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Schemes of Neutrino Mixings (Oscillations)

and Their Mixing Matrices

Three schemes of neutrino mixings (oscillations) together with their mixing ma-

trices (analogous to Kabibbo–Kobayashi–Maskawa matrices) are considered. In these

schemes neutrino transitions are virtual if neutrino masses are different. Two of them

belong to the so-called mass mixing schemes (mixing parameters are expressed by ele-

ments of mass matrices) and the third scheme belongs to the charge mixing one (mix-

ing parameters are expressed through charges). In the first scheme, six equations

for determination of all the elements of the mass matrix (neutrino masses and transition

widths) are given using experimental data. In the second and third ones the mixing an-

gles are equal or close to maximal angles ( / )� 4 . It is obvious that the experiment must

give an answer to the following question: Which of these schemes is realized indeed?
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Ñõåìû ñìåøèâàíèÿ íåéòðèíî è èõ ìàòðèöû ñìåøèâàíèÿ

Â ðàáîòå ðàññìàòðèâàþòñÿ òðè ñõåìû ñìåøèâàíèÿ (îñöèëëÿöèé) íåéòðèíî

âìåñòå ñ èõ ìàòðèöàìè ñìåøèâàíèÿ, àíàëîãè÷íûå ìàòðèöàì ñìåøèâàíèÿ

Êàáèááî–Êîáàÿøè–Ìàñêàâû. Â ýòèõ ñõåìàõ íåéòðèííûå ïåðåõîäû ÿâëÿþòñÿ

âèðòóàëüíûìè, åñëè ìàññû íåéòðèíî ðàçëè÷àþòñÿ. Äâå èç íèõ ïðèíàäëåæàò ê òàê

íàçûâàåìîé ñõåìå ìàññîâûõ ñìåøèâàíèé (ïàðàìåòðû ñìåøèâàíèÿ âûðàæàþòñÿ

÷åðåç ýëåìåíòû ìàññîâîé ìàòðèöû), à òðåòü ÿâëÿåòñÿ ñõåìîé çàðÿäîâûõ ñìåøè-

âàíèé (ïàðàìåòðû ñìåøèâàíèÿ âûðàæàþòñÿ ÷åðåç çàðÿäû). Äëÿ ïåðâîé ñõåìû

ïîëó÷åíà ñèñòåìà èç 6 óðàâíåíèé äëÿ îïðåäåëåíèÿ âñåõ ýëåìåíòîâ ìàññîâîé ìà-

òðèöû (ìàññ íåéòðèíî è øèðèí ïåðåõîäîâ) ñ èñïîëüçîâàíèåì ýêñïåðèìåíòàëü-

íûõ äàííûõ. Âî âòîðîé è òðåòüåé óãëû ñìåøèâàíèÿ íåéòðèíî ðàâíû è áëèçêè

ê ìàêñèìàëüíûì óãëàì ñìåøèâàíèÿ ( / )� 4 . Ïðåäïîëàãàåòñÿ, ÷òî ýêñïåðèìåíò

äîëæåí äàòü îòâåò íà âîïðîñ: êîòîðàÿ èç ýòèõ ñõåì ðåàëèçóåòñÿ â äåéñòâèòåëüíî-

ñòè?

Ðàáîòà âûïîëíåíà â Ëàáîðàòîðèè ôèçèêè ÷àñòèö ÎÈßÈ è Èíñòèòóòå ïðè-

êëàäíîé ìàòåìàòèêè è àâòîìàòèçàöèè ÊÁÍÖ ÐÀÍ, Íàëü÷èê, Ðîññèÿ.

Ñîîáùåíèå Îáúåäèíåííîãî èíñòèòóòà ÿäåðíûõ èññëåäîâàíèé. Äóáíà, 2004



INTRODUCTION

In the quark sector, mixings between d, s, b quarks are described by KabibboÄ
KobayashiÄMaskawa matrices [1]. At present, we know that the lepton numbers
are not conserved [2Ä5] and νe, νµ, ντ neutrinos are also mixed. Then, for lepton
sector we can also introduce similar matrices. Unfortunately, we do not know
if there are neutrino oscillations or only neutrino mixings without oscillations.
Therefore, it is necessary to consider all the realistic schemes of neutrino mixings
and oscillations. Usually, only the standard scheme of neutrino oscillations is
considered [6]. Since in this scheme the law of energy-momentum conservation
is not fulˇlled [7], we suppose that this scheme is not a realistic one for description
of neutrino oscillations. We proposed three schemes for description of neutrino
mixings and oscillations [7]. The ˇrst scheme is the development of the standard
scheme in the framework of the particle physics. In these schemes neutrino
transitions are virtual if neutrino masses are different. You are invited to study
these schemes of neutrino mixings and oscillations. In the paper we also obtain
mixing matrices for these schemes.

SCHEMES (TYPES) OF NEUTRINO MIXING (OSCILLATION)
AND THEIR MIXING MATRICES

In the general case there can be two schemes (types) of neutrino mixings
(oscillations): mass mixing schemes and charge mixings scheme (as it takes
place in the vector dominance model or vector boson mixings in the standard
model of electroweak interactions).

1. Two Schemes of Neutrino Mass Mixings (Oscillations) and Their Mixing
Matrices. In the standard approach [6] it is supposed that neutrinos have already
been created in superposition states, i.e., mass matrix is a nondiagonal one. If
mass matrix is nondiagonal at once, then we must diagonalize this matrix in order
to ˇnd eigenstates of neutrinos. Then eigenstates are ν1, ν2, ν3 neutrinos, i.e., there
must be created ν1, ν2, ν3 neutrinos but not νe, νµ, ντ neutrinos. It is obvious that
it cannot be coordinated with experimental data. In the weak interactions only
physical neutrinos (νe, νµ, ντ ) are created, i.e., mass matrix is a diagonal one, and
then at violation of the lepton numbers this matrix is transformed into nondiagonal
one [7]. We stress this point for its fundamental importance.

Originally it was supposed [6] that these neutrino oscillations are real oscil-
lations, i.e., that there takes place a real transition of electron neutrino νe into
muon neutrino νµ (or tau neutrino ντ ). Then the neutrino x = µ, τ will decay in
electron neutrino plus something

νx → νe + ...., (1)
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as a result, we get energy from vacuum, which equals the mass difference (if
mνx > mνe )

∆E ∼ mνx − mνe . (2)

Then, again this electron neutrino transits into muon neutrino, which decays again
and we get energy and etc. So we have got a perpetuum mobile! Obviously, the
law of energy conservation cannot be fulˇlled in this process. The only way to
restore the law of energy conservation is to demand that this process is a virtual
one. Then, these oscillations will be the virtual ones and they are described in the
framework of the uncertainty relations. The correct theory of neutrino oscillations
can be constructed only in the framework of the particle physics theory, where
the concept of mass shell is present [8], [9].

We can also see that there are two cases of neutrino transitions (oscillations)
in the scheme of mass mixings [9].

1.1. Development of the standard scheme of neutrino mixings (oscillations).
The standard scheme belongs to the so-called mass mixings scheme, since mixing
parameters are expressed through elements of mass matrix. In this case the
probability of νe → νµ transition (oscillation) is described by the following
expression (for simpliˇcation we consider two neutrino νe, νµ mixings cases):

P (νe → νµ, t) = sin2 2θ sin2

[
πt

|m2
ν1

− m2
ν2
|

2pνe

]
, (3)

where pνe is a momentum of νe neutrino,

sin2 2θ =
4m2

νeνµ

(mνe − mνµ)2 + 4m2
νeνµ

, (4)

and

m1,2 =
1
2

[
(mνe + mνµ) ±

(
(mνe − mνµ)2 + 4m2

νµνe

)1/2
]

, (5)

At this transitions (oscillations) neutrinos remain on their mass shell and transi-
tions (oscillations) must be virtual.

It is interesting to remark that expression (4) can be obtained from the BreitÄ
Wigner distribution [10]

P ∼ (Γ/2)2

(E − E0)2 + (Γ/2)2
, (6)

using the following substitutions:

E = mνe , E0 = mνµ , Γ/2 = 2mνeνµ , (7)
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where Γ/2 ≡ W (...) is a width of νe → νµ transition, then we can use a standard
method [9, 11] for calculating this value. Then, the probability of νe → νµ

transitions is deˇned by these neutrino masses and width of their transitions.
Expression for length of these oscillations has the following form:

Lo = 2π
2p

|m2
2 − m2

1|
. (8)

Above, we considered the case of two neutrino transitions (oscillations). In
the general case we must consider three neutrino transitions (oscillations). For a
complete description of three neutrino oscillations we must have six parameters
(we suppose that this mass matrix is symmetric about the diagonal one)

 mνe mνeνµ mνeντ

mνeνµ mνµ mνµντ

mνeντ mνµντ mντ


 ; (9)

three diagonal terms of this matrix are masses of three physical neutrinos mνµ ,
mντ , mνe and three nondiagonal mass terms of this matrix are mνeνµ , mνµντ ,
mνeντ -neutrino transition widths. Since in the expression for neutrino transition
probabilities, mass differences (in squared form) are used in reality, we need only
ˇve parameters (and for further simpliˇcation physical neutrino masses are used).
Besides, if mass matrix is complex, there appears one parameter, connected with
CP violation.

Let us consider back problem, i.e., problem of ˇnding of these (six) para-
meters from experiments. From experiments on neutrino transitions (oscillations)
we can determine the following six values: three values from amplitudes

sin2 2θij =
4m2

νiνj

(mνi − mνj )2 + 4m2
νiνj

(10)

and three values from oscillation lengths (or differences of squared masses m2
να

−
m2

νβ
)

P ′(νi → νj , t) = sin2

[
πt

|m2
να

− m2
νβ
|

2pνi

]
, (11)

where
i < j, i, j = e, µ, τ ; α, β = 1, 2, 3.

Using these parameters we can obtain values of six neutrino mass matrix pa-
rameters: three values for neutrino mass (or two mass differences) and three
nondiagonal mass parameters (widths of neutrino transitions).

These mixing angles can be connected with mixing matrix V as in the case
of KabibboÄKobayashiÄMaskawa matrix in standard manner [1]. We will choose
a parameterization of the mixing matrix V in the form proposed by Maiani [12]:
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V =


 1 0 0

0 cγ sγ

0 −sγ cγ





 cβ 0 sβ exp(−iδ)

0 1 0
−sβ exp(iδ) 0 cβ





 cθ sθ 0

−sθ cθ 0
0 0 1


,

(12)
ceµ = cos θ, seµ = sin θ, c2

eµ + s2
eµ = 1;

ceτ = cosβ, seτ = sinβ, c2
eτ + s2

eτ = 1; (13)

cµτ = cos γ, sµτ = sinγ, c2
µτ + s2

µτ = 1;

exp(iδ) = cos δ + i sin δ.

In our approximation, the value of δ can be considered to be equal to zero.
Equations for mixing angles expressed through elements of mass matrix have

the following form:

seµ = sin θ =
1√
2

[
1 −

|mνµ − mνe |√
(mνµ − mνe)2 + (2mνeνµ)2

]
, (14)

c2
eµ = 1 − s2

eµ ;

seτ = sin β =
1√
2

[
1 − |mντ − mνe |√

(mντ − mνe)2 + (2mνeντ )2

]
, (15)

c2
eτ = 1 − s2

eτ ;

sµτ = sin γ =
1√
2

[
1 −

|mντ − mνµ |√
(mντ − mνµ)2 + (2mνµντ )2

]
, (16)

c2
µτ = 1 − s2

µτ .

1.2. Analysis of present status of neutrino mixing parameters.Super-Kamiokande
data [3] on atmospheric neutrino transitions for νµ → ντ are

sin2 2β ∼= 1, ∆m2
23

∼= 2.5 · 10−3 eV2. (17)

The KamLAND detector [5] on the ν̄e → ν̄µ transition presented the following
data:

sin2 2θ ∼= 1, ∆m2
21

∼= 6.9 · 10−5 eV2. (18)

Using the above and the SNO [4] data we can come to conclusion that for νe → ντ

transitions we have
sin2 2γ ∼= 1, (19)

but the value of ∆m2
31 remains unknown.
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The vicinity of sin2 2θ, sin2 2β, sin2 2γ to unity allows the expansion of
these values around unity and then expressions for sin2 2θij and mass differences
will have the following form:

(2mij)2 � (mj − mi)2 j > i; i, j = e, µ, τ

sin2 2θij
∼= 1 −

(mνi − mνj )2

4m2
νi,νj

, (20)

∆m2
21 = m2

2 − m2
1 = (mνµ + mνe)

√
(mνµ − mνe)2 + (2mνeνµ)2, (21)

if 2mνeνµ � |mνµ − mνe | then

∆m2
21 = (mνµ + mνe)2mνeνµ

[
1 +

(mνµ − mνe)2

2(2mνeνµ)2

]
, (21′)

and if 2mνeνµ � |mνµ − mνe | then

∆m2
21 = (m2

νµ
− m2

νe
)
[
1 +

(2mνeνµ)2

2(mνµ − mνe)2

]
; (21′′)

∆m2
31 = m2

3 − m2
1 = (mντ + mνe)

√
(mντ − mνe)2 + (2mνeντ )2, (22)

if 2mνeντ � |mντ − mνe | then

∆m2
31 = (mντ + mνe)2mνeντ

[
1 +

(mντ − mνe)2

2(2mνeντ )2

]
, (22′)

and if 2mνeντ � |mντ − mνe | then

∆m2
31 = (m2

ντ
− m2

νe
)
[
1 +

(2mνeντ )2

2(mντ − mνe)2

]
; (22′′)

∆m2
31 = m2

3 − m2
2 = (mντ + mνµ)

√
(mντ − mνµ)2 + (2mνµντ )2, (23)

if 2mνµντ � |mντ − mνµ | then

∆m2
31 = (mντ + mνµ)2mνµντ

[
1 +

(mντ − mνµ)2

2(2mνµντ )2

]
, (23′)

and if 2mνµντ � |mντ − mνµ | then

∆m2
31 = (m2

ντ
− m2

νµ
)
[
1 +

(2mνµντ )2

2(mντ − mνmu)2

]
. (23′′)
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In the general case from the neutrino oscillation experiments, we can obtain
six values Å sin2 2θ, sin2 2β, sin2 2γ, ∆m21, ∆m32, ∆m31, which can be used
for determination of six parameters mνe , mνµ , mντ , mνeνµ , mνµντ , mνeντ , using
3 equations (20) for sin2 2 . . . and 3 equations (21)Ä(23). Unfortunately, these
equation are transcendental ones and they can be solved only numerically.

In the simplest case

sin2 2θ ∼= sin2 2β ∼= sin2 2γ ∼= 1, (24)

mνe
∼= mνµ

∼= mντ = mν (25)

and we get
∆m2

21
∼= 4mνeνµ · mν

∼= 2.5 · 10−3 eV2,

∆m2
31

∼= 4mνeντ · mν
∼= remains unknown for the present, (26)

∆m2
32

∼= 4mνeνµ · mν
∼= 6.9 · 10−5 eV2,

and there is no possibility to obtain values of masses of physical neutrinos.
1.3. The case of neutrino mixings without mass shell changing.Above we

considered the case when virtual neutrino transitions take place with change of
neutrino masses. Another case is also possible, when νe neutrino transits into νµ

neutrino without changing mass, i. e., m∗
νµ

= mνe then

tg 2θ = ∞, (27)

θ = π/4, and
sin2 2θ = 1. (28)

In this case the probability of the νe → νµ transition (oscillation) is described
by the following expression:

P (νe → νµ, t) = sin2

[
πt

4m2
νeνµ

2pa

]
. (29)

Expression for length of oscillations in this case has the following form:

Lo = 2π
2p

(2mνeνµ)2
.

In order to make these virtual oscillations real, their participation in quasi-
elastic interactions is necessary for their transitions to their own mass shells [9].

The matrix, analogous to KabibboÄKobayashiÄMaskawa in this case, is a
trivial one and it has the following form:

V =


 1 0 0

0 cγ sγ

0 −sγ cγ





 cβ 0 sβ exp(−iδ)

0 1 0
−sβ exp(iδ) 0 cβ





 cθ sθ 0

−sθ cθ 0
0 0 1


,

(30)
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ceµ = cos θ =
1√
2
, seµ = sin θ =

1√
2
;

ceτ = cosβ =
1√
2
, seτ = sin β =

1√
2
; (31)

cµτ = cos γ =
1√
2
, sµτ = sinγ =

1√
2
;

exp(iδ) = 1.

In our approximation the value of δ can be considered to be equal to zero.
In case of

sin2 2θ = sin2 2β = sin2 2γ = 1, (32)

we have
∆m2

21 = (2mνeνµ)2,

∆m2
31 = (2mνeντ )2, (33)

∆m2
32 = (2mνeνµ)2,

and we can obtain values of nondiagonal mass terms (widths of neutrino tran-
sitions) but there is no possibility of obtaining values of masses of physical
neutrinos.

It is necessary to remark that in physics all the processes are realized through
dynamics. Unfortunately, in this mass mixings scheme the dynamics is absent.
Probably, this is an indication of the fact that these schemes are incomplete ones,
i.e., these schemes demand a physical substantiation (see section 1.2).

Obviously, these schemes will work only if neutrino oscillations take place in
reality (it is clear that there also can be neutrino mixings in absence of neutrino
oscillations).

2. The Scheme of Neutrino Charge Mixings (Oscillations). The third scheme
(type) of mixing or transition of neutrinos can be realized by mixings of the
neutrino ˇelds by analogy with the vector dominance model (γ − ρo and Zo − γ
mixings) the way it takes place in the particle physics. Then, in the case of two
neutrinos, we have

ν1 = cos θνe − sin θνµ, (34)

ν2 = sin θνe + cos θνµ.

In the case of three neutrinos we can also choose parameterization of the mixing
matrix V in the form proposed by Maiani [12]:

V =


 1 0 0

0 cγ sγ

0 −sγ cγ





 cβ 0 sβ

0 1 0
−sβ 0 cβ





 cθ sθ 0

−sθ cθ 0
0 0 1


, (35)
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ceµ = cos θ seµ = sin θ, c2
eµ + s2

eµ = 1;

ceτ = cos β, seτ = sin β, c2
eτ + s2

eτ = 1; (36)

cµτ = cos γ, sµτ = sin γ, c2
µτ + s2

µτ = 1;

The charged current in the standard model of weak interactions for two lepton
families has the following form:

jα =
(

ēµ̄
)
L

γαV

(
νe

νµ

)
L

,

V =
(

cos θ sin θ
− sin θ cos θ

)
, (37)

and then the interaction Lagrangian is

L =
g√
2
jαW+

α + h.c. (38)

and
νe = cos θν1 + sin θν2

νµ = − sin θν1 + cos θν2.
(39)

Then, taking into account that the charges of ν1, ν2 neutrinos are g1, g2 we have

g cos θ = g1, g sin θ = g2, (40)

i.e.
cos θ =

g1

g
, sin θ =

g2

g
. (41)

Since sin2 θ + cos2 θ = 1, then

g =
√

g2
1 + g2

2

and
cos θ =

g1√
g2
1 + g2

2

, sin θ =
g2√

g2
1 + g2

2

. (42)

Since we suppose that g1
∼= g2

∼= g√
2
, then

cos θ ∼= sin θ ∼=
1√
2
. (43)

It is not difˇcult to come to consideration of the case of three neutrino types
νe, νµ, ντ . Since the weak couple constants gνe , gνµ , gντ of νe, νµ, ντ neutrinos
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are approximately equal in reality, i.e., gνe � gνµ � gντ then the angle mixings
are nearly maximal:

cos θ = cos θνeνµ
∼= sin θνeνµ

∼=
1√
2
,

cos β = cos θνeντ
∼= sin θνeντ

∼=
1√
2
, (44)

cos γ = cos θνµντ
∼= sin θνµντ

∼=
1√
2
.

As it is stressed above in the case of mass mixings scheme, we have no
dynamical substantiation in contrast to the case of charge mixings scheme, but
these schemes may be jointed if neutrino masses have the following form:

mνi = giv, i = e, µ, τ, (45)

where v is constant, as in the Higgs mechanism [13]. And then the problem of
dynamical substantiation in this scheme is solved.

CONCLUSION

Unfortunately, we do not know if there are neutrino oscillations or only neu-
trino mixings without oscillations. Therefore, it is necessary to consider all the
realistic schemes of neutrino mixings and oscillations. In this work three schemes
of neutrino mixings (oscillations) together with their mixing matrices (analogous
to KabibboÄKobayashiÄMaskawa matrices) were considered. In these schemes
neutrino transitions are virtual if neutrino masses are different. Two of them
belong to the so-called mass mixing schemes (mixing parameters are expressed
by elements of mass matrices) and the third scheme belongs to the charge mixing
one (mixing parameters are expressed through charges). For the ˇrst scheme, the
equations for determination of all the elements of mass matrix (neutrino masses
and transition widths) by using experimental data were given. In the second and
third ones the mixing angles are equal or close to the maximal angles (π/4). It is
obvious that the experiment must get an answer to the following question: Which
of these schemes is realized indeed?
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