzo(X) + / U (k)z(X)dk.

Substituting into (12) and using the orthogonality of the functions in
the set produces U(k) = a(k? + € —n)"1Y (k) and Uy = a(Eo + € —
n)~Yp. Using these in (10) gives

Y5 © _|Y(k)

_ dk = 0. 14
Eo+e—n Jsok?®+e—n (14)

Ge(n)

The minimum of the quadratic form [ u(Lo+¢€)udX is given by the
smallest root n* of the function (14). The function G.(n) is increasing
for —oo < n < ¢, apart from the point 7 = Eg + ¢ where it drops from
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+00 to —00. As p — —o0, Ge(n) — +0; as 7 — €, G(n) tends to a
finite value. (This follows from the fact that

ik mk/2
1+ ¢k sinh(wk/2)’

Y (k) =

hence the integral in (14) converges for all < e.) Consequently, there
is only one root n* and its sign is opposite to the sign of G(0). Since
0Ge(n)/0e < 0, we have G.(0) < Go(0) while the value Go(0) can be

calculated as

gm)’3+/ Y@L - [wls'wax. (5

Noticing that Lglyo(X) = —1 4 ctanh X, with ¢ an arbitrary
constant, eq.(15) yields Go(0) = —2 and hence n* cannot be negative
for any €. Thus —v2 > 0 and the Néel wall is stable for all ~ and v
(with A > v > 0).

We now turn to other solutions of eq.(2), both quiescent and
travelling, of the form (z — Vt). We examined their stability
numerically, by computing eigenvalues of

HE = AJg, (16)

where the column @ = (u,v)T; the operator

’H——£82 3R2+TI2+h 2RI -Vo,+7v \ .
To9= 2RI +Vo, — v R24+372—-h )’
and J is an antisymmetric matrix with Jy; = —Ji2 = 1. Eq.(16) is

obtained by linearising eq.(2) about ¥y = R + ¢Z in the co-moving
frame, and letting 69 = (u + iv)e.

Let us start with the undamped situation, v = 0, when eq.(2)
conserves the energy and momentum integrals:

_ L T SRS Al
—Re/<—2—+7—|¢| +hp" + = | dz,

= (1/2) [ @ - $oP)do. (17)
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Here eq.(6) coexists with a solution of the form [14]
¥p(z) = —iAtanh(2vhz) £ v/1 — 3hsech(2Vhz). (18)

- We call it the Bloch wall to emphasise the analogy with Bloch
and Néel walls in easy-axis ferromagnets with the second, weaker,
anisotropy axis (8,¢ < 0 and H = 0 in eq.(4)) [12]. As in that
case [12], the energy of our “Bloch wall"is smaller than the energy
of the “Néel wall"(6): Ep = 4vh— $h%2, Ey = §(1+ h)%2. (Despite
the analogy there are important physical differences; in particular in
the easy-axis case the walls interpolate between M/Mp = £(0,0,1)
while in our case they separate domains with M ~ (0, £€!/2,1)). We
have found that the Bloch and Néel walls can travel with nonzero
velocity; the travelling solutions are obtained by solving, numerically,
the equation

Sben = Viho = [0 Y+ Y = h)

Similarly to the easy-axis case [12], the distinction between our Bloch
and Néel walls becomes less visible as the velocity V' grows. Finally,
when V = w (an analog of Walker’s limit velocity [12]), the two
branches merge (Fig.1(a)).

The Bloch wall is known to be the only stable solution of
the relativistic and diffusive counterparts of eq.(2) in the region
h < % where the Bloch and Néel walls coexist. In contrast to
those Klein-Gordon and Ginzburg-Landau dynamics [15, 11, 16],
our numerical analysis of eq.(16) shows that the entire Bloch-Néel
branch of travelling walls in Fig.1(a) is stable. This multistability
admits a simple explanation in terms of the energy and momentum,
eqs.(17). Since Ey > Ep, one might expect ¥ to decay into v
and radiation waves — as in the relativistic case [15]. However, unlike
their relativistic counterparts, our Bloch and Néel walls have unequal
momenta, with Pg > Py (see Fig.1(a)) — and this makes the
YN — ¥p decay impossible.

Our numerical simulations of eq.(2) showed that two stationary
Néel walls repel for b < % and attract and annihilate for A > %
Two stationary Bloch walls of the same chirality (i.e. same sign in
(18)) repel whereas walls of opposite chirality attract and form a
nonmoving stable breather-like state (Fig.1(b)). A stationary Bloch
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Fig.1: (a) The momentum of the travelling Bloch and Néel walls
(thick) and their nonoscillatory bubble-like complez (thin line). For
V| close to c, the wall attaches a small-amplitude bubble on each
flank; this accounts for the turn of the thick curve near |V| = c.
The dotted segments of the continuous branches indicate unstable
solutions. (b) The formation of an oscillatory breather-like complex
of two walls. (Only the real part of 1 is shown for visual clarity.) In
(a), h=15;in (b), h=0.1.



and Néel wall attract too, which results in a mowving breather. There
also exist nonoscillatory, bubble-like, bound states of the Bloch and
Néel wall. (Unlike their parent walls, all of these complexes approach
the same background as x — oo and z — —o0.) Below we focus on
the bubbles and relegate the breathers to a separate publication.

For each h there is a one-parameter family of bubbles, the
parameter being the separation ‘distance z between the two walls.
(Accordingly, there are two zero eigenvalues in the spectrum of the
operator (16) associated with each bubble, one translational and the
other one corresponding to variations in z). In this respect the bubble
is similar to the complex of two parametrically driven bright solitons
[17], and like in that case, there is a particular separation z = ¢ for
which the bubble is symmetric: ¥ (—z) = —t¢(z). For b = {z we
found the analytical form of the symmetric bubble,

We(x) = iA [1 - (3/4) sech? (Az/4F im/4)] ; (19)

for other h < % we obtained it numerically. The symmetric bubble
turns out to have the largest momentum over bubbles with various
z, and ¢ is the smallest possible separation: z > . The importance
of the symmetric bubble stems from the fact that for each h, it is
the only stable bubble. All nonsymmetric bubbles (z > ¢) were found
to have a pair of nonzero, real eigenvalues £\ in their spectrum. As
z — (, the pair converges at the origin and so the symmetric bubble
has four zero eigenvalues. All other eigenvalues are pure imaginary.
To find the explanation for the stability of the symmetric bubble,
we make use of the energy and momentum integrals again. For all h
and whatever the separation z, the energy of the bubble v, is ezactly
equal to the sum of the energies of the Bloch and the Néel walls. (For
each h and each z the binding energy E, — (Ep + En) was found to
be zero to within our computational accuracy, i.e. to within 10710))
Since for the (V' = 0)-solutions we have 0E = 0, 6°E = [ gH@dz, the
independence of E of z implies that 8,9 = &, (R,Z) is an eigenvector
(and not a generalised eigenvector) of the operator H associated with
the zero eigenvalue. (In other words, the geometric multiplicity of
the zero eigenvalue is two, not one.) Therefore, for small € = z — (,
where ( is the separation corresponding to the bubble with four zero
eigenvalues, we have H, = H¢+eH1+ ..., A = €/2); + ... and

8




Y=Y+ et/ %Y1 + ..., where Yj has to b_‘e a linear combination of the
two zero modes: Yy = (C10;9 + C20,9)|,=¢. Substituting this into
(16), the order €'/2 yields

HeYy = A JY,. (20)

Eq.(20) is only solvable if its right-hand side is orthogonal to an
independent combination of the two zero modes, i.e. to 01631/3 -
C38,%. This orthogonality condition amounts to (dP/dz)|,=¢ = 0,
and the latter relation explains why the pair of real eigenvalues
converges at the origin for the value of z corresponding to the
maximum momentum.

The other implication of the relation dP/dz = 0 is that it allows
the symmetric bubble to be continued to V' # 0 [17]. The resulting
branch of moving bubbles is shown in Fig.1(a). As |V| — ¢ =
\/ 1+ 2h + \/4h(1 + h), which is the minimum phase velocity of linear
waves, the bubble degenerates into the flat solution ¥(9), whereas
when V, P — 0, the bubble transforms into a pair of Néel walls with
the separation z — co. The entire branch of moving bubbles is stable,
with the exception of a small region between V = 0 and the point of
the maximum |P| inside which a real pair £\ occurs (Fig.1(a)). The
change of stability at points where dP/dV = 0, is explained in [17].

A natural question is which parts of the bifurcation diagram
Fig.1(a) persist for nonzero . When v # 0, the energy and
momentum are, in general, changing with time:

P=-:P,  E=1 [l - 19l*)de - 24E,
and therefore a steadily travelling soliton has to satisfy

P=0,  E=3 [(wol - Ipl)dz.

In fact, only the first condition needs to be ensured for the
continuability. Indeed, for ¢ = 9(x — V't) eq.(2) with v = 0 yields
the identity

VP =E~(1/2) [(ol' - [¢l')dz,
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Fig. 2:: The energy of the damped bubble for the fized v (main panel)
and for the fized h (inset). The solid and dashed branches indicate
stable and unstable solutions, respectively.

and hence if P = 0,

1
= [(wol* - [pl*)da

immediately follows. Since the solid line in Fig.1(a) crosses the P =
0 axis only at the stationary Néel wall, we conclude that no other
solutions can be continued to small nonzero «. This does not mean,
however, that there are no other solutions for larger ~.

Indeed, our simulations revealed a window of h values, hi(y) <
h < ha(y), where two Néel walls attract and form a stable stationary
bubble. Fig.2 shows the energy (17) of the bubble as it is continued
in h and «y. (Note that it is not continuable to v = 0.)

In conclusion, the remarkable stability of the damped-driven kinks
and their bound states is in sharp contrast with stability properties
of the bright solitons. The stable coexistence of two types of domain
walls and their complexes in the undamped case is also worth
emphasising; this multistability is not observed in the parametrically
driven Klein-Gordon and Ginzburg-Landau equations.

We thank Nora Alexeeva for writing a pseudospectral code for
the time-dependent NLS (2) and Boris Ivanov for useful comments

10
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Bapamenkos U. B., Byndopa C. P., 3emnsanas E. B. E17-2002-158
TeMHble COTMTOHBI C MapaMETPHYECKOH HaKa4Koi

Iloxa3aHo, 4TO B OTJIHYHE OT Cliy4yast CBETJIBIX COJIMTOHOB ITapaME€TpH4Y€CKas
Haka4ykKa HE NPHUBOOHUT K HCyCTOiI‘:lHBOCTH AOMCHHBIX CTCHOK (TCMHLIX COJ'IHTOHOB)
HHA TIPH KaKUX 3HAYECHUAX aMIUIMTydbl HaKaykKH H KOS@(*)HHHCHT& AUCCHIIALIUH.
IToka3aHo TakXxe, 4TO IIapaMeTpH4€CKH BO36y>KIlaeMBIC NAOMCHHBIC CTCHKH cnoco6-
HBI 06pa3035man> yCTOﬁ‘{HBbIC CBSI3aHHbIE COCTOSHHA. B OTCYTCTBHE QUCCHIIALUH
yCTOil‘lHBbIC JOMCHHBIE CTCHKH ABYX THIIOB U HX yCTOﬁ‘lHBI)IC CBA3aHHBIC COCTOA-
HHUSI CIIOCOOHBI JBHraThCA C HeHynenoﬁ CKOpOCTBHIO.

Pa6ora seinonHeHa B JlaGoparopun nHbopMaHOHHBIX TexHONMoruit OMSAN.

Tpenpunt O6GbeNMHEHHOTO MHCTHTYTa SAEPHBIX MccnenoBannii. lyGua, 2002

Barashenkov 1. V., Woodford S. R., Zemlyanaya E. V. E17-2002-158
Parametrically Driven Dark Solitons

We show that unlike the bright solitons, the parametrically driven kinks are
immune from instabilities for all dampings and forcing amplitudes; they can also
form stable bound states. In the undamped case, the two types of stable kinks
and their complexes can travel with nonzero velocities.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2002




Maker T. E. Ilonexo

JIP Ne 020579 or 23.06.97.
Ioanucano B nevats 24.07.2002.
®opmar 60 X 90/16. Bymara odcetnas. Ileyars opcerHas.
Ven. new. 1. 0,93. Va.-u3a. 1. 0,96. Tupax 315 3k3. 3aka3 Ne 53443,

Hsnarensckuit otaen O6beJMHEHHOTO HHCTHTYTA AAEPHBIX HCCIIEAOBaHHH
141980, r. Ty6Ha, MockoBckas o6m., yn. Xommno-Kiops, 6.



