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1 Introduction. Result

Consider the classical Vlasov-Poisson system
% 4oV f+V,f-E(z,t)=0, (t,z,v) ERxR*xR? f= f(t,z,v),
(1)
Blat)= [ VU= )fttao)dy do, Ule)=lel ™, (2

RExR3

f(0,z,v) = fo(z,v), (3)
where all quantities are real, a - b means the usual scalar product of a,b &
R3, & = 41 is a constant, and f is an unknown function that has the

sense of a distribution function of particles in the (z,v)-space. In view of
the sense of f, we require:

f>0 and / fit,z,v)de dv = 1. (4)

R3xR3

Everywhere L, denotes the standard Lebesgue space L,(R® x R?) with
the standard norm (here 1 < p < oo). In what follows, we look for weak
solutions of (1)-(4) that belong to Ly N L., for each fixed ¢t € R.

There is a numerous literature devoted to studies of Vlasov equa-
tions. Here we mention the following papers. In [1-4], the Vlasov equa-
tion with a smooth bounded potential U is considered; the existence and
uniqueness of a weak solution with values in the space of normalized
nonnegative measures is proved. In [5-7], the Vlasov-Poisson system is
investigated (see also [4]). In [6], the existence and uniqueness of radial
solutions is proved. In [4,5,7], weak solutions of this system are studied
(we note that in these papers the question about the uniqueness of weak
solutions similar to ours is left open). We also mention paper [8] where
weak solutions of the Vlasov-Maxwell system are considered. In [9], the
existence of a global smooth solution to (1)-(4) is demonstrated. We also
mention paper [10], where the Vlasov equation with potentials of higher
singularities is considered, and paper [11] where a two-time problem for
the equation with a smooth bounded potential is treated.

Here we prove in particular the uniqueness of a weak solution of
(1)-(4). We accept the following.



Definition Let f(t,-,-) € C(I; L,) for all 1 < p < oo where I CR
is an interval containing 0 and || f(t,-, ). < C for allt € I. Then,
we call f a weak solution of (1)-(4) if (2)-(4) are satisfied and if for any
Junction n = n(t,z,v) in [ x R®*x R continuously differentiable and equal
to zero from outside of a compact set one has for allt € I:

/ de dv [n(t,z,v)f(t,z,v) —n(0,z,v) fol(z,v)] — /ds / dz dv x

R3xR? 0 R3xR3

Xf(s,z,0){ns(s,z,v) +v - Von(s,z,v) + Von(s,z,v) - E(z,s)} = 0.
(5)

In the present paper, our main result is the following.

Theorem 1 For any fo € L1 N L, with a compact support problem
(1)-(4) has a unique weak solution f(t,z,v) global in t such that its (z,v)-
support is bounded uniformly in t from an arbitrary finite interval. The
energy of the system,

E(f)y=1/2 / [v|2f(t, z,v) dr dv—

R3xR3

— / dr dz’ dv dv' f(t,z,v)U(z —2')f(t, ', v"),
RrR12

does not depend on t.
We prove this result in the next section.

2 Proof of Theorem

Associate with (1)-(4) the following system:

z(t, g, v0) = v(t, 2o, v0), (6)

O(t, zo,v0) = w(z(t, 2o, v0),1) 1= / VU(z(t,z0,v0) —y) f(t,y,v) dy dv,

R3xR3
7
(17(0,1'07”0)70(0»1'07'00)) = (l’o»vo)v (8)
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flt,z(t. zg,v0)sv(t, To,v0)) = fo(zo,vo) for almost all (zg,v0) € R® x R®
for any fixed ¢, (9)

where (g, v9) runs over the entire R® x R3. Formally, if
(z(t, xo.vo), v(t, 2o, v0)) is a solution of system (6)-(9) and if f(¢,z,v) is
given by (9), then f satisfies (1)-(4). Here, we are aimed in particular to
Justify this fact.

Set for g € L1 N Ly

To)a) = [ VU= p)g(w: )y do
R3xRE3

Let w(:) be a nonnegative even ('*-function with a compact support in

R? satisfying [ w(z) dz = 1 and let U,(z) = (U(+) * n®w(n-))(z) where
RrR3

the star means the convolution and n = 1,2, 3, .... Consider the sequence
of approximations of system (6)-(9) that occur by substitutions of U, in
place of U in (6)-(9). We denote these approximations by (6,)-(9,). Let
also T}, be the integral operator which is defined by analogy with T with
the change of U by U,.

It is the well known result proved in fact in [1-4] that for each n sys-
tem (6,,)-(9,) possesses a unique global solution (z,(t, 2o, vo), v (¢, To, v0));
also, for any fixed ¢ the map S! transforming (z¢,ve) into
(n(t. 20, v0), va(t, To,v0)) is a diffeomorphism of R? x R® onto itself (i. e.
it is a one-to-one map continuously differentiable with its inverse), and
the corresponding function f,.(¢, 21, v1) = folz,.(—t, 21, v1), va(—1, 21, v1))
is finite for each fixed t and it is a weak solution of the problem arising
from(1)-(4) by replacing U by U,; in addition, diam (supp f.(¢,-,-)) is
continuous in t. Also, for each n the corresponding energy E,(f,), which
occurs by replacing U by U, in the representation for ¥, and the norms
| fa(t, -, )z, with 1 < p < oo do not depend on ¢. In addition, according

to [12] det J,(¢,2z0,v0) = 1 where J, = a(z"(t’r‘g(”zg’::)(t’xo’UO)) is the Jacobi

matrix. Denote DZ(t) = sup{p € [0,00) : ess sup f,(t,z,v) > 0} and
[z|>p
Di(t) = sup{q € [0,00) : ess sup fn(t,z,v) > 0}.
[v]>q

Lemma 1 For any finite fo € Ly N Lo there exist Dy > 0 and
T = T{Dgy) > 0, where T(s) is a nonincreasing function of s > 0, such
that D(t)+ D2(t) < Dg for alln and all t € [T, T).
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Proof. We consider only the case ¢ > 0 because for ¢t < 0 all our
estimates can be made by analogy. First of all, we have the estimate:

‘ Further, it can be easily derived from (6,),(7,) and (10) that one has
for any (zg.vo) € supp (fo):

t

[xa(t, 2o, v0)| < |l +/|v,n(s,.t0,vo)| ds <|zo| + /DZ(s) ds

0
and
1
fon(t,20,v0)| < C4 4+ ool + C / (D () ds
0
and hence,
t
D2(t) < DE(0) + / D(s) ds
0
and

Dy (t) < C3+ Dy (0) + Cy /[Dg(s)]3 ds

with constants C3,Cy > 0 independent of ¢ € [0,1] and n, which easily
implies our claim.[]

Corollary 1 There exists C > 0 such that |(T, fn)(z,t)] < C for all
zandte[-T,T].
Proof follows from (10) and lemma 1.00

Lemma 2 There ezxists C > 0 such that
(Tag)(z1) = (Tng)(x2)] < =Clz1 — z2{In[r1 — 72
for al g € Ly N Ly, satisfying |lgllL, + |lglle. < 1 and g(z,v) = 0 if

lzl+|v] > Do, alln = 1,2,3, ... and for all z,, 25 € R3 such that |x;—z,| <
1/2.



Proof. Take arbitrary x,h € R®, where |h| < 1/2, and g. Then, we
have:

(Tog)(e + h) — (Tag)(@) = /'+ ‘/ dy(VU (e + b — y)—

21pi(2)  Bpg (0)\Bajaj(z)

*wa—w)/‘Mdev=h+b.
Bp, (0}

Since |lgllz.. <1, we have for I;:
nl<apymy [t <o,
Bk ((0)
For I, we deduce:
< CIMOYT) [l dy < —Cilb{n 4.0
By (0)\Bs})(0)

Corollary 2 One has |(T'g)(z +h) — (T'g)(z)] < =C|h|In|k| for all
rand h: |h| < 1/2 and for all g € Ly N Ly, satisfying |lg]lz, + 19l <1
and g(z,v) =0 if [z| + |v| > Do.

Lemma 3 For any ¢ > 0 there exists § > 0 such that
[(2n(t, To, o), Va(t, To, v0)) — (Tn(t, z1,v1),vn(t, x1,v1))]| < €

for alln and all t € [=T,T] if |(zo,v0) — (z1,v1)] < 4.
Proof. We consider only the case t > 0 because for ¢ < 0 the proof
can be made by analogy. We have by lemma 2:

4
[, (t. 20, v0) — Tp(t, z1,01)] < ’Io—$1l+/ [on(s, To, vo) — vn(s, Ty, v1)] ds
0

and

£
v (1, 20, v0) — vu(t, 21, v1)] < Ivo-‘1’1f—~C/Il'n(87xoﬂ’o)—xn(&ll,vl)ix
0
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x In |z, (s, x0,v0) — Ta(s,z1,v1)| ds

until |,(f, To, v0) — T (t,71,v1)] < 1/2. Now our claim follows by stan-
dard arguments similar to those used when proving the Gronwell’s lemma
(see also [13]).00

Now, applying the Arzéla-Ascoli theorem, in view of lemmas 1-3 and
(10) we deduce that the sequence {(x,(t, zo,v0), vn(t, Z0,v0)) }n=123.. of
functions from [T, T] x R* x R? into R® x R? contains a subsequence still
denoted {(2, (¢, x0,v0), vu(t, To, Vo)) }n=12a3,. which converges to a pair of
continuous functlons (z(t, 20, v0), v(t, o, z'o)) uniformly in (¢, 2o, vo) from
an arbitrary compact subset of [T, 7] x R*® x R®.

Lemma 4 For any t € [=T,T] there exists f(t,-,-) € L1 N Ly
such that for any p € [1,00) the sequence {f.(t,-,)}nz1,23,.. converges to
f(t,-.-) strongly in L,.

Proof. Take a sequence h*(-,-) of continuous functions converging to
fo strongly in L, and almost everywhere, bounded in L, and such that
R¥(z.v) = 0 if |2| + |v| > Do + 1 for all k. Then, we have

”fn(t?"' fm ”Lp < “hlc ( t?'?')’vn(—ta'v'))_
—h* (@ (-, w)’vm(—t oDzt
+”hk(~l‘n(_tv'7')vvn( by ) fO( ')7vn(_tv'a'))”Lp+

+”hk($m(‘—t’ "y ')a vm(_tv ) )) - fO(rm(—tv ) ')7vm(—t7 s '))”Lp'

Then, obviously, for any ¢ > 0 the second and third terms in the right-
hand side of this inequality are smaller than ¢/3 for all sufficiently large
k and for all n and m, and the first term is smaller than ¢/3 for the same
(fixed) values of k£ and for all sufficiently large n and m.O

Corollary 3 One has || f(t,-,- )|z, = [ follz, for all p>1 and all t.
Proof follows from lemma 4 and the relations 4| f.(¢,-, )|z, = 0,
holding for all ¢ € R and for all p € [1,00), which are well known.O

Lemma 5 Let {¢"},=123,.. C L1NLe, each g* = 0 if |z|+|v| > Dy,
this sequence is bounded in L, and let for any p € [1,00) ¢" — g strongly
in L,. Then, (T.g")(z) = (Tg)(z) uniformly in z € R>.



Proof. First, we have:

(Tog")(@) = (Tg)(x)] < [((Tn = T)g" ()| + T(g" — 9))(x)!.

The first term in the right-hand side of this inequality tends to 0 as
n — oo because

(T T)g") ()] < / dy [VU, (2 —y)— VU (2~ y)| / G"(,v) do <

Bp,(0) Bp,(0)

<C / VU, (x —y) = VU(z—y)|dy >0
Bpy(0)

uniformly in = € R3.
As for the second term, we have:

Tl =gl < [ dy VUG- [ 1g"e) -yl do 0.0
BDO(O) BDO(O)

Taking now the limit n — oo in (6,),(7.), we obtain by lemmas 4
and 5:

t

z(t, o, v0) = To + /U(S,l‘o,l?o) ds, (11)
0
1
U<t79r07170) = UO_*'/w(x(svl'O? 00)78) d57 (12)
o

where the function w is given by (7) and (11) and (12) hold for all (zq, vg)
and t € [=T,T]. Now, it follows by the known uniqueness theorem for
ODEs (see, for example, [13]) and by corollary 3 that system (11),(12)
may have at most one solution. It is also easy to see from (11},(12) that for
any fixed ¢ the transformation {zo,ve) — (2(¢, 20, v0), v(t, Zo,v0)) is a one-
to-one map of R*®x R? onto itself continuous with the inverse (to see this,
it suffices to consider the initial value problem for (z(t, zq,vo), v(¢, Zo, v0))
with initial data given at an arbitrary time ¢y € [T, T7]).

Theorem 2 Denote S*(zg, vo) = (z(t, 2o, vo), v(t, Tg,v0)). Then, for
any fired t € [—T,T} S' is a one-to-one map continuous with its inverse
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of R® x R? onto itself so that in particular it transforms Borel subsets
of R?® x R® into Borel ones. For any Borel set A C R® x R3? one has
m(A) = m(SY(A)) where m(-) is the Lebesgue measure in R x R3.
Proof. Take an arbitrary open bounded set A C R® x R3. As well
known. for any € > 0 there exists compact A, C A such that m(A\ K,) <
€. Let a =dist (K, 0A4) > 0 and Az = {z € S¥(4): dist (2,05'(A)) >
B}. Let also 8 = dist (S'(K.),0S'(A)) > 0. For any z € K, take a
ball B.(z) C A such that SYB,(z)) € As. Let B, (z1),..., Br,(z) be a
finite covering of A by these balls. Then,2by construction, there exists a
number N such that Si(K.) C 5‘(A4§) for all n > N. Now, we have:

!
m(A) —e <m(K,) (U B, (zx) ) =m (S’; (U B,k(zk)>) <
k=1

< m(Ag) < m(S'(4))

so that m(A) — e < m(S*(A4)). The inequality m(S*(A4)) — ¢ < m(A4) can
be obtained by the complete analogy by considering the inverse map S~°.
So, m{A) = m(S*(A)).

For an unbounded open set A the same equality follows in view of

representations
A=[JANBy0) and SYA US (AN Bi(0
k=1 k=1

This also implies the same equality for closed sets. For an arbitrary Borel
set A C R* x R? the equality m(A) = m(S*(A)) now can be obtained by
approximations of A by open sets from outside.[]

Lemma 6 For any fized t € [-T,T) one has
f(t, 2(t, 2o, vo), v(t, 2o, v0)) = folo,vo) for almost all (zq,ve) € R x R>.

Proof. We have that, over a subsequence, f,(t,-,-) = f(t,-,-) almost
everywhere and f,(¢,21,v1) = folzn(—t,z1,v1),va(—t,71,v1)). So, in
view of theorem 2 to prove lemma, it suffices to show that
Jolanl=t,--),va(=2,-,2)) = folz(—t,-,-),v(—t,-,-)) almost everywhere.
Set

(zn(—t, 2z, 01), a1, 21, 01)) =

= (I<_ta Ilavl) + 5n(xlvvl)7v(_t1 Ilvvl) + ')’n(-Th'Ul))»

8



where (,,,7,) — 0 as n — oo uniformly in an arbitrary compact set, and
show that

fU(I(”tﬂrlavl) + 5n,v(—t7$1,v1) + ’Yn) - fO(;T(_t)l?l’ Ul)vv(_tvl‘lvvl))

almost everywhere over a subsequence. Let ¢ be a sequence of continuous
functions, uniformly bounded in L., and supports of which are uniformly
bounded, converging to fo almost everywhere. Then, for p € [1,00):

HfO(il'("tv ) ) + 5nav(_t’ ) ) + 771) - fO(I(_tv Bl ')70(_tv ) '))“Lp <

< I’V"k(‘r(_tv s ) + 57“ v(—tv s ) + A/n) - gok(lf(—t, ) ')7 U(_ta s ’))“Lp+
+Hf0(.l‘(-—-f, ) ')+5n~,7—’(_t7 ) ')+7n)'—99k(‘r‘(_t’ ) )+5n7 U(—t, " ')+7n)HLp+
+Hf0(.17(—i, ) ')7 v(_tv K] )) - &,Dk(l’(—-t, ) ')7 U(_tv K '))”Lp'

The third term in the right-hand side tends to 0 as £ — oo in view of the-
orem 2. As for the second one, since the map (z1,v1) = (z(—t, 21, vy) +
Op(x1,v1),v(—t, z1,v1) + yu(x1,v1)) is one-to-one continuous with the in-
verse and preserving the Lebesgue measure, we have that it is equal to
lfo — willz, = 0 as k = oo. So, for a given ¢ > 0 the second and third
terms can be made smaller than ¢/3 by taking a sufficiently large k, uni-
formly in n. As for the first term, it can be made smaller than ¢/3 by
taking the same sufficiently large fixed k and sufficiently large n.0

Proposition 1 System (6)-(9) has a unique solution
x(t, o, v0), v(t, 2o, v0)) in the interval of time t € [—T,T] such that the
(x,v)-support of the corresponding function f(t,x,v) is bounded uniformly
int from an arbitrary bounded interval.

Proof. We have to prove only the uniqueness of a solution. Suppose
the opposite. Without the loss of generality we can accept that there
exists to € [0,T) such that two different solutions (z;,v;)(t, 2o, vo), ¢ =
1,2, coincide for ¢ € [0,t0] and for all (zg, vo) and that in an arbitrary small
right half-neighborhood of ¢y there are points ¢ where (z;, v1)(¢, 2o, vo) #
(22, v2)(t, 2o, vo) for some (zg,v0). Let also f = fi(t,z,v), i = 1,2, be
the corresponding functions given by (9). Without the loss of generality
we accept that fi(t, z:(2, zo,vo), v:i(t, o, v0)) = folzo,ve) for all (zg,vo)
and t. Set also (z,v)(f,z0,v0) = [(z1,v1) — (T2, v2)]{¢, Z0,v0), R(t) =



max |z(t, ro,v0)] and r(t) = max |v(t, 2o, v0)]. Then,
(zo,v0)€supp (fo) (zo0,v0)€Esupp (fo)
applying lemma 2, we obtain for t > ¢y sutficiently close to #y:

h{t) < /r(s) ds, (13)

t

lo(t, xo,v0)| < —C/h(s)ln h(s) ds + /ds / VU(xy(s,20,v0) = y) X

to R3xR3

x[fi(s,y,v) = fals,y, 0)} dy dv

Let us estimate 1. Denote by (z;,v;)(?, s, 2o, vo) the values of those func-
tions (x;,v;) at the moment of time t (where i = 1,2} which satisfy
(z;,v;)(s,70,v5) = (z,v). We have that f;(¢{,z,v) are solutions of the

= +1I. (14)

linear transport equations with the exterior forces

Blat)= [ VUG =y)fitye) dy do

R3xR?3

and so, again the mappings Si(s,t0) : (zo,v0) — (z4,v:)(8, %0, 20,v0)
preserve the Lebesgue measure in R® x R%. Then, we have for ¢t > ¢,
sufficiently close to t:

t

II:/ds‘ / + / dyx

to 4h{s)(‘rl (s,x0,v0)) Ra\Bfih(s)(Il(vaOvUO))

X /dl) VU(Il(S,.’Eo,U()) _y) X [f](S,yﬂ/') —f2(87y7v)] S
R3

< /d.s{Clh(s)—P | / VU(z1(s, z0,v0) — 2(8,%0,Y,v)—
to Si(to,s)(Pr{4,5))

—$2(Sa tOw Y, U))fz(t(h Y, U) dy d’l)+
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i

+ / VU (21(5, 2o, v0) = y) fals, yy0) dy dvl} < /ds{Clh(sH

Ps(4.5) to
+C, / |VU (21(s, x0,v0) — y)| dy+

Bsnie)(21{5.20,00))\Bap(e)(z1(s:70,v0))

+ / |v£/r(xl($7 IOva) _‘l’(satO’I?(thSvyvv)sv?(t()v'S?y?U))_y)—

P (3,5)
=V U(zi(s,z0,v0) — y)|f2(s,y.v) dy dv} <
¢ ¢
< / {Cgh(S) + Cyh(s) / ly|™2 dy < —C5/h(s)1nh(s) ds
to D3 (s)\Bsn(s)(0) to

(15)
where P;(k,s) = supp (fi(s,-,-)) \ (Binsy{x1(s, 20, v0)) x R?), D(t) =
sup{p € [0,00) : ess sup fg(t,x,v > 0} and we exploited the fact that

|z|>p
if (y,v") = Sa(s,t0)(S1{to, $)(y,v)), then |y — y| < A(s) for all (y,v) €
supp (fi(s.-,-)). Estimates (13)-(1 ) yield:

t t

h{t) < /r(s) ds and r(t) < —Cg,/h(s)lnh(s) ds,

to tg

which easily imply that k(¢) = r(¢) = 0 in a right half-neighborhood of
to.0

Proposition 2 The function f(t,z,v) is a weak solution of (1)-(4).

Proof. Obviously, f(¢,-,-) € C([-T,T]; L,) for each p € [1,00). Let
n(t,z,v) be an admissible function for (5). Then, equality (5) for f can
be obtained by writing it for f,(¢,z,v) with the further passing to the
limit n — oco0.d

Proposition 3 Let f(t,-,-) € C(I;L,) for each p € [1,00), where

0317 C[-T,T] and I is an interval, and let it be a weak solution of (1)-
(4). Then, f(t,z(t,z0,v0),v(t,0,v0}) = folzo,v0) for almost all (zo,vp)
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(here x(t,xg,vp), v(t,T0,v0)) ts the solution of (6)-(8) corresponding to
this ).

Proof. Take an arbitrary finite continuously differentiable function
n(zo,vo) in R® x R? and let n,(t, z,(¢t, 20, v0), vnlt, 2o, v0)) = flzo,v0)
where now (z,(t,-,-).v,(¢,-,-)) is the solution of system (6)-(8) taken
with this function f and with U, in place of /. Then, %nn(t,x,v) =
=V Npr = Yo - wi(z,t) where

wy(x,t) = / VU, (x —y)fl{t,y,v) dy dv.

R3xR?3

Substitute this function 7, in (5). Then, we have:

0= / dz dv (n.(t,z,v)f(t,z,v) — nlz,v) folz,v))—
R3xR3
—/ds / dr dv f(s,z,0){nn(s,2,v) - w(x,s) —nn.(s, z,v) wy(z,s)}.
0 R3xR3

The second term in the right-hand side of this identity goes to 0 as n — oo
by the arguments above, and so, we arrive at the relation

/ da dv (na(t,z,v)f(t,z,v) = n{z,v) fo(z,v)) = 0 as n — oo.
R3xR3
Make in the first term here the change of variables: (z,v) — (2/,v) =

(zn(—t,2,v),v(—1,2,v)). Then, we obtain:

/ dz dv n(z,v){f(t,za(t, z,v),v0(t, z,v))— folz,v)] 2 0 as n — oco.

R3xR?

Passing here to the limit n — oo, we deduce as when proving lemma 6:

dzo dve n{zo, vo)[f(t, z(t, xo, v0), v(t, To,v0)) — fo(zo,vo)] =0,

R3xR3

and hence, due to the arbitrariness of n, proposition 3 is proved.O



So, we have proved the existence and uniqueness of a local solution
to (1)-(4) finite for any fixed ¢. The relation %E(f) = 0 is also obvious.
According to the result proved in fact in [9], for any p > 2 there exists
C > 0 such that D*(t) + D¥(t) < C(1 + |t])? for all ¢ from an arbitrary
interval of the existence of our solution, where D*(t) = sup{p € [0,00) :
ess sup f(t,x,v) > 0} and D¥(¢) = sup{qg € [0,00) : ess sup f(t,z,v) >

lz|>p [v]>q
0}. This immediately yields that our solution f(¢,z,v) can be uniquely
continued onto the entire real line t € R and that it is finite for any fixed

t. So, our proof of Theorem 1 is complete.
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Kunkos II E. E5-2003-197
O mobanbHbix LML, -pewmeHusx cucreMsl Biacosa—Ilyaccona

Ins knaccudeckoit cuctemsl BinacoBa-IlyaccoHa ¢ HauyanbHBIMU JaHHBIMH
u3 L;NL_ 10Ka3aHbl CyLIECTBOBAHHE W €IMHCTBEHHOCTD C1aboro I106albHOTO pe-

weHus co 3HaueHusmMu B L NL..

Pa6ora BeinondeHa B Jlaboparopuu teoperuueckoit ¢usuku uM. H. H. Boro-
mobosa OMSIH.

[Ipenpuur OGbeAHHEHHOTO MHCTHTYTA AAEPHBIX HccnenoBanui. Jlybna, 2003

Zhidkov P. E. E5-2003-197
On Global L,;NL_ Solutions for the Vlasov—Poisson System

For the classical Vlasov—Poisson system with initial data in L;(\L_, we prove
the existence and uniqueness of a weak global solution with valuesinL|NL,,.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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