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Nonclassical Orthogonal Polynomials

and Corresponding Quadratures

We construct nonclassical orthogonal polynomials and calculate abscissas

and weights of Gaussian quadrature for arbitrary weight and interval. The program is

written by Mathematica and it works if moment integrals are given analytically.

The result is a FORTRAN subroutine ready to utilize the quadrature.

The investigation has been performed at the Bogoliubov Laboratory of Theoreti-

cal Physics, JINR.
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Íåêëàññè÷åñêèå ïîëèíîìû è ñîîòâåòñòâóþùèå èì êâàäðàòóðû

Ïðåäñòàâëåíà ïðîãðàììà äëÿ âû÷èñëåíèÿ àáñöèññ è âåñîâ êâàäðàòóðû

Ãàóññà äëÿ ïðîèçâîëüíîãî âåñà è èíòåðâàëà. Ïðîãðàììà íàïèñàíà íà ÿçûêå

Mathematica è ðàáîòàåò â òîì ñëó÷àå, åñëè èíòåãðàëû ìîìåíòîâ âû÷èñëÿþòñÿ

â àíàëèòè÷åñêîì âèäå. Ðåçóëüòàòîì ðàáîòû ïðîãðàììû ÿâëÿåòñÿ ÔÎÐÒÐÀÍ-ïîä-

ïðîãðàììà, ãîòîâàÿ äëÿ âû÷èñëåíèÿ îïðåäåëåííîãî èíòåãðàëà.

Ðàáîòà âûïîëíåíà â Ëàáîðàòîðèè òåîðåòè÷åñêîé ôèçèêè èì. Í. Í. Áîãîëþ-

áîâà ÎÈßÈ.

Ïðåïðèíò Îáúåäèíåííîãî èíñòèòóòà ÿäåðíûõ èññëåäîâàíèé. Äóáíà, 2004



INTRODUCTION

The integrals of elementary functions could not, in general, be computed
analytically, while derivatives could be. A lot of numerical analysis of the
quadrature has been worked out [1]. Generally, the integral of a function is
approximated by the sum of its functional values at a set of points, multiplied
by certain weighting coefˇcients. The Gaussian quadrature gives the freedom to
choose both the weights and the location of the abscissas at which the function
is to be evaluated. The number of the function evaluation can be reduced twice.

Fig. 1. Up to n = 4 normalized orhogo-
nal polynomials pn(z = z(x)) with W (x) =
1/(1 + x2)2, z(x) = x/

√
1 + x2, and interval

[a, b] = [1,∞]

The classical Gaussian quadra-
tures are related to the correspond-
ing classical polynomials which all
are either hypergeometric or con�u-
ent hypergeometric series, i.e., triv-
ial cases; if we are limited to use
them only, the power of the method,
which allows one to arrange the
choice of weights and abscissas to
make the integral exact for ®poly-
nomials times some known function
W (x)¯, is wasted.

Here we produced the code for
generating Gauss quadrature with ar-
bitrary weight and interval. It can
also be used for classical cases if needed. We have found the code to be dramat-
ically effective used in our 2D quadrature [2].

To ˇnish the Introduction we present the ˇrst four polynomials useful (closely
related) to our application.

The corresponding n = 1, 2, 3, 4 monic polynomials are:

z − 2
3

√
2

π − 2
;
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z2 − 6
5

√
2 (9 π − 28) z

9 π2 − 18 π − 32
− 1

20
45 π2 − 448

9 π2 − 18 π − 32
;

z3 − 24
7

√
2
(
225 π2 − 1290 π + 1832

)
z2

675 π3 − 900 π2 − 13776 π + 31232
−

− 1
14

(
−137472 π + 4725 π3 + 285376

)
z

675 π3 − 900 π2 − 13776 π + 31232
+

+
16
35

√
2
(
1078 + 225 π2 − 1050 π

)
675 π3 − 900 π2 − 13776 π + 31232

;

z4 − 40
3

√
2
(
−948150 π2 + 1061880 π + 165375 π3 + 894208

)
z3

2480625 π4−3307500 π3−99831600 π2+417542400 π−465531904
−

−1
4

(
1386729600π−4961250π3+7441875π4−344224800π2−1530253312

)
z2

2480625π4−3307500π3−99831600π2+417542400π−465531904
+

+
5
42

√
2
(
197011456− 58557120 π − 22623300 π2 + 6780375 π3

)
z

2480625 π4 − 3307500 π3 − 99831600 π2 + 417542400 π − 465531904
+

+
1

336
52093125 π4 − 9650745344− 2520705600 π2 + 9375744000 π

2480625 π4 − 3307500 π3 − 99831600 π2 + 417542400 π− 465531904
.

1. METHOD

We consider a general one-dimensional integral with a given weight W (x)

I =
∫ b

a

f(z(x))W (x)dx, (1)

where inˇnity is allowed for both a and b. The variable z(x) is a monotonic
function of x and is introduced for convenience. It is well known that the
Gaussian quadrature (GQ, hereafter) is a quite effective numerical method if the
integrand f(z(x)) is smooth. The integral I is approximated by GQ of degree
n as

I ≈
n∑

j=1

wjf(zj). (2)

Abscissas zj and weights wj are determined by demanding that Eq. (2) is exact
if f(z) is a polynomial of degree 2n − 1 or less.

As is well known [1], the abscissas zj are j = 1, 2, 3, . . . , n distinct zeros of
the polynomial pn(z) of degree n deˇned by the recurrence relation

pj+1(z) = (z − aj)pj(z) − bjpj−1(z) (3)
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with p−1(z) ≡ 0, p0(z) ≡ 1, where

aj =
〈zpj|pj〉
〈pj |pj〉

, bj =
〈pj |pj〉

〈pj−1|pj−1〉
, (4)

and

〈f |g〉 ≡
∫ b

a

f(z)g(z)W (x)dx. (5)

The polynomials deˇned as above are monic, i.e., the coefˇcient of their leading
term [zj for pj(z)] is unity. Note that the coefˇcients in the recurrence relation
depend on the adopted normalization.

In its turn, the weights wj , j = 1, 2, 3, . . . , n are given by the expression

wj =
〈pn−1|pn−1〉

pn−1(uj)p′n(uj)
, (6)

where p′n(z) is the derivative of pn(z) with respect to z.
If we know the ˇrst 2n moments of a weight function W (x),

µk =
∫ b

a

zkW (x)dx, k = 0, 1, . . . , 2n − 1, (7)

it is formally possible to calculate pn(z). However, it is well known that the
solution of the set of algebraic equations for the coefˇcients aj and bj in terms
of the moment µk is extremely ill-conditioned: ®Even in double precision it is
not unusual to lose all accuracy by the time n = 12¯ [1]. The effective and
stable methods to calculate GQ abscissas zk and weights µk are known only for
classical polynomials [1].

On the other hand, if we use symbolic calculations, there is formally no
problem with accuracy since we can obtain accurate results by converting the
analytic output into numbers. However, in symbolic calculations there is also a
limitation originated in the capacity of a computer memory. For example, we
have found it to be difˇcult to obtain the abscissas in the case of n = 12 for

W (x) =
1

(1 + cx2)2
, z(x) =

x√
1 + cx2

, [a, b] = [1,∞], (8)

with c = 1 by a direct unsophisticated run.
In order to get abscissas and weights for an arbitrary weight function and

large enough n we suggest to combine numerical and symbolic calculations as
follows:

1. We calculate the moments (7) symbolically and convert the results into
numbers having Nm digits since if we use the moment expressed in symbols the
polynomial pn(z) might be too complex to be used by the usual computer.
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2. We obtain the polynomial pn(z) from the moment accurate in Nm digits
and, accordingly, ai and bi from Eq. (4).

3. Since accurate abscissas are necessary to calculate weights wj by Eq. (6),
instead of seeking zeros of pn(z), we follow the suggestion from [1] and use the
so-called Jacobi matrix,

J =




a0

√
b1√

b1 a1

√
b2

· · · √
bn−2 an−2

√
bn−1√

bn−1 an−1


 . (9)

In this case, the eigenvalues of J are the abscissas zj and the weights wj are
given by the corresponding eigenvector vj as

wj =
µ0(vj · e1)2

vj · vj
, (10)

where e1 = (1, 0, 0, . . . , 0). We solve this eigenvalue problem numerically in Nz

digits precision.
This procedure is quite elementary and can be programmed easily using any

symbolic computation system, such as Mathematica or Maple. But, if we want
to have the ˇnal accuracy Na, the internal accuracies Nm for the moments µj

strongly depend on the problem: the weight function W (x), the argument z(x),
the interval [a, b] and the degree n of GQ formula. That is why we check the
ˇnal accuracy Na by comparing the exact moments µk with those calculated by
using the obtained GQ

µ̂k =
n∑

j=1

ŵj ẑ
k
j , (11)

for k = 0, 1, . . . , 2n−1. Here ẑj and ŵj are the calculated abscissas and weights,
respectively. Naturally, if they coincide in Na digits, we are sure that we have
the same accuracy for approximation (2). The required accuracy Nz for the
eigenvalue problem of the Jacobi matrix also depends on the problem.

2. DESCRIPTION OF THE PROGRAM

The program was written by using Mathematica 4.0 and should work for
its later versions. It produces the abscissas and weights for the weight function
W (x), the argument z(x) and the interval [a, b]. It works if Mathematica can
calculate the moments (7) analytically. The result is the FORTRAN subroutine
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that contains the arrays of calculated abscissas and weights (see the end of this
section).

Integral (1) is deˇned at the beginning of the Mathematica code as follows.
The integral region [a, b] where a and b are allowed to be inˇnity. For

example,

(* integral region a, b *)
a=1;
b=Infinity;

The weight function W (x). For example,

(* weight *)
c = 1;
W[x_]:=1/(1+ c x^2)^2;

The argument z(x). For example,

(* argument *)
z=x/(Sqrt[1+ c x^2]);

The inverse of the argument z−1(u), which is deˇned by z(z−1(u)) = u.
For example,

(* inverse relation *)
zi=u/(Sqrt[1- c u^2]);

The degree of the GQ, n. For example,

(* degree of formula *)
n=4;

The internal precision in number of digits is: Nm for the moment µk and
Nz for the eigenvalue problem of the Jacobi matrix. For example,

(* Internal precision *)
(* in number of digits *)
Nm = 50; (* moments *)
Nz = 25; (* Jacobi matrix *)

The ˇnal precision Na of calculated abscissas and weights in number of
digits. For example,

(* final precision *)
Na = 17;
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FORTRAN output has two options. If outputww is set to 0, the FORTRAN
subroutine produced by Mathematica provides weights itself, otherwise the FOR-
TRAN subroutine provides weights divided by the weight function W (x). This
option is useful for very small or large weights. It can be important, for example,
in the case of GaussÄLaguerre quadrature:

W (x) = e−x, z(x) = x, [a, b] = [0,∞]. (12)

(* FORTRAN output *)
outputww = 0;

The name of the produced FORTRAN ˇle. For example,

(* fortran filename *)
fortranfname="gqxw.f";

After checking the above parameters, we execute our Mathematica code by
pushing

[Shift]+[Enter]

keys. Then a message

Evaluating moment z^i W[x]...

will appear. If all moments are obtained analytically, evaluation of the Jacobi
matrix begins. Otherwise the calculation will stop. Next, the abscissas and
weights are calculated as described in the previous section. When the calculation
is ˇnished, the moments µk are compared with the GQ-approximation µ̂k (11).
The two are displayed in Na digits for k = 0, 1, 2, . . . , 2n − 1 together with the
relative error

| µ̂k − µk

µk
|.

If the corresponding pairs coincide, we accept the results and the FORTRAN
subroutine is being produced.

In the following example, the abscissas are stored in the array x when you
call this subroutine by setting the input n, the degree of the GQ. Here, abscissas
are given by xj instead of zj with zj = z(xj). In the array w, the weights wj or
weights divided by the weight function wj/W (xj) are stored depending on the
value of the option outputww.

c Abscissas and weights of Gaussian Quadrature
c produced by Mathematica code: AWGQ
cccccc
c for int_a^b{f(z(x))W(x)dx}
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c argument z(x) = x/Sqrt(1 + x**2)
c weight W(x) = (1 + x**2)**(-2)
c region a = 1
c region b = DirectedInfinity(1)
c GQ order n <= 200
cccccc

subroutine gqxw(x,w,n)
c x: abscissas
c w: weights

implicit real*8(a-h,o-z)
dimension x(200),w(200)

c
if(n.eq.4) then
x(1)=1.0545042737116109D0
w(1)=3.1956375209299262D-2
x(2)=1.3141812952767702D0
w(2)=5.3744870692213551D-2
x(3)=1.9558594860602826D0
w(3)=4.2533155301151633D-2
x(4)=3.9506935616438789D0
w(4)=1.4464680496059708D-2
return

end if
c

stop ’gqxw.f, n=’, n
end

3. TEST RUN

The test run presents integral (1) for the weight function, the argument and
interval (8). The corresponding output list is that displayed in Mathematica 2.2
for n = 4. Since the output from Mathematica 4.0 is graphical, we have chosen
a simpler output from Mathematica 2.2. Here we note that though the program
can work in Mathematica 2.2, it does not control that the analytic moments µk

are really calculated. The FORTRAN ˇle produced was already shown in the
previous section. In Table 1, we tabulate the computation time at Pentium IV
1.7 GHz and the two internal accuracies Nm and Nz necessary to get the ˇnal
accuracy Na = 17 for several values of n. In this case, internal accuracy Nm

strongly depends on n but the internal accuracy Nz does not depend on n.
In Table 2, the internal accuracies Nm and Nz necessary to get the ˇnal

accuracy Na = 17 for ˇxed n = 64 are tabulated for two classical quadratures
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(Legendre and Laguerre) and our sample GQ. Now, we can see that the internal
accuracy Nz can also depend on the problems.

Table 1. Computation time and internal accuracies for integral (1) with the weight
function, the argument and the interval (8). n is the degree of GQ; Nm and Nz are the
internal accuracies. The ˇnal output accuracy Na is 17 digits. CPU is the computation
time at Pentium IV 1.7 GHz

n Nm Nz CPU [s]

4 50 25 1
8 100 25 1
16 400 25 4
32 1300 25 21
64 6000 25 3135
96 12000 25 32323

Table 2. Internal accuracy Nm and Nz necessary for three different GQ. The degree
of GQ is n = 64. The ˇnal output accuracy Na is 17 digits. CPU is the computation
time at Pentium IV 1.7 GHz

W (x) [a, b] z(x) Nm Nz CPU [s]

Legendre 1 [−1, 1] x 1300 25 29

Laguerre e−x [0,∞] x 1700 55 67

Our example
1

(1 + x2)2
[1,∞]

x√
1 + x2

6000 25 3135

4. TEST RUN OUTPUT

2 -2
weight W(x)=(1 + x )

x
argument z(x)=------------

2
Sqrt[1 + x ]

integral region {a,b}={1, Infinity}
Degree of formula
n=4

Precision
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moment Nm=50
Jacobi Nz=25
final Na=17
MachinePrecision=16

FORTRAN file
gqxw.f

Evaluating moment z^i W[x]...
Orthogonal polynomial and Jacobi matrix ...
...50%
...75%
...100%
abscissas
{0.7256104344253013423139944, 0.7958055094055824274365386,
0.8903722295270473536795167, 0.9694266243792582481606508}

weights
{0.03195637520929926237416762, 0.05374487069221355129581688,
0.04253315530115163329036328, 0.014464680496059707847482635}

Check results
exact moment, moment by GQ, (relative error)

m0: 0.142699081698724155, 0.142699081698724155, (0.e-18)
m1: 0.117851130197757921, 0.117851130197757921, (0.e-18)
m2: 0.098174770424681039, 0.098174770424681039, (0.e-18)
m3: 0.082495791138430545, 0.082495791138430545, (0.e-18)
m4: 0.069920718545673853, 0.069920718545673853, (0.e-18)
m5: 0.059767358886005803, 0.059767358886005803, (0.e-18)
m6: 0.051512949091046158, 0.051512949091046158, (0.e-18)
m7: 0.044755369682243782, 0.044755369682243782, (0.e-18)

*** computation time=1[sec]

5. FINAL REMARKS

We were calculating rotational three-body resonances in a new adiabatic
approach, and the main numerical job to be done was a 2D quadrature in the
(x, y)-plane [2]. In the hyperspheroidal coordinates we have 1 � x � ∞ and
−1 � y � 1 [3]. For the case of the molecular hydrogen ion H+

2 , the integration
over y can be accurately carried out using the GaussÄLegendre scheme while
for the semi-inˇnite x-region we have tried more than ten different methods but
failed to ˇnd something even approximately reasonable. All subroutines with an
automatic control of the accuracy provided ˇnally inaccurate results. Thus, we
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were forced to use the fact that our integrands are approximately of the polynomial
form

P (
x

ρ(x, y)
,

y

ρ(x, y)
),

with the volume element (x2 − y2)/ρ3(x, y), and ρ(x, y) = 1 + c(x2 + y2 −
1) (c being the constant deˇned by the particle masses to be approximately
10−3 for the H+

2 -system). We have got the dramatic success. With nx = 64
(Gauss quadrature as given here) and ny = 32 (GaussÄLegendre case) all our 2D
integrations using molecular-like orbitals could be done both fast and accurately.

That is why we believe that the multidimensional quadrature is to be the
prime object of our paper.
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