
����������

�� �	
������ �� �� ��������	�����

�� �� ��������	����� ��	� ��	�� ���� �

�!� "#���$$ %&"'�(� )' %���#( *#�#�

�#%+�"%#)$ "�*��#)$ �$� +"),�(�#�� %+�(�%

%�-.�  �/  � 0$��	 %������ +�-1����� #���2

�&������ � �3 *�/4� *�/4� +�1	�/
���.	�15 .�	6 �����
������
�'	��1 � �3 +����� ����� % 	 � &������ �� ������ "��	
�!�� +�/	�����	1 &������ �� !��� ��� �	.



Majewski M. et al. E2-2004-43

The Riemann Surface of Static Limit Dispersion Relation

and Projective Spaces

The rigorous Bogoliubov's prove of the dispersion relations (DR) for pion–nucleon scatter-

ing is a good foundation for the static models. DR contain the small parameter (ratio

of the pion–nucleon masses). The static models arise when this parameter goes to zero.

The S -matrix in the static models has a block structure. Each block of the S -matrix has a finite

order N N� and is a matrix of meromorphic functions of the light particle energy � in the com-

plex plane with cuts ( , ]�� �1 , [ , )� ��1 . In the elastic case, it reduces to N functions S
i
( )� con-

nected by N N� the crossing-symmetry matrix A. The unitarity and the crossing symmetry are

the base for the system of nonlinear boundary value problems. It defines the analytical continua-

tion of S
i
( )� from the physical sheet to the unphysical ones and can be treated as a system

of nonlinear difference equations. The problem is solvable for any 2 2� crossing-symmetry ma-

trix A that permits one to calculate the Regge trajectories for SU ( )2 static model. It is shown that

global analyses of this system can be carried out effectively in projective spaces P
N �1

and P
N

.

The connection between spaces P
N �1

and P
N

is discussed. Some particular solutions of the sys-

tem are found.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical

Physics, JINR.
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Ðèìàíîâà ïîâåðõíîñòü ñòàòè÷åñêîãî ïðåäåëà

äèñïåðñèîííûõ ñîîòíîøåíèé è ïðîåêòèâíûå ïðîñòðàíñòâà

Ñòðîãîå äîêàçàòåëüñòâî Áîãîëþáîâûì äèñïåðñèîííûõ ñîîòíîøåíèé (ÄC) äëÿ ïè-

îí-íóêëîííîãî ðàññåÿíèÿ îáåñïå÷èâàåò íàäåæíûé ôóíäàìåíò äëÿ ñòàòè÷åñêèõ ìîäåëåé.

ÄÑ ñîäåðæàò ìàëûé ïàðàìåòð (îòíîøåíèå ìàññ ïèîíà è íóêëîíà). Ñòàòè÷åñêèå ìîäåëè

âîçíèêàþò, êîãäà ýòîò ïàðàìåòð ñòðåìèòñÿ ê íóëþ. S -ìàòðèöà â ñòàòè÷åñêîì ïðåäåëå èìå-

åò áëî÷íóþ ñòðóêòóðó. Êàæäûé áëîê S -ìàòðèöû èìååò êîíå÷íûé ïîðÿäîê N N� è ñîñòîèò

èç ìåðîìîðôíûõ ôóíêöèé ýíåðãèè ëåãêîé ÷àñòèöû � â êîìïëåêñíîé ïëîñêîñòè ñ ðàçðåçà-

ìè ( , ]�� �1 , [ , )� ��1 . Â óïðóãîì ñëó÷àå îí ñâîäèòñÿ ê N ôóíêöèÿì S
i
( )� , ñâÿçàííûì ìà-

òðèöåé ïåðåêðåñòíîé ñèììåòðèè A ðàçìåðíîñòè N N� . Óíèòàðíîñòü è ïåðåêðåñòíàÿ ñèì-

ìåòðèÿ ïðèâîäÿò ê ñèñòåìå íåëèíåéíûõ êðàåâûõ çàäà÷. Îíà îïðåäåëÿåò àíàëèòè÷åñêîå

ïðîäîëæåíèå ôóíêöèé S
i
( )� ñ ôèçè÷åñêîãî ëèñòà íà íåôèçè÷åñêèå è ìîæåò ðàññìàòðè-

âàòüñÿ êàê ñèñòåìà íåëèíåéíûõ ðàçíîñòíûõ óðàâíåíèé. Çàäà÷à ðåøàåòñÿ äëÿ ëþáîé äâóõ-

ðÿäíîé ìàòðèöû A, ÷òî ïîçâîëÿåò íàéòè òðàåêòîðèè Ðåäæå ñòàòè÷åñêîé SU ( )2 -ìîäåëè.

Ïîêàçàíî, ÷òî ãëîáàëüíûé àíàëèç ýòîé ñèñòåìû ìîæåò áûòü ýôôåêòèâíî ïðîâåäåí â ïðî-

åêòèâíûõ ïðîñòðàíñòâàõ P
N �1

è P
N

. Îáñóæäàåòñÿ ñîîòíîøåíèå ìåæäó ýòèìè ïðîñòðàí-

ñòâàìè. Íàéäåíî íåñêîëüêî ÷àñòíûõ ðåøåíèé ñèñòåìû.

Ðàáîòà âûïîëíåíà â Ëàáîðàòîðèè òåîðåòè÷åñêîé ôèçèêè èì. Í. Í. Áîãîëþáîâà

ÎÈßÈ.

Ïðåïðèíò Îáúåäèíåííîãî èíñòèòóòà ÿäåðíûõ èññëåäîâàíèé. Äóáíà, 2004



1. INTRODUCTION

The prove of the dispersion relation for πN scattering given by N. N. Bogoliu-
bov [1] has, at least, two consequences. In mathematics it gives rise to investiga-
tion on the analytic cotinuation of distributions of several complex variables (the
so-called edge of the wedge theorem by Bogoliubov [2]). In physics, in essence,
it introduces the concept of scattering amplitude for several processes regarded as
the single analytic function of several variables, whose different boundary values
with respect to the corresponding variables discribe these processes. Particularly,
it gives the solid foundation for the static models [3]. The low-energy hadron
scattering problem remains in the focus of attention [4]. The successful devel-
opment of QCD poses the question of the validity of the analytic properties of
hadron-hadron process amplitudes previously proved for strong interactions. In
the series of works by Oehme [5], it was recently shown that they remain valid
in QCD as well. We consider the nonrelativistic limit of the dispersion relations,
which is known as static equations [6], and conˇne ourselves to study the equa-
tions of this type by reducing them to a nonlinear boundary-value problem [7].
It has the form of the series of conditions on the S-matrix elements Si.

Conditions 1

A) Si(z) Å are meromorphic functions in the complex plane z with the
cuts (−∞,−1], [+1, +∞), i. e. the only singularities of these func-
tions in this domain are their poles.

B) S∗
i (z) = Si(z∗);

C) | Si(ω + i0) |2= 1 for ω ≥ 1 Si(ω + i0) = limε→+0 Si(ω + iε);

D) Si(−z) =
∑N

j=1 AijSj(z).

(1)

The real values of the variable z are the total energy ω of a relativistic particle
scattered by a ˇxed center. The meromorphy requirement for the functions Si(z)
arises as a consequence of the static limit of the scattering problem [8]. Elastic
unitarity condition (1)C holds only on the right cut in the z plane. On the left cut,
the functions Si(z) are determined by crossing-symmetry conditions (1)D. The
crossing-symmetry matrix A is determined by the group that leaves the S-matrix
invariant; the matrix A is known for some groups [7]. The aim of this paper is to
formulate a method for studying the Riemann surfaces of some static dispersion
models.
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2. ANALYTIC CONTINUATION OF THE S-MATRIX
TO NONPHYSICAL SHEETS

We write Conditions 1 in a matrix form. For this, we introduce the column

S(0)(z) = [S1(z), S2(z), · · · , SN (z)]T ,

where the upper index denotes the physical sheet of the S-matrix Riemann surface.
Conditions (1)A, (1)B, and (1)D hold on the physical sheet, and unitarity condition
(1)C can be extended to the complex values of ω, and, just like condition (1)C,
the extension has the component form

S
(0)
i (z)S(1)

i (z) = 1

and analytically continues the S-matrix to the ˇrst unphysical sheet of the Rie-
mann surface. To rewrite unitarity conditions (1)C in the matrix form, we intro-
duce the nonlinear inversion transformation I by the formula

IS(z) = [1/S1(z), 1/S2(z), · · · , 1/SN(z)]T .

As a result, Conditions 1 take the following form.

Conditions 2

A) S(0)(z) Å is a column of N meromorphic functions in the complex
plane z with the cuts (−∞,−1], [+1, +∞), i. e. the only singulari-
ties of these functions in this domain are their poles.

B) S(0)∗(z) = S(0)(z∗);

C) S(1)(z) = IS(0)(z);

D) S(0)(−z) = AS(0)(z).

(2)

We deˇne the analytic continuation to unphysical sheets as

S(p)(z) = (IA)pS(0)(z(−1)p). (3)

By deˇnition (3), unitarity condition (2)C and crossing-symmetry condition
(2)D are easily extended to unphysical sheets:

IS(p)(z) = S(1−p)(z), AS(p)(z) = S(−p)(−z), (4)

and we have the formula

(IA)qS(p)(z) = S(q+p)(z(−1)q). (5)
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Deˇnition (3) is motivated by the well-known solution [8] of the problem deˇned
by Conditions 1 for the two-row matrix

A =
1
3

(
−1 4

2 1

)
.

This solution for the S-matrix S(z) is given by

S(z) =
(

W (W − 2)/(W 2 − 1)
W (W + 1)/(W 2 − 1)

)
D(z), (6)

where W = w + i
√

z2 − 1β(z), w = 1/π arcsin z, β(z) = −β(−z) is a mero-
morphic function, and D(z) = D(−z) is the Blaschke function of the variable

ζ =
1 + i

√
z2 − 1

z
. The Blaschke function is given by

D(ζ[z]) = ζλ
∏
n

|ζn|
ζn

ζn − ζ

1 − ζ∗nζ
,

where λ is the order of zero, and the set of zeros {ζn}, |ζn| < 1 is symmetric with
respect to the origin and the axes Imζ = 0, Reζ = 0. In addition to solution (6),
Conditions 1 allow a trivial solution: the column of identical Blaschke functions

S(z) =
(

1
1

)
D(z).

Therefore, Conditions 2 do not determine the form of the Riemann surface of
S(z) uniquely. For solution (6), the Riemann surface of S(z) is inˇnite-sheeted
because of the function w, and the equalities

S(0)(z) = S(W )|w|≤1/2, S(±n)(z(−1)(±n)) = S(W )|w±n|≤1/2

hold, which allow rewriting Eq. (5) as

(IA)nS(W ) = S(W + n),
(AI)nS(W ) = S(W − n).

(7)

Equations (7) are a system of nonlinear autonomous difference equations and
can naturally be called the dynamic form of the static dispersion relations. The
same term can, therefore, be used for Eq. (5) as well. Unlike Eqs. (7), they form
a system of nonlinear functional equations in which the number of a sheet of the
Riemann surface and the energy variable z serve as arguments.
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3. FORMULATION OF THE PROBLEM IN PROJECTIVE SPACES

The example of two-row solution (6) shows that, in general, the solution of
the problem deˇned by Conditions 1 is determined by N + 1 entire functions,
among which N functions satisfy crossing-symmetry condition (1)D, and the
last one is symmetric with respect to z and ensures the validity of unitarity
condition (1)C. Conditions (1)A, (1)B, and (1)D are homogeneous and can be
considered in the projective spaces PN−1 and PN . We deˇne the nonlinear
inversion transformation Ip such that it is correct in these spaces [9]:

IpSi = Πm
j=1,j �=iSj ,

m = N − 1, N.

We reformulate the problem deˇned by Conditions 1 for these spaces. For the
space PN−1, the crossing-symmetry matrix has the form speciˇed by Condi-
tions 1; for the space PN , its dimensionality increases by one, i. e.

AN−1 = A, AN =
(

A 0
0 1

)
,

where AN is a block matrix. As a result, instead of Conditions 1, we obtain the
following set of requirements on a column of m functions.

Conditions 3

A) S(o)(z) Å is a column of m meromorphic functions in the complex
plane z with the cuts (−∞,−1], [+1, +∞), i. e. the only singulari-
ties of these functions in this domain are their poles.

B) S(0)∗(z) = S(0)(z∗);

C) S(1)(z) = IpS
(0)(z);

D) S(0)(−z) = AmS(0)(z).

(8)

We illustrate the scheme of the solution for the two-row case in terms of the
projective spaces P1, P2. We let (xo, x1) = (S1, S2) denote the coordinates of
the point (x) in the space P1. We introduce the afˇne coordinate X = x0/x1 on
the projective line P1. Setting z = 0 in (3), we obtain the law for continuing the
coordinate X(0) from the physical sheet to the ˇrst unphysical sheet:

X(1) =
2X(0) + 1
−X(0) + 4

. (9)

Taking the nth power of linear fractional transformation (9) and using crossing-
symmetry condition (3)D, we ˇnd that

X(0) = −2, X(n) =
n − 2
n + 1

. (10)
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One of the crossing-symmetry conditions (3)D thus proves unnecessary. This
conclusion remains valid for 3 × 3 crossing-symmetry matrices. The solution
of the two-row problem for the line P1 allows ˇnding only the ratio of the
functions S1 and S2. The functions themselves can be found from the solution
for the projective plane P2. We write the projective coordinates of the point
(x) = (x0, x1, x2) in P2 in a basis explicitly taking the crossing symmetry into
account:

x0 = s − 2a,

x1 = s + a, (11)

x2 = c,

where s and c are symmetric functions of z, and a is an antisymmetric function
of z.

Considering the transformation (IpA2)n in the basis s, a, c, we can easily
see that s, a, and c are related by the equation

s2 − a2 − sc = 0, (12)

which is invariant under the transformations Ip and A2. In other words, Eq. (12)
in P2 deˇnes an invariant curve C whose points do not leave C under the action
of the transformations Ip and A2. In the basis (x0, x1, x2), the equation of the
curve C is given by

x2
1 + 2x0x1 − 2x1x2 − x0x2 = 0. (13)

Using Eqs. (10) and (13), we can easily ˇnd that

x1

x2
=

n

n − 1
, (14)

and thus completely deˇne the functions S1 and S2. Taking unitarity condition
(1)C (which has not been used yet) into account, we can recover formula (4)
completely.

We discuss the relation between the descriptions of the two-row problem
deˇned by Conditions 1 for the spaces P1 and P2. In the projective plane P2, the
solution is given by the invariant curve (13). It is irreducible and rational as is
any algebraic curve of the second order. In the afˇne coordinates, it becomes

x =
x0

x2
, y =

x1

x2
, x2 + 2xy − 2x − y = 0.

If we construct a bundle of lines of the form λ0g0 +λ1g1 with the basic point
(x0, y0) in curve (13), then the coordinates of the second intersection of the lines
in the bundle with curve (10) are rational functions of k = λ1/λ0:

x =
−(x0 + 2y0) + 2 + k

1 + 2k
, y = y0 + k(x − x0).
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The functions x and y are reduced to formulas (10) and (14) by the specially
chosen parametrization

k =
(−x0 − 2y0 + 1)n + x0 + 2y0 − 2

n + 1
,

which depends on the basic point of the bundle. A bundle of lines behaves as
the projective space P1 under collineations (linear transformations with nonzero
determinants) in the space P2. The projective space P1 is thus represented by
any bundle of lines whose base point lies on the invariant curve (13) of the space
P2. In [7], the invariant manifolds for the problem deˇned by Conditions 1 with
dimensionalities N ≥ 3 were studied and constructed using series over 1/w in a
neighborhood of the rest points of dynamic systems (5). Using projective spaces,
we can reconsider this problem from a new standpoint. We consider the problem
deˇned by Conditions 1 with the three-row matrix

A =


 1/3 −1 5/3

−1/3 1/2 5/6
1/3 1/2 1/6


 , (15)

which describes the scattering of the particle with angular momentum one on
the center with the same momentum. In the space P3, the matrix A3 has three
eigenvalues equal to +1 and one eigenvalue equal to −1. The coordinates of the
point (x) in P3 can be expressed in terms of three symmetric functions s1, s2 and
s3 of z and one antisymmetric function a of z by an ordinary collineation (an
automorphism of the projective space):

xi = bijsj + bi4a.

We construct a plane in P3 that is invariant under the linear transformation of the
coordinates of (x) determined by the matrix A3. It is given by

c0x0 + c1x1 + (2c0 + c1)x2 + c2x3 = 0. (16)

It is easy to see that the plane x1 + x2 = 0 is the particular case of a plane (16)
and is invariant under the transformation Ip. This plane is the space P2 in which
the problem deˇned by Conditions 1 with matrix (15) is reduced to the solvable
two-row problem [10]. The plane x1 + x2 = 0 does not contain the rest point
x̄ = (1, 1, 1, 1) of the dynamic system deˇned by Conditions 3, i.e., the ˇxed
point of transformation (5). If we require the point x̄ to lie in a plane (16), then
we obtain the equation

c0x0 + c1x1 + (2c0 + c1)x2 − (3c0 − 2c1)x3 = 0. (17)
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The transformation Ip maps a plane (17) onto the cubic surface

c0x1x2x3 + c1x0x2x3 + (2c0 − c1)x0x1x3 − (3c0 + 2x1)x0x1x2 = 0 (18)

in P3, which is not invariant under the transformation A3.
The intersection of a plane (17) and a surface (18) determines a planar spatial

curve C, which is not invariant, in general, under the transformation A3. Indeed,
excluding x3 from Eqs. (17) and (18), we obtain a third-degree homogeneous
equation G(x0, x1, x2) = 0. In the basis s1, s2, a, the function G on the space
P2 contains, in general, odd powers of the antisymmetric function a for any c0

and c1. The coefˇcient of a is a quadratic form with respect to s1, s2, and a.
The invariance of the planar spatial curve C under the transformation A3 implies
that this quadratic form should vanish. As any second-degree equation, it deˇnes
rational functions s1, s2 and a of some parameter t. Substituting them in the even
part (with respect to a) of the function G(x0, x1, x2), we obtain a third-degree
equation with respect to t, which has three solutions in general. An invariant
curve exists only if this equation is identically zero, i. e., if G is reducible. The
equation determining the coefˇcients c0 and c1 is given by

Rx0(G, G′
x1

) ≡ 0, (19)

where Rx0 is the resultant of G and G′
x1

with respect to x0. From Eq. (19), we
obtain c0 = −1, c1 = 3 and ˇnd the function

G(x0, x1, x2) = (−3x2
1 + x0x1 + 3x0x2 − x1x2)(−x0 + x2) = 0, (20)

which deˇnes the reducible curve C. The ˇrst factor in Eq. (20) is invariant under
the transformations Ip and A2, and together with Eq. (17) deˇnes the well-known
solution [11] with a ˇnite number of poles with respect to w. It is represented in
P3 as the intersection of the plane

−x0 + 3x1 + x2 − 3x3 = 0 (21)

and the surface

−3x2
1 + x0x1 + 3x0x2 − x1x2 = 0. (22)

Using Eq. (21) and writing Eq. (22) in the form

x1x3 = x0x2,

we can easily verify the invariance of (21) under the transformation Ip. Under the
action of the transformation A3, the second factor in (20) becomes (−x1 + x2);
as a result, we have the degenerate quadratic form

(−x0 + x2)(−x1 + x2) = 0,

7



which is invariant under the transformations Ip and A3. It determines two bundles
of lines that are invariant under the transformation Ip and pass into each other
under the transformation A3:

x0 = x2,
x0

x1
=

n + 1/6
n − 7/6

; x1 = x2,
x0

x1
=

n − 3/2
n + 1/2

.

CONCLUSION

The nonlinear boundary-value problem of constructing N -dimensional (con-
dition (1)A), elastically unitary (condition (1)C), and crossing-symmetric (condi-
tion (1)D) S-matrix is formulated in the projective spaces PN−1 and PN . In the
space PN−1, it can be considered as the result of embedding (ignoring one of
the unitarity condition (1)C) the initial problem deˇned by Conditions 1 from the
afˇne space AN into the projective space PN−1. The condition for the analytic
continuation of the S-matrix to unphysical sheets is represented as a nonlinear
autonomous system of difference equations, i. e., in the dynamic form. It can also
be considered as nonlinear transformation in the spaces AN , PN−1, and PN . In
particular, among its ˇxed points, there is a point corresponding to the S-matrix
without interaction. In the neighborhood of this point, the S-matrix was studied
using power series in 1/w, which can sometimes be summed [7]. The use of the
projective space technique allows analyzing the solutions globally, i. e., construct-
ing the invariant subspaces containing the solutions to be found. The invariant
subspaces are determined by functions that are homogeneous in the projective
spaces PN−1 and PN , but not in the afˇne space AN . This statement disagrees
with the conclusion in [12], according to which the invariant subspaces in the
afˇne space AN are also determined by homogeneous functions. The above geo-
metric interpretation of the boundary-value problem deˇned by Conditions 1 in
the projective spaces PN−1 and PN and the examples considered in [8] and [11]
indicate that the homogeneity requirement on the functions deˇning the invari-
ant subspaces of AN should be rejected. Concrete applications of the described
procedure for solving the nonlinear boundary-value problem are demonstrated in
Appendices 1 and 2.

They are follow to the same rule: the Conditions 3 solved in the P1 for
n ∈ Z, then succeed the chain Z ⊂ R ⊂ C, and at the end the solution one of
the unitarity equation in condition (1)C is found.
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APPENDIX 1

The two-row crossing-symmetry matrix for the group SU(2) is given by

A2 =
1

2l + 1

(
−1 2l + 2
2l 1

)
, l ∈ N.

The matrix considered in the paper is particular case of it for l = 1. We give the
calculation scheme for the general case of integer l.

Let us introduce the function X = S1/S2 and consider it for z = 0. Then
the continuation of X on to the ˇrst unphysical sheet is determined by the rule

X(1) =
2lX(0) + 1

−X(0) + (2l + 2)

and together with the crossing-symmetry condition (1)D gives the following ex-
pression for X(n)

X(n) =
n − (l + 1)

n + l
, X(0) = −(1 + 1/l). (23)

Thus, on any unphysical sheet n the ratio S1/S2 is deˇned at z = 0, and for
construction of S1 and S2 it is sufˇcient to ˇnd any of them. Let us denote S2

by ϕ = S2. This function is determind by the system of functional equations

ϕ(n)ϕ(1−n) = 1, (24)

ϕ(n)

ϕ(−n)
=

n + l

n − l
, (25)

which follow from the unitarity and the crossing-symmetry conditions (4) on the
unphysical sheets. Here only those equalities are used from (4), which were not
used for derivation of Eq. (23). Equation (24) has an obvious solution in the ring
of meromorphic functions

ϕ(n) =
G(n)

G(1 − n)
, (26)

where G(n) is an entire function. Solution (26) can be represented in another
form ln ϕ(n) = g(n−1/2), where g(n−1/2) is any odd function of its argument.
That form of ln ϕ(n) is convenient for the solution to Eq. (25) which is now of
the form

g(n + 1) + g(n) = ln
n + 1/2 + l

n + 1/2 − l
.

A partial solution of this nonhomogeneous difference equation can be found by
subsequent substitutions of unknown functions according to the formula

gm(n) = gm+1(n) + ln
n + (−1)mαm+1

n − (−1)mαm+1
,

9



where αk = 1/2 + l − k and g0(n) = g(n). The function gk obeys the equation

gk(n + 1) + gk(n) = ln
n + 1/2 + (−1)k(l − k)
n + 1/2 − (−1)k(l − k)

.

It is clear that
gl(n + 1) + gl(n) = 0, (27)

and a general solution to this equation gives a trivial solution of the problem (1),
which does not depend on l. Therefore, one gets [8]

ϕ(n) =
∏l

m=1

n − 1/2 − (−1)m(1/2 + l − m)
n − 1/2 + (−1)m(1/2 + l − m)

. (28)

One has an inˇnite product in formula (28) for noninteger l ∈ R. Now Eq. (27)
is of the form

g∞(n + 1) + g∞(n) = ln(−1). (29)

In this case one has, instead of Eq. (28),

ϕ(n) = ψ(n)
Γ

[
−n + l

2
+ 1

]
Γ

[
n − l

2

]

Γ
[
−n − 1 − l

2
+ 1

]
Γ

[
−n − 1 + l

2

] , (30)

where ψ(n) = eg(n)∞ is deˇned by a general solution of Eq. (29) with properties

ψ(n + 1)ψ(n) = −1, ψ(n)ψ(−n) = 1. (31)

Till now one of the unitarity conditions (1)C was not used. It gives the following
result

n(z) = 1/π arcsin z + i
√

z2 − 1β(z), (32)

where β(z) = −β(−z) Å is a meromorphic function. Equation (32) shows that
the Riemann surface of the model has algebraic branch points at z = ±1 and a
logarithmic one at inˇnify. Now formulae (23), (30), (31), (32) give the general
solution to the problem (1) for matrix A2. The function ψ can be determined
from the requirement that Eq. (30) turns into Eq. (28) for integer l. This gives
ψ(n) = − cot(n) for l even and ψ(n) = − tan(n) for l odd.

Let us remind that in Eq. (30) l ∈ R, but it is clear that this relation can be
continued to l ∈ C and allows explicit determination of the Regge tragectories
with deˇnite signature l±k (z). The common part of the Regge tragectories set for
J± = l± 1/2 is of the form l±(z) = {2−n(z)+2k, n(z)+2k | k = 0, 1, 2 · · · }.
The Regge trajectories for J− = l − 1/2 contained one additional trajectory
l±J−

(z) = −n(z). All the Regge trajectories of the model depend on function β(z).
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APPENDIX 2

We apply the developed method to the problem of scattering of a particle
with angular momentum one by a ˇxed source with the same angular momentum.
In this case, the crossing-symmetry matrix is given by expression (15). We
decompose the column S(z) into a sum of eigenvectors of the matrix A:

S(z) = s1(z)


 1

1
1


 +

1
4
s2(z)


 15

−5
3


 + 2ψ(z)


 −2

−1
1


 . (33)

For q = 1, p = 0, functional Eq. (5) in the limit z → ∞ determines the ˇxed
(rest) points of the problem. Returning from the basis s1(z), s2(z), ψ(z) to the
column S(z), we have

Sf = ±i




−(2 ±
√

5)

−1
2
(1 ±

√
5)

1
2
(1 ±

√
5)


 . (34)

From (34) it is clear that ImSi ∈ Q(
√

5). More deˇnitely they are degrees
of the roots of the equation

x2 − x − 1 = 0. (∗)

These roots are known in the theory Fibonacci numbers and has re�ection in
the consideration below. Let us come to the linear approximation of the functional
Eq. (3) at the vicinity of the point Sf . It can be solved, and the result is of the
form

S(z) = Sf + c1


 x4

−
1

−1


 (−1)n + c2


 0

5
3


x2n

+ + c3


 8x4

−
−1

1


 x4n

− , (35)

where x± are positive and negative roots of Eq. (∗) and ci is an arbitrary constant.
Formula (35) deˇnes three different planes which are linearly invariant under
approximate transformation (3). We cosidered below only one of them which
is not only linearly but also globally invariant. We can see from (34) that all
rest points lie in the plane S2 + S3 = 0. This plane is invariant under the
inversion transformation I and the crossing-symmetry transformation A. In the
plane S2 + S3 = 0, three-row crossing-symmetry matrix (15) passes into the
two-row matrix A2

A2 =
1
3

(
1 −8

−1 −1

)
, (36)
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and the problem is thus reduced to ˇnding two functions S1(z) and S2(z). Setting

z = 0 and deˇning X(n) = S
(n)
1 /S

(n)
2 , where n is the number of the sheet of the

Riemann surface, we see that the transition from the physical sheet to the sheet
with the number n is realized by the linear fractional transformation

X(n) =
√

5
√

5(−X(0) + 2)shyn + (X(0) + 4)chyn

−(X(0) + 4)shyn +
√

5(X(0) − 2)chyn
, (37)

where we introduce useful notations

2shyn = yn
+ − yn

−, 2chyn = yn
+ + yn

−,

and y± = (3±
√

5)/2. The unitarity or crossing-symmetry requirements on X(n)

gives the condition
(X(0) − 2)(X(0) + 4) = 0 (38)

which determines X(0). Consequently, we obtain two different solutions, X(0) =
2 and X(0) = −4, which are compatible with the unitarity and crossing-symmetry
requirements.

The ratio S1/S2 is thus determined for z = 0 on every nonphysical sheet of
the Riemann surface deˇned by Conditions 2 with matrix (36), and to construct
S1 and S2, it sufˇces to ˇnd any of these functions. We set S2(n) = Φ(n) =
−s2(n) + ψ(n), where s2 and ψ are the functions introduced like in (33). The
function Φ satisˇes the system of functional equations

Φ(1 − n)Φ(n) = 1, (39)

Φ(n)
Φ(−n)

= (−1)
chy(n + 1/2)
chy(n − 1/2)

, X(0) = 2, (40)

Φ(n)
Φ(−n)

= (−1)
shy(n + 1/2)
shy(n − 1/2)

, X(0) = −4. (41)

Relations (37), (38) are used in deriving Eqs. (40), (41). Equation (39) has
the solution

Φ(n) = eg(n−1/2), (42)

where g(n) is an arbitrary odd function, g(n) = −g(−n). Substituting (42) in
(40), (41) and changing n → n + 1/2, we obtain the difference equations

g(n + 1) + g(n) = ln (−1)
chy(n + 1)

chyn
, X(0) = 2, (43)

g(n + 1) + g(n) = ln (−1)
shy(n + 1)

shyn
, X(0) = −4 (44)

for the unknown function g(n).
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Solving Eqs. (43), (44) by the method of consecutive functional changes, we
obtain

g(n) = g−1(n) + g∞(n) +
∞∑

m=0

Gm(n), (45)

where g∞(n) = n ln y+ and

Gm(n) = ln
chy(n + 1 + 2m)chy(n − 2(m + 1))
chy(n − 1 − 2m)chy(n + 2(m + 1))

, X(0) = 2, (46)

Gm(n) = ln
shy(n + 1 + 2m)shy(n − 2(m + 1))
shy(n − 1 − 2m)shy(n + 2(m + 1))

, X(0) = −4. (47)

The term g−1(n) is introduced to take the factor −1 in Eqs. (43), (44)
into account. We set eg−1(n) = ξ(n). The function ξ(n) solves the system of
functional equations

ξ(n + 1)ξ(n) = −1, ξ(n)ξ(−n) = 1. (48)

The general solution of this system is expressed in terms of θ-functions. We
conˇne ourselves to the degenerate case here

ξ(n) = tg
π

2

(
n +

1
2

)
. (49)

Now we use the last unitarity condition (1)C. As a result, the function n
considered as a function of the complex variable z is of the same form as in
Appendix 1. Formulae (37), (38), (42), (46), (47), (49) now give the solution
of the problem deˇned by Conditions 1 for crossing-symmetry matrix (15) and
equation S2 + S3 = 0.
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