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New Treatment of Nuclear Structure

by Means of Analytical-Empirical Deviation Method

To gain a better insight into the structure of nuclear closed shells, a new method is

proposed that uses the deviations of the separation energy of the last nucleon in the nu-

cleus. The method allows the smooth liquid drop energy as well as nucleon pairing

staggering to be excluded; the changes in the shell energy and in the pairing energy, as

part of the shell energy, are not excluded. This method enabled the discovery of the

new shells and subshells with the neutron numbers N � 65 64 56 39 15 14, , , , , and with

the proton numbers Z �100 64 39 15 14, , , , .

The investigation has been performed at the Flerov Laboratory of Nuclear Reac-

tions, JINR.
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Íîâàÿ òðàêòîâêà ñòðóêòóðû ÿäðà ñ ïîìîùüþ

àíàëèòèêî-ýìïèðè÷åñêîãî ìåòîäà äåâèàöèé

Äëÿ ëó÷øåãî ðàñïîçíàâàíèÿ ñòðîåíèÿ çàïîëíåííûõ ÿäåðíûõ îáîëî÷åê ïðåä-

ëîæåí íîâûé ìåòîä, â êîòîðîì èñïîëüçóþòñÿ äåâèàöèè (îòêëîíåíèÿ) ýíåðãèè îò-

äåëåíèÿ ïîñëåäíåãî íóêëîíà îò ÿäðà. Ìåòîä ïîçâîëÿåò èñêëþ÷èòü ïëàâíóþ çàâè-

ñèìîñòü îò æèäêîêàïåëüíîé ýíåðãèè è ïèëîîáðàçíóþ çàâèñèìîñòü îò ýíåðãèè

ñïàðèâàíèÿ. Èçìåíåíèÿ îáîëî÷å÷íîé ýíåðãèè è îáîëî÷å÷íîé ñîñòàâëÿþùåé ïàð-

íîé ýíåðãèè íå èñêëþ÷àþòñÿ. Ýòîò ìåòîä ïîçâîëèë îòêðûòü íîâûå îáîëî÷êè è

ïîäîáîëî÷êè ñ ÷èñëàìè íåéòðîíîâ N � 65 64 56 39 15 14, , , , , è ñ ÷èñëàìè ïðîòîíîâ

Z �100 64 39 15 14, , , , .

Ðàáîòà âûïîëíåíà â Ëàáîðàòîðèè ÿäåðíûõ ðåàêöèé èì. Ã. Í. Ôëåðîâà

ÎÈßÈ.

Ïðåïðèíò Îáúåäèíåííîãî èíñòèòóòà ÿäåðíûõ èññëåäîâàíèé. Äóáíà, 2004



INTRODUCTION

A number of ways are known of identifying nuclear magic numbers. They
use the discontinuities associated with magic numbers in binding energy (the
separation energy of one or two last nucleonsÄneutrons or protons), two-nucleon
pairing energy, α- and β-decay energies, 2+ nuclear state excitation energy,
B(E2) value of the 0+Ä2+ rotation transition, (γ, n), (p, d) reaction thresholds,
heavy-ion interaction cross sections, some other phenomena being also used. For
example, to analyze neutron shell closuring in neutron-rich nuclei with Z =
10 − 20 and A = 28 − 50, the separation energy of two last neutrons was used
in recent work [1]. As is known, two-neutron binding energy is insensitive to
the staggering pairing effect and more prominently re�ects shell structure. To
study more carefully shell closuring, the authors of [1] subtracted the collective
macroscopic interaction energy, calculated by the liquid drop model, from the
separation energy of two last neutrons, which allowed them to obtain new results.

1. NEW TREATMENT OF NUCLEAR STRUCTURE

Further more detailed analysis of nuclear structure requires advanced ap-
proaches. Therefore a new analytical method, which is based on deviations of
experimental data on nuclear masses, was proposed [2]. This method enables
the regular macroscopic collective interaction energy to be excluded to a greater
degree from nucleon binding energy.

In the framework of the method proposed, the deviation of the separation
energy of the last nucleon, for example, of a neutron, can be expressed as

∆S1n(Z, N) = S1n(Z, N) − [S1n(Z, N + 2) + S1n(Z, N − 2)]/2, (1)

where ∆S1n(Z, N) is deviation of one-neutron separation energy, S1n(Z, N) is
one-neutron separation energy, or

∆S1n(Z, N) = [M(Z, N + 2) − M(Z, N + 1) − 2M(Z, N)+

+ 2M(Z, N − 1) + M(Z, N − 2) − M(Z, N − 3)]c2/2, (2)

where M(Z, N) is mass or mass excess of the nucleus.
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Formulae (1) and (2) give the deviation of one-neutron separation energy
from the mean separation energy of two neighbouring neutrons of identical parity.
Using the deviation allows the smooth liquid drop energy and nucleon pairing
staggering to be excluded. The changes in the shell energy and in the pairing
energy, as part of the shell energy, are not excluded.

Similar to (1) and (2), there are also formulae for the deviation of one-proton
separation energy.

In the framework of the conception considered, the pairing energy of two
nucleons, for example, two neutrons, is

Spair(Z, N) = {S1n(Z, N) − [S1n(Z, N + 1) + S1n(Z, N − 1)]/2}/2 (3)

or

Spair(Z, N) = [M(Z, N + 1) − 3M(Z, N)+

+ 3M(Z, N − 1) − M(Z, N − 2)]c2/4. (4)

The value of the denominator is determined by the choice of zero for the pairing
energy scale.

Formula (4) for pairing energy was ˇrst given in monograph [3]. Alternative
consideration of formulae (3) and (4) as well as another ways of choosing zero
for the pairing energy scale is presented in [4].

So, if one-neutron separation energy S1n(Z, N) is expressed as

S1n(Z, N) = Sdrop(Z, N) + Sshell(Z, N) + Spair(Z, N)

and Sdrop, Sshell and the absolute value of Spair (for the details associated |Spair|
see formulae (3) and (4)) remain constant over the range of a shell, and if Sshell

and |Spair|, as part of the shell energy, change sharply over ∆Sshell and ∆|Spair|
at the shell boundary, then at ∆Sshell < 0 and ∆|Spair| < 0 there will be two
positive deviations where the closed shell ends and there will be two negative
deviations where the next shell starts to be occupied

±∆S1n ≈ (∆Sshell + ∆|Spair|)/2 ≈ G/2,

where G is the energy gap between the two shells or the two subshells.
Let us cite monograph [5, p. 59]: ®We shall deˇne a nuclear shell as a

group of levels which are separated from other levels by reasonably wide energy
gaps ... owing to the spin-orbit coupling...¯. Thus one-neutron separation energy
deviation ∆S1n(Z, N) can be regarded as an indicator of a neutron closed shell
(subshell) by means of visualising an intershell (intersubshell) energy gap.

2



2. RESULT OF CALCULATIONS AND THEIR DISCUSSION

Formula (2) was tested with data on nuclear masses taken from table [6]
and supplement to [1]. One-neutron separation energy deviation was calculated
for almost each known isotopes of elements of Z = 102 − 107. The formula
for one-proton separation energy deviation was applied to a number of series of
isotones with neutron numbers from N = 154 up to N = 8.

In particular, by the method proposed, nucleon shell closuring was investi-
gated in light and middle nuclei. In the last few years, those nuclei have aroused
considerable interest in theoretical and experimental physics, generated by the
possible existence of new shells and subshells.

Figure shows diagrams of one-neutron separation energy deviations for iso-
topes of elements of Zr, Ni, Ca and Si as four examples of many obtained. Two

The deviation of the one-neutron separation energy ∆S1n(Z, N)) for isotopes of Zr, Ni,
Ca and Si versus the neutron number N
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large positive deviations (of more than 1 MeV) followed by two large negative
deviations (of more than 1 MeV in absolute value) are clearly visible in the case
of the known N = 50 neutron magic number in the 90Zr nucleus, indicated by
an arrow. The intershell energy gap G = 2.4 ± 0.2 MeV.

There are similar gaps at N = 50 in the neighbouring isotopes from 96Pd
(G = 1.76 ± 0.04 MeV) to 84Se (G = 2.8 ± 0.2 MeV).

Close to the large deviations at the known magic neutron numbers N = 50,
28 and 20, there are sometimes less large deviations at N = 64, 56, 39 and 14
(see ˇgure).

Figure gives the probable error ε[∆S1n(Z, N)] for some particular deviations,
calculated by the formula

ε[∆S1n(Z, N)] = ±0.6745{ε2[M(Z, N + 2)]+

+ ε2[M(Z, N + 1) + 2ε2[M(Z, N)]+

+ 2ε2[M(Z, N − 1)] + ε2[M(Z, N − 2)] + ε2[M(Z, N − 3)]}1/2/2,

where ε[M(Z, N)] is absolutely error of nuclear mass taken from the table [6]
or from the supplement to [1]. The circles at which the particular error is not
indicated show the data region of ε[∆S1n(Z, N)] � 0.03 MeV.

To calculate the probable errors for energy gaps G the following formula
was used:

r = ±0.6745[Σε2/n(n − 1)]1/2,

where ε is the absolute difference of the deviation from the mean deviation; n Å
the number of deviations found (n = 4).

Data on the neutron and proton structure discussed are tabulated in Tables 1
and 2. New results are asterisked.

Nuclear structure of an odd-neutron number and spectroscopic symbols of
boundary gap neutron levels were identiˇed following monograph [3]. Let us cite
[3, p. 191]: ®The separation energy (ionization potential) of the last electron of
the neutral atoms is ... a function of the atomic number Z. The shell structure is
strikingly exhibited in the decrease of the separation energy after the completion
of each major shell. Subshell structure is also discernible... The small maxima
at Z = 7, 15 and 33 occur at the middle of the ˇlling of the p-shells, and re�ect
the fact that in these conˇgurations it is possible to achieve a maximum number
of antisymmetric bonds between the p electrons, and therefore a minimum in the
Coulomb repulsion¯.

This circumstance is re�ected in the fact that the spectroscopic symbol for
the boundary neutron levels at the gap following the submagic neutron number
39 is of the (2p1/2)/2 type Ä a 2p1/2 level of two vacancies when occupied by
one neutron Ä (2p1/2)/2.
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Table 1. Energy gaps in the scheme of neutron levels

Number
of neu-
trons in

layer

Nuclei isotones Energy of
interlayer
gap G*,

MeV

Spectroscopic
symbol of
boundary
gap levels

M∗ =

GA1/2,
MeV

152 254No,253Md,252Fm 0.40±0.06 1j15/2 Ä 3d5/2* 6.3

126 216Th-208Pb,207Tl 2.1 ±0.3 1i13/2 Ä 2g9/2 28.8

82 152Yb-132Sn 3.0±0.1 1h11/2 Ä 1h9/2 34.5

65* 115Sn, 110Rh 0.35±0.05 (3s1/2)/2 Ä 2d3/2* 3.7

64* 105Nb, 104Zr 0.30±0.05 2d5/2 Ä 2d3/2 3.1

56* 106Sn,104Cd,97Nb,96Zr-94Sr 1.2 ±0.2 2d5/2 Ä 1g7/2* 11.8

50 96Pd-84Se 2.8±0.2 1g9/2 Ä 1g7/2 25.7

39* 78Y,70Ga-68Cu,67Ni 0.5 ±0.1 (2p1/2)/2 Ä (2p1/2)/2* 4.1

39* 65Fe Ä0.8 ±0.1 (2p1/2)/2 Ä (2p1/2)/2* Ä6.4

28 58Zn-55Co, 52Cr, 50Ti-48Ca, 47K 3.6±0.4 1f7/2 Ä 2p3/2 24.9

20 42Ti-40Ca, 39K 2.1±0.1 1d3/2 Ä 1f7/2 13.3

15* 31S, 27Mg, 26Na, 25Ne, 24F 2.0± 0.1 (2s1/2)/2 Ä (2s1/2)/2* 10.0

14* 29P, 28Si 4.0 ±0.2 1d5/2 Ä 2s1/2* 21.2

The spectroscopic symbols of boundary gap neutron levels without an asterisk
are taken from monograph [5, p. 58].

The gaps of maximal energy given in column 3 are attributed to the underlined
nuclei in column 2.

The negative value of the energy gap in the 65Fe nucleus after the neutron
number N = 39 suggests that it is the case of there being an intruder layer
N = 40 similar known intruder shell state N = 20 [7]. This assumption is
supported by the fact that there are two positive and two negative deviations of
an inverse order in the region of N = 38 − 41, which the 64FeÄ67Fe isotopes
belong to.

The author introduced the parameter of reduced magicity M = GA1/2, where
A is the total number of nucleons in a nucleus. It may be supposed that M > 10
corresponds to a closed shell.

There is no Z = 56 shell in the proton potential well, whereas there is an
N = 56 neutron shell there. Further comments in Table 2 are similar to those in
Table 1.
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Table 2. Energy gaps in the scheme of proton levels

Number
of

protons
in layer

Nuclei isotopes Energy of
interlayer
gap G*,

MeV

Spectroscopic
symbol of

boundary gap
levels

M*=GA1/2,
MeV

100* 254−252,251Fm 0.25 ± 0.02 2f7/2 Ä 2f5/2 4.0

82 208−202Pb 2.3 ± 0.1 1h11/2 Ä 1h9/2 33.2

64* 146Gd 0.35 ± 0.03 2d5/2 Ä 2d3/2 4.2

56* 138Ba < 0.05

50 132−120Sn 3.8 ± 1.0 1g9/2 Ä 1g7/2 43.7

39* 91−89−87Y 0.9 ± 0.2 (2p1/2)/2 Ä 2p1/2)/2* 8.5

28 68−56Ni 3.1 ± 0.1 1f7/2 Ä 2p3/2 23.2

20 48,41,40,39Ca 3.5 ± 0.1 1d3/2 Ä 1f7/2 22.1

15* 38,37−35,31P 1.7 ± 0.3 (2s1/2)/2 Ä (2s1/2)/2* 10.3

14* 33−32,31,29,28Si 3.9 ± 0.6 1d5/2 Ä 2s1/2 22.1

Thus, the proposed deviation method is a useful tool for analyzing nuclear
structure. This method allowed one to ˇnd the gaps at the neutron numbers
N = 65, 64, 56, 39, 15, 14 and at the proton numbers Z = 100, 64, 39, 15, 14.

Possible large gaps of odd numbers seem to be of special importance for the
synthesis of new heavy and superheavy nuclei. If half occupancy levels of the
3p1/2 or 4s1/2 types are followed by a large energy gap in the range of Z > 120
and N > 162, this will result in a superheavy nucleus of higher stability owing
to a higher ˇssion barrier and a higher hindrance factor for α-decay.
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