P4-2004-6

Л. С. Смирнов^{1,2}, И. Натканец^{1,3}, Л. А. Шувалов⁴, В. В. Долбинина⁴

ИЗУЧЕНИЕ ДИНАМИКИ ИОНОВ АММОНИЯ В СМЕШАННЫХ КРИСТАЛЛАХ К_{1-x}(NH₄)_xCl С ПОМОЩЬЮ РАССЕЯНИЯ НЕЙТРОНОВ

Направлено в оргкомитет Международной конференции по избранным проблемам современной физики, Дубна, 8-11 июня 2003 г., и в журнал «Поверхность: рентгеновские, синхротронные и нейтронные исследования»

Объединенный институт ядерных исследований, Дубна

²ФГУП ГНЦ РФ Институт теоретической и экспериментальной физики, Москва ³Институт ядерной физики им. Г. Неводничанского, Краков, Польша ⁴Институт кристаллографии им. А. В. Шубникова РАН, Москва

Смирнов Л. С. и др. Изучение динамики ионов аммония в смешанных кристаллах K_{1-x}(NH₄)_xCl с помощью рассеяния нейтронов

Изучение колебательного спектра аммония в динамически разупорядоченной α -фазе смешанных кристаллов K_{1-x}(NH₄)_xCl при температуре 10 K проведено с помощью неупругого некогерентного рассеяния нейтронов на спектрометре по времени пролета НЕРА-ПР, установленном на импульсном источнике нейтронов ИБР-2 (ОИЯИ, Дубна). Показано, что низкоэнергетические возбуждения с диапазонами энергии 19–23 и 62–63 см⁻¹ при 10 K наблюдаются только в разупорядоченной α -фазе и отсутствуют в упорядоченной кубической δ-фазе NH₄Cl. Энергии локальных трансляционных и либрационных мод определены в α - и δ-фазах.

P14-2004-6

Работа выполнена в Лаборатории нейтронной физики им. И. М. Франка ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 2004

Перевод авторов

Smirnov L. S. et al. P14-2004-6 The Dynamics of Ammonium Ions in $K_{1-x}(NH_4)_xCl$ Mixed Crystals by the Neutron Scattering Study

The study of vibrational spectrum of the $K_{1-x}(NH_4)_xCl$ mixed crystals in dynamically disordered cubic α -phase at 10 K is carried out by means of inelastic incoherent neutron scattering on the NERA-PR time-of-flight spectrometer set at the IBR-2 reactor (JINR, Dubna). It is shown that low-energy modes of ammonium ions with energies 19–23 and 62–63 cm⁻¹ at 10 K are observed only within disordered cubic α -phase and are absent in ordered cubic δ -phase of NH₄Cl. The energies of local translation and libration modes of ammonium ions are determined in the α - and δ -phases of the $K_{1-x}(NH_4)_xCl$ mixed crystals.

The investigation has been performed at the Frank Laboratory of Neutron Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2004

введение

Исследование колебательного спектра смешанного кристалла $K_{1-x}(NH_4)_x Cl$ представляет интерес в связи с изучением общих особенностей динамики ионов аммония в системе смешанных кристаллов $K_{1-x}(NH_4)_x$ Hal, где в качестве Hal фигурируют Cl, Br и I. При комнатной температуре системы $K_{1-x}(NH_4)_x$ Hal образуют с I твердые растворы во всей концентрационной области, а с Вг и Сl твердые растворы образуются в ограниченных концентрационных областях [1]. Смешанные кристаллы $K_{1-x}(NH_4)_x$ Hal имеют общие черты на x-T фазовой диаграмме, заключающиеся в том, что в концентрационной области вблизи К эти соединения образуют α -фазу с кубической гранецентрированной кристаллической структурой с пространственной группой Fm3m, которая не претерпевает фазовых переходов от комнатной до гелиевой температуры и в которой ионы аммония являются ориентационно разупорядоченными во всем температурном интервале этой фазы.

Динамика ионов аммония была исследована ранее во всей области α -фазы смешанных кристаллов K_{1-x}(NH₄)_xI [2,3] и K_{1-x}(NH₄)_xBr [4]. В а-фазе этих соединений были отмечены две низкоэнергетические резонансные моды с энергиями в диапазоне 17,6-27,2 и 64-80 см⁻¹ соответственно, локальные трансляционные ν_5 с энергиями 176–232 см $^{-1}$ и либрационные ν_6 с энергиями 240–336 см⁻¹. Однако динамика аммония в смешанном кристалле $K_{1-x}(NH_4)_x Cl$ рассматривалась ранее только в кристалле с концентрацией иона аммония x = 0.05 [5], в котором наблюдалась только одна резонансная мода с энергией около 16,8 см⁻¹. Поэтому целью настоящего исследования является изучение динамики аммония в смешанных кристаллах $K_{1-x}(NH_4)_x Cl$ в концентрационной области x-T фазовой диаграммы существования ориентационно разупорядоченной α -фазы. Следует отметить, что в чистом соединении NH₄Cl α -фаза находится выше 457,7 K и при столь высокой температуре, как будет показано ниже, в этой динамически разупорядоченной фазе наблюдение трансляционных и либрационных мод с помощью неупругого некогерентного рассеяния нейтронов становится невозможным. Другой интересный аспект поставленной задачи заключается в возможности исследования при низкой температуре влияния концентрации и динамического беспорядка на энергии решеточных мод ионов аммония

в концентрационной области существования α -фазы смешанных кристаллов $K_{1-x}(NH_4)_x Cl.$

ЭКСПЕРИМЕНТ И РЕЗУЛЬТАТЫ

Известно, что в KCl фазовые переходы при температуре ниже комнатной не происходят, тогда как NH₄Cl претерпевает серию фазовых переходов:

$$\begin{split} &\alpha\text{-} \mathbf{\varphi} \mathbf{a} \mathbf{s} \mathbf{a} \left(\mathbf{O}_h^5 - \mathbf{Fm} \bar{\mathbf{3}} \mathbf{m} \right) \Leftrightarrow \mathbf{457,7} \ \mathbf{K} \Leftrightarrow \beta\text{-} \mathbf{\varphi} \mathbf{a} \mathbf{s} \mathbf{a} \left(\mathbf{O}_h^1 - \mathbf{Pn} \mathbf{3m} \right) \Leftrightarrow \\ & \Leftrightarrow \mathbf{242,9} \ \mathbf{K} \Leftrightarrow \delta\text{-} \mathbf{\varphi} \mathbf{a} \mathbf{s} \mathbf{a} \left(\mathbf{T}_d^1 - \mathbf{P} \bar{\mathbf{4}} \mathbf{3m} \right). \end{split}$$

Кристаллы системы K_{1-x}(NH₄)_xCl были изучены ранее с помощью рентгеновской порошковой дифракции при комнатной температуре в [1], где было показано, что гранецентрированная α -фаза твердых растворов образуется в ограниченной области x-T фазовой диаграммы со стороны калия. Ограниченная растворимость обусловлена различием в ионных радиусах калия и аммония и различием пространственных групп кристаллических структур KCl и NH₄Cl при комнатной температуре. Для настоящих исследований были при-

Рис. 1. *а* — спектры порошковой нейтронной дифракции смешанных кристаллов $K_{1-x}(NH_4)_x Cl$ для x = 0,1 и 0,2 при 10 K и для x = 0,4 и 0,8 при 18 K; *б* — зависимости параметра кубической решетки α -фазы от концентрации аммония: \blacksquare — зависимость при T = 290 K, полученная в [1], \circ — зависимость при T = 10 K, полученная в настоящей работе

готовлены водные растворы со стехиометрическими составами для концентраций аммония x = 0,05, 0,10, 0,20, 0,40, 0,60 и 0,80, которые охлаждались до температуры -5 °C. Выпадавшие в осадок кристаллы, соответствовавшие смешанным кристаллам $K_{1-x}(NH_4)_x$ Cl, затем просушивались при 50 °C.

Измерения спектров порошковой нейтронной дифракции (ПНД) и спектров неупругого некогерентного рассеяния нейтронов (ННРН) проводились на спектрометре обратной геометрии по времени пролета НЕРА-ПР, установленном на высокопоточном импульсном источнике нейтронов ИБР-2 (ЛНФ ОИЯИ, Дубна). Спектрометр позволяет проводить измерения спектров упругого и неупругого рассеяния нейтронов одновременно, от комнатной температуры до 10 К [6].

Зависимость параметра кубической решетки *a* в α -фазе от концентрации аммония в смешанных кристаллах $K_{1-x}(NH_4)_x Cl$ была определена с помощью спектров ПНД при T = 10 K, представленных на рис. 1, *a*. Спектры ПНД-образцов, для которых концентрации аммония в водном стехиометрическом растворе при комнатной температуре соответствовали x = 0,4 и 0,8,

в действительности соответствуют δ -фазе NH₄Cl (см. рис. 1, *a*). Результат подтверждает наличие ограниченной растворимости на *x*-*T* фазовой диаграмме в системе смешанных кристаллов $K_{1-x}(NH_4)_x$ Сl. Сравнение зависимости параметра кубической решетки а в *а*-фазе от концентрации аммония в смешанных кристаллах $K_{1-x}(NH_4)_x Cl$ при комнатной температуре в рентгеновских исследованиях работы [1] с полученной методом ПНД соответствующей зависимостью при 10 К представлено на рис. 1, б.

Спектры ННРН смешанных кристаллов $K_{1-x}(NH_4)_x Cl$ для концентраций аммония x = 0.05, 0.10 и 0.20 при 10 К и спектр ННРН от КСl при 80 К представлены на рис. 2. Полученные спектры

Рис. 2. Спектры ННРН для КСІ (x = 0,0) при T = 80 К и для смешанных кристаллов К $_{1-x}$ (NH₄) $_x$ СІ для x = 0,05, 0,10 и 0,20 при 10 К

ННРН демонстрируют следующие особенности динамически разупорядоченной α -фазы смешанных кристаллов $K_{1-x}(NH_4)_xCl$. Вблизи линии упругого рассеяния нейтронов от пиролитических монохроматоров, которая соответствует $\lambda_0 = 4,15$ Å, наблюдается вклад квазиупругого некогерентного рассея-

ния нейтронов (КНРН), который обусловлен рассеянием нейтронов на ионах аммония, совершающих переориентационные скачки. Для сравнения можно отметить полное отсутствие вклада КНРН от КСІ. На фоне КНРН в области длин волн $3,5 > \lambda > 3,0$ Å в спектрах ННРН от смешанных кристаллов $K_{1-x}(NH_4)_x$ СІ наблюдается максимум, который соответствует рассеянию на возбуждениях низкой энергии или низкоэнергетической резонансной моде E_r^1 . В области длин волн $2,75 > \lambda > 2,25$ Å по мере увеличения концентрации аммония возрастает интенсивность ННРН от второй низкоэнергетической резонансной моды E_r^2 . Моды E_r^1 и E_r^2 названы резонансными, поскольку они расположены в области энергии, соответствующей непрерывному фононному спектру КСІ. Граница обрезания фононного спектра КСІ в спектре ННРН наблюдается при $\lambda \approx 1,8$ Å. В спектрах ННРН от смешанных кристаллов $K_{1-x}(NH_4)_x$ СІ в области длин волн меньших чем $\lambda \approx 1,8$ Å наблюдаются возбуждения, которые соответствуют локальным трансляционным ν_5 и либрационным ν_6 колебаниям ионов аммония.

Рис. 3. Спектры G(E) для KCl (x = 0,0) при T = 80 K, для смешанных кристаллов K_{1-x}(NH₄)_xCl (x = 0,05, 0,10 и 0,20) при 10 K

Спектры ННРН от смешанных кристаллов $K_{1-x}(NH_4)_x Cl$ конвертируются в спектры обобщенной плотности фононных состояний G(E) в однофононном некогерентном приближении с помощью стандартных программ для спектрометра НЕРА-ПР [7–9]. Вычисленные спектры G(E) для смешанных кристаллов $K_{1-x}(NH_4)_x Cl$, соответствующих α -фазе при 10 К, представлены на рис. 3. Полученные спектры G(E) показывают появление низкоэнергетических резонансных мод E_r^1 и E_r^2 в области фононного спектра KCl, демонстрируют отчетливо его границу и появление локальных мод ионов аммония, трансляционной ν_5 и либрационной ν_6 , для концентраций x = 0.05, 0.10

и 0,20. Следует отметить наличие щели между граничной энергией спектра KCl и локальной трансляционной модой ν_5 смешанных кристаллов K_{1-x}(NH₄)_xCl.

Спектры G(E) для NH₄Cl при разных температурах, соответствующие δ -фазе при 20 и 235 К и β -фазе при 250 и 290 К, приведены на рис.4.

Спектр G(E) для кубической упорядоченной δ-фазы NH₄Cl при 20 K имеет особенности. В области переданных энергий выше энергии либрационной моды ν_6 можно выделить в спектре G(E) линии, соответствующие второй 2*v*₆, третьей $3\nu_6$ и четвертой $4\nu_6$ гармоникам либрационной моды, и линии, соответствующие комбинационному рассеянию $\nu_5 + \nu_6$ и $\nu_5 + 2\nu_6$. Наличие высших гармоник в либрационном спектре иона аммония в упорядоченной б-фазе при 20 К свидетельствует о том, что ион аммония находится в потенциальной яме с высоким барьером к переориентации. При повышении температуры в δ -фазе от 20 до 235 К происходит понижение величины барьера к пеG(E), отн. ед.

Рис. 4. Спектры G(E) для NH₄Cl при разных температурах, соответствующие при 20 и 235 К δ -фазе и при 250 и 290 К β -фазе

реориентации, что сопровождается повышением вероятности переориентации ионов аммония, и это приводит к фазовому переходу при температуре 242,9 К в кубическую разупорядоченную β -фазу. Вблизи и выше температуры фазового перехода $\delta \rightarrow \beta$ линии, соответствующие комбинационному рассеянию $\nu_5 + \nu_6$ и второй гармонике $2\nu_6$, еще удается выделить, но интенсивность их быстро падает с повышением температуры. Рост динамического беспорядка ионов аммония проявляется также в увеличении ширины линии на половине высоты, связанной с либрационной модой ν_6 и с трансляционной модой ν_5 .

Смешанные кристаллы $K_{1-x}(NH_4)_xCl$ в области концентрации ионов аммония, соответствующей кубической ориентационно разупорядоченной α фазе, дают возможность провести исследование динамики аммония в потенциальном кристаллическом поле, образованном ближайшим окружением ионов Cl. Спектры G(E) смешанного кристалла $K_{0,95}(NH_4)_{0,05}Cl$ при разных температурах представлены на рис. 5. При температуре T = 10 K в спектр G(E) дают вклад локальные либрационная мода ν_6 , трансляционная мода ν_5 , присутствуют вклады от KCl и резонансной моды E_r^1 . Однако в отличие от спектра G(E) кубической разупорядоченной фазы β -фазы NH₄Cl вклады от комбинационной моды $\nu_5 + \nu_6$ и второй гармоники $2\nu_6$ в спектре G(E) для α -фазы смешанного кристалла $K_{0,95}(NH_4)_{0,05}Cl$ не наблюдаются. В α -фазе ионы аммония могут совершать динамическую переориентацию по восьми различным ориентационным положениям внутри кристаллической решетки,

Рис. 5. Спектры G(E) смешанного кристалла $K_{0,95}(NH_4)_{0,05}Cl$ при разных температурах

тогда как в *β*-фазе только по двум ориентационным положениям. Отсутствие в спектре G(E) α -фазы вклада от второй либрационной гармоники иона аммония свидетельствует о том, что потенциальный барьер к переориентации в α -фазе меньше потенциального барьера в β -фазе. С повышением температуры исчезает вклад от резонансной моды E_r^1 , как это наблюдается на спектре G(E) при 80 К, и при комнатной температуре локальные моды перекрываются, образуя один широкий максимум, что связано с уширением линий этих мод за счет увеличивающегося вклада ангармонизма и увеличения частоты скачков переориентации ионов аммония. Ангармонизм атомов К и Cl менее значителен по

сравнению с ионами аммония, и вклад этих атомов в спектр G(E) присутствует и может быть выделен.

Полученный экспериментальный материал по динамике ионов аммония в разных фазах при разной температуре в состояниях ориентационного упо-

	K	NH ₄ Cl							
Моды	α -фаза			β -фаза		δ -фаза		α -фаза	δ -фаза
				_				[10]	[10]
	X = 0.05	X = 0,10	X = 0,20						
	10 K	10 K	10 K	250 K	290 K	23 K	235 K		
E_r^1	19	22	23						
E_r^2		63	62						
Σ						114			
ν_5	218	229	229	173	173	175	165		
ν_6	324	335	335	362	357	390	377	359	383
$\nu_{5} + \nu_{6}$				511	500	575	540		
$2\nu_6$				715	715	753	741		752
$\nu_5 + 2\nu_6$						939			
$3\nu_6$						1130			1106
$4\nu_6$						1454			

Энергии мод α -, β - и δ -фаз смешанных кристаллов $K_{1-x}(NH_4)_x Cl$ (энергия в см $^{-1}$)

рядочения и беспорядка дает возможность представить в таблице определенные с помощью спектров G(E) энергии разных мод смешанных кристаллов $K_{1-x}(NH_4)_xCl$. В двух последних столбцах этой таблицы приведены энергии либрационных мод ν_6 вплоть до третьей гармоники для упорядоченной δ -фазы и для либрационной моды разупорядоченной β -фазы NH₄Cl, вычисленные авторами [10]. Как показывает эксперимент, высота потенциального барьера к переориентации в упорядоченной δ -фазе NH₄Cl допускает существование четвертой гармоники, тогда как расчет в [10] допускает возможность только третьей гармоники либрационной моды ν_6 .

ОБСУЖДЕНИЕ

Представляется интересным провести сравнение полученных в данной работе результатов изучения динамики аммония в смешанных кристаллах $K_{1-x}(NH_4)_x Cl$ с результатами, полученными для семейства этих смешанных кристаллов другими авторами. Фононный спектр КСІ исследовался с помощью неупругого когерентного рассеяния нейтронов при температуре 115 К [11], т.е. в α -фазе. Дисперсионные соотношения для продольных и поперечных акустических и оптических мод были получены в основных симметричных направлениях обратной гранецентрированной кубической решетки. Наилучшим образом соответствовала экспериментальным данным модель, включающая отталкивающие силы между ионами хлора вплоть до вторых соседей и допускающая нецентральные силы. Общая плотность фононных состояний была вычислена с помощью этой модели с использованием 10000 случайно выбранных волновых векторов. Очень интенсивный пик с энергией 155 см $^{-1}$, значительно превосходящий пики, являющиеся вкладами от дисперсионных ветвей, замыкает соответствующие вклады, и общая плотность фононных состояний заканчивается медленным спадом интенсивности в сторону увеличивающейся энергии от 160 до 220 см⁻¹. Сравнение общей плотности фононных состояний, определенной с помощью неупругого когерентного рассеяния нейтронов, с обобщенной плотностью фононных состояний G(E), вычисленной из измеренных спектров интенсивностей ННРН от поликристаллического КСІ при 80 К в настоящей работе, показывает на хорошее совпадение их особенностей. Это сравнение представлено на рис. 6. В общей плотности фононных состояний можно выделить энергии, соответствующие некоторым особенностям, таким как область квадратичной зависимости вплоть до 60 см⁻¹, область линейной зависимости в диапазоне энергии от 60 до 105 см⁻¹, широкий пик при 120 см⁻¹, острый пик при 155 см⁻¹ и падение интенсивности с увеличением энергии в диапазоне от 160 до 220 см⁻¹. В обобщенной плотности фононных состояний G(E) этим особенностям будут соответствовать энергии 58,4, 101, 118,4, 151,8 см $^{-1}$ и граница около 164,3 см⁻¹.

Рис. 6. Сравнение общей плотности фононных состояний (\circ), определенной с помощью неупругого когерентного рассеяния нейтронов при 115 К [12], с обобщенной плотностью фононных состояний G(E) (•), вычисленной из измеренных спектров интенсивностей ННРН от поликристаллического КСІ при 80 К в настоящей работе

Исследование динамики аммония смешанном кристалле в К_{0.93}(NH₄)_{0.07}Cl с помощью неупругого рассеяния нейтронов при температуре 4,2 К было проведено на трехкристаллическом спектрометре в [12]. Результатами этой работы является определение локальных трансляционной моды ν_5 с энергией 6,8 ТГц (227,4 см⁻¹) и либрационной моды ν_6 с энергией 10,1 ТГц (337,7 см⁻¹). Определенные в [12] энергии локальных мод трансляционной ν_5 и либрационной ν_6 хорошо совпадают с энергиями локальных мод ν_5 и ν_6 (229 и 335 см⁻¹ соответственно), наблюдаемых в спектрах ННРН, которые представлены в настоящей работе. Авторы [12] могли наблюдать неупругое рассеяние нейтронов с энергией 5 ТГц (167,2 см⁻¹), и поэтому низкоэнергетические моды ими не были обнаружены.

Представляется интересным привести для сравнения с полученными экспериментальными результатами различные модельные вычисления плотности фононных состояний для смешанных кристаллов $K_{1-x}(NH4)_xCl$ (x = 0,07и 0,10), проведенные в [13,14]. Авторы этих модельных вычислений преследовали цель в рамках моделей дефекта масс и приближения когерентного потенциала (CPA) описать локальные моды, которые наблюдались в работе [12]. Сравнение вычисленной на основе расширенной модели приближения когерентного потенциала (CPA-F) плотности фононных состояний для $K_{0,93}(NH_4)_{0,07}$ Cl с плотностью фононных состояний для KCl указывает на возможность описать с помощью этой модели локальную трансляционную моду ν_5 . Однако с помощью этой модели локальная либрационная мода ν_6 в вычислениях этих авторов для $K_{0,93}(NH_4)_{0,07}$ Cl практически не воспроизводится. Результаты этих расчетов не воспроизводят также низкоэнергетические резонансные моды, наблюдаемые экспериментально в α -фазе смешанных кристаллов $K_{1-x}(NH4)_x$ Cl.

ЗАКЛЮЧЕНИЕ

Экспериментальное изучение динамики ионов аммония в смешанных кристаллах $K_{1-x}(NH4)_xCl$ с помощью неупругого некогерентного рассеяния нейтронов показало, что использование ограниченной области растворимости ионов аммония в KCl со стороны калия позволило провести исследование колебательного спектра этой системы смешанных кристаллов в разупорядоченной α -фазе при низких температурах. Таким образом, получен полный набор энергий трансляционной моды ν_5 и либрационной моды ν_6 во всех типах кристаллических фаз системы $K_{1-x}(NH4)_xCl$ со всеми типами ориентационного упорядочения ионов аммония от упорядоченной структуры δ -фазы до разупорядоченной структуры с двумя возможными ориентационными положениями в β -фазе и до разупорядоченной структуры с восемью возможными ориентационными положениями в α -фазе.

Показано, что фазовые переходы из упорядоченной б-фазы в ориентационно разупорядоченные β - и α -фазы сопровождаются при каждом фазовом переходе $\delta \rightarrow \beta$ и $\beta \rightarrow \alpha$ уменьшением величины потенциального барьера к переориентации ионов аммония. Наличие большого числа позиций внутри кристаллической решетки α -фазы, которые могут занимать ионы аммония за счет прыжков, и незначительная высота потенциального барьера к переориентации позволяют предположить, что при низкой температуре ионы аммония способны совершать ориентационное подбарьерное туннелирование, которое с повышением температуры преобразуется в надбарьерное туннелирование. Неупругое некогерентное рассеяние нейтронов на ионах аммония, совершающих подбарьерное ориентационное туннелирование, сопровождается появлением в спектре G(E) широких максимумов в области низкой энергии (названных выше резонансными модами E_r^1 и E_r^2) в α -фазе и отсутствием в упорядоченной б-фазе. Неупругое некогерентное рассеяние нейтронов на ионах аммония, совершающих надбарьерное туннелирование, сопровождается квазиупругим рассеянием, вклад которого в спектры ННРН увеличивается с повышением температуры за счет увеличения частоты скачков ионов аммония. С другой стороны, в спектре G(E) интенсивность максимумов низкоэнергетических резонансных мод исчезает раньше перекрытия зон трансляционной моды ν_5 и либрационной моды ν_6 (см. рис. 5). В связи с такими наблюдаемыми эффектами в неупругом некогерентном рассеянии нейтронов от ионов аммония в α -фазе возникают затруднения в объяснении роли ионов аммония в образовании колебательного спектра смешанного кристалла. Результаты настоящей работы указывают на необходимость развития теории колебательного спектра смешанного кристалла с учетом динамического ориентационного беспорядка молекулярных ионов, легирующих смешанный кристалл, как на примере иона аммония в смешанных кристаллах $K_{1-x}(NH4)_xCl.$

Работа выполнена при частичной финансовой поддержке Ведущей научной школы Л. А. Шувалова (грант № НШ-1514.2003.2) и Российского фонда фундаментальных исследований (грант № 02-02-17330).

ЛИТЕРАТУРА

- 1. Havighurst R., Mack E. Jr., Black F. C. // J. Am. Chem. Soc. 1925. V.47. P.29.
- 2. Natkaniec I., Smirnov L. S. // Physica B. 1997. V. 234-236. P. 409.
- 3. Натканец И. и др. // Кристаллография. 1998. Т. 43. С. 246.
- Smirnov L. S. et al. The investigation of ammonium ion dynamics in K_{1-x}(NH₄)_xBr mixed crystals: ITEP Preprint No. 26. M., 2002. 22 p.
- 5. Натканец И., Смирнов Л. С., Соловьев А. И. // Сборник докладов: РСНЭ'97. Дубна, 1997. Т. 3. С. 25.
- 6. Natkaniec I. et al. // ICANS-XII. Abingdon. RAL Report 94-025. 1993. V. 1. P. 89.
- 7. Бохенков Э.Л., Натканец И., Шека Е.Ф. // ЖЭТФ. 1976. Т. 70. С. 1027.
- 8. Шека Е.Ф. и др. // ЭЧАЯ. 1996. Т. 27. С. 493.
- 9. Казимиров В. Ю., Натканец И. Сообщение ОИЯИ Р14-2003-48. Дубна, 2003. 10 с.
- 10. Hüller A., Kane J. W. // J. Chem. Phys. 1974. V. 61. P. 3599.
- 11. Copley J. R. D., Macpherson R. W., Timusk T. // Phys. Rev. 1969. V. 182. P. 965.
- 12. Smith H. G., Wakabayashi N., Nicklow R. M. // Neutron Inelastic Scattering IAEA. Vienna. 1972. P. 103.
- 13. Kaplan T., Mostoller M. // Phys. Rev. B. 1974. V.9. P. 353.
- 14. Kaplan T., Mostoller M. // Phys. Rev. B. 1974. V. 10. P. 3610.

Получено 26 января 2004 г.

Редактор О. Г. Андреева

Подписано в печать 11.05.2004. Формат 60 × 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 0,75. Уч.-изд. л. 0,92. Тираж 280 экз. Заказ №.54417.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@pds.jinr.ru www.jinr.ru/publish/