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Random Matrix Theory and Analysis of Nucleus–Nucleus

Collisions at High Energies

We propose a novel method for analysis of experimental data obtained at relativis-

tic nucleus–nucleus collisions. The method, based on the ideas of Random Matrix The-

ory (PMT) is applied to detect systematic errors that occur at measurements of momen-

tum distributions of emitted particles.

The unfolded momentum distribution is well described by the Gaussian orthogo-

nal ensemble of random matrices, when the uncertainty in the momentum distribution

is maximal. The method is free from unwanted background contributions.

The investigation has been performed at the Veksler and Baldin Laboratory

of High Energies and at the Bogoliubov Laboratory of Theoretical Physics, JINR.
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Òåîðèÿ ñëó÷àéíûõ ìàòðèö è àíàëèç ÿäðî-ÿäåðíûõ ñòîëêíîâåíèé

ïðè âûñîêèõ ýíåðãèÿõ

Ïðåäñòàâëåí íîâûé ìåòîä äëÿ àíàëèçà ýêñïåðèìåíòàëüíûõ äàííûõ

ïî ñòîëêíîâåíèÿì ðåëÿòèâèñòñêèõ ÿäåð. Ìåòîä îñíîâàí íà òåîðèè ñëó÷àéíûõ

ìàòðèö è ïðèìåíåí äëÿ âûÿâëåíèÿ èñêàæåíèé èìïóëüñíîãî ðàñïðåäåëåíèÿ âòî-

ðè÷íûõ ÷àñòèö, âîçíèêàþùèõ çà ñ÷åò ñèñòåìàòè÷åñêèõ îøèáîê ïðè èçìåðåíèè

èìïóëüñîâ.

Ïîêàçàíî, ÷òî â ñëó÷àå ìàêñèìàëüíûõ îøèáîê ðàçâåðíóòûå èìïóëüñíûå

ðàñïðåäåëåíèÿ ÷àñòèö õîðîøî îïèñûâàþòñÿ ãàóññîâûì îðòîãîíàëüíûì àí-

ñàìáëåì ñëó÷àéíûõ ìàòðèö. Ìåòîä íå çàâèñèò îò íåæåëàòåëüíûõ ôîíîâûõ ýô-

ôåêòîâ.

Ðàáîòà âûïîëíåíà â Ëàáîðàòîðèè âûñîêèõ ýíåðãèé èì. Â. È. Âåêñëåðà

è À. Ì. Áàëäèíà è â Ëàáîðàòîðèè òåîðåòè÷åñêîé ôèçèêè èì. Í. Í. Áîãîëþáîâà

ÎÈßÈ.

Ïðåïðèíò Îáúåäèíåííîãî èíñòèòóòà ÿäåðíûõ èññëåäîâàíèé. Äóáíà, 2004



Relativistic heavy-ion collisions are among major experimental tools that
allow one to get insight into nuclear dynamics at high excitation energies and
large baryon densities. It is expected that in central collisions, at energies that are
and will be soon available at SPS (CERN), RHIC (BNL) and LHC (CERN), the
nuclear density may exceed by tens times the density of stable nuclei. At such
extreme conditions one would expect that a ˇnal product of heavy-ion collisions
could present a composite system that consists of free nucleons, quarks and quark-
gluon plasma. However, identiˇcation of the quark-gluon plasma, for example,
is darken due to a multiplicity of secondary particles created at these collisions.
There is no a clear evidence of the quark constituent as well. In fact, there are
numerous additional mechanisms of a particle creation that mask the presence
of the quark-gluon plasma (QGP). It appears that the QGP could be manifested
via the observation of indirect phenomena. The natural question arises: how to
identify a useful signal that would be unambiguously associated with a certain
physical process?

The most popular methods of analyzing data produced at relativistic heavy-
ion collisions are the correlation analysis [1], the analysis of missing masses [2]
and effective mass spectra [3], the interference method of identical particles [4].
We recall that results obtained within those methods are sensitive to assumptions
made upon the background of measurements and mechanisms included into a
corresponding model consideration. As was mentioned above, the larger is the
excitation energy, the larger is a number of various mechanisms of the creation
that should be taken into account.

As an alternative approach, one could develop a method that should be
independent on the background contribution. For instance, there are attempts
to use the maximum entropy principle [5], Fourier transform [6] and even by
even analysis [7]. Thus, a formulation of a criteria for a selection of meaningful
signals is indeed a topical objective of the relativistic heavy-ion collision physics.
The major aim of this paper is to suggest a method that does not depend on the
background information and relies only upon the fundamental symmetries of the
composite system.

Our approach is based on Random Matrix Theory (RMT) [8] that was orig-
inally introduced to explain the statistical �uctuations of neutron resonances in
compound nuclei [9] (see also Ref. [10]). The theory assumes that the Hamil-
tonian belongs to an ensemble of random matrices that are consistent with the
fundamental symmetries of the system. In particular, since the nuclear interaction
preserves time-reversal symmetries, the relevant ensemble is the Gaussian Orthog-
onal Ensemble (GOE). When the time-reversal symmetry is broken one can apply
the Gaussian Unitary Ensemble (GUE). The GOE and GUE correspond to ensem-
bles of real symmetric matrices and of Hermitian matrices, respectively. Besides
these general symmetry considerations, there is no need in other properties of the
system under consideration.
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Bohigas et al. [11] conjectured that RMT describes the statistical �uctuations
of a quantum systems whose classical dynamics is chaotic. Quantum spectra of
such systems manifest a strong repulsion (anticrossing) between quantum levels,
while in nonchaotic (regular) systems crossings are a dominant feature of spectra
(see, e.g. [12]). In turn, the crossings are observed when there is no mixing
between states that are characterized by different good quantum numbers, while
the anticrossings signal about a strong mixing due to a perturbation brought about
by either external or internal sources. Nowadays, RMT has become a standard
tool for analyzing the �uctuations in nuclei, quantum dots and many other systems
(see, for example, Ref. [13]). The success of RMT is determined by the study the
statistical laws governing �uctuations having very different origins. Regarding
the relativistic heavy-ion collision data the study of �uctuation properties of the
momentum distribution of emitted particles could provide an information about:
i) possible errors in measurements and ii) kinematical and dynamical correlations
of the composite system.

Let us consider the discrete spectrum {Ei}, i = 1, ..., N of a d-dimensional
quantum system (d is a number of degrees of freedom). A separation of �uctua-
tions of a quantum spectrum can be based on the analysis of the density of states
below some threshold E

S(E) =
N∑

i=1

δ(E − Ei) . (1)

We can deˇne a staircase function

N(E) =
∫ E

−∞
S(E′)dE′ =

N∑
i=1

θ(E − E′
i), (2)

giving the number of points on the energy axis which are below or equal to E.
Here

θ(x) =
{

0, for x < 0,
1, for x > 1.

(3)

We separate N(E) in a smooth part ζ(E) and the reminder that will deˇne the
�uctuating part Nfl(E)

N(E) = ζ(E) + Nfl(E). (4)

The smooth part ζ(E) can be determined either from semiclassical arguments or
using a polynomial or spline interpolation for the staircase function.

To study �uctuations we have to get rid of the smooth part. The usual
procedure is to ®unfold¯ the original spectrum {Ei} through the mapping E → x

xi = ζ(Ei), i = 1, ..., N. (5)

2



Now we can deˇne spacings si = xi+1 − xi between two adjacent points and
collect them in a histogram. The effect of mapping is that the sequence {xi}
has on the average a constant mean spacing (or a constant density), irrespective
of the particular form of the function ζ(E) [14]. To characterize �uctuations
one deals with different correlation functions [8]. In this paper we will use
only a correlation function related to spacing distribution between adjacent levels.
Below, we follow a simple heuristic argument due to Wigner [15] that illustrates
the presence or absence of level repulsion in an energy spectrum.

For a random sequence, the probability that the level will be in the small
interval [x0+s, x0+s+ds] is independent of whether or not there is a level at x0.
Given a level at x0, let the probability that the next level be in [x0 +s, x0+s+ds]
be p(s)ds. Then for p(s), the nearest-neighbor spacing distribution, we have

p(s)ds = p(1 ∈ ds|0 ∈ s)p(0 ∈ s). (6)

Here, p(n ∈ s) is a probability that the interval of length s contains n levels
and p(n ∈ ds|m ∈ s) is the conditional probability that the interval of length
ds contains n levels, when that of length s contains m levels. One has p(0 ∈
s) =

∫ ∞
s p(s′)ds′ the probability that the spacing is larger than s. The term

p(1 ∈ ds|0 ∈ s) = µ(s)ds (µ(s) is the density of spacings s), depends explicitly
on the choices, 1 and 0, of the discrete variables n, m. As a result, one obtains
p(s) = µ(s)

∫ ∞
s

p(s′)ds′ which can be solved to give

p(s) = µ(s) exp (−
∫ s

0

µ(s′)ds′). (7)

The function p(s) and its ˇrst moment are normalized to unity

∫ s

0

p(s)ds = 1,

∫ s

0

sp(s)ds = 1. (8)

For a linear repulsion µ(s) = πs/2 one obtains the Wigner surmise

p(s) =
π

2
s exp (−π

4
s2), s ≥ 0. (9)

For a constant value µ(s) = 1 one obtains the Poisson distribution

p(s) = exp−s, s ≥ 0. (10)

As discussed above, when quantum numbers of levels are well deˇned, one
should expect for the spacings the Poisson-type distribution, while a Wigner-type
distribution occurs due to either internal or external perturbations that destroy
these quantum numbers. In fact, one of the sources of external perturbations can
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be attributed to the uncertainty in the determination of the momentum distribution
of emitted particles in relativistic heavy-ion collisions. We make a conjecture that
the above discussed ideas of the RMT are applicable to the momentum distribution
as well. We assume that the momentum distribution may be associated with
eigenstates (quantum levels) of a composite system. The difference between
energy and momentum is inessential for pions (see below), while we assume that
the proton mass should not affect signiˇcantly the correlation function.

Another possibility is the association of the momentum distribution to the
spectrum of scattering matrix, or density matrix, which can equally be the object
of statistical analysis. Note also, that here we are dealing with the momentum
distribution in the target rest frame only, postponing its comparison to that in
the center-of-mass frame, which is more natural for description of interaction.
Therefore, we simply replace in Eqs. (1)Ä(5) the variable E by the variable |p|
and construct the corresponding correlation function p(s).

To test the utility and the validity of the proposal we use the experimental
data that have been obtained from the 2-m propane bubble chamber of LHE, JINR
[16, 17]. The chamber, placed in a magnetic ˇeld of 1.5 T, was exposed to beams
of light relativistic nuclei at the Dubna Synchrophasotron. Practically all secon-
daries, emitted at a 4π total solid angle, were detected in the chamber. All nega-
tive particles, except those identiˇed as electrons, were considered as π− mesons.
The contaminations by misidentiˇed exceed 5 and 1%, respectively. The average
minimum momentum for pion registration is about 70 MeV/c. The protons were
selected by a statistical method applied to all positive particles with a momentum
of |p| > 500 MeV/c (we identiˇed slow protons with |p| ≤ 700 MeV/c by ioniza-
tion in the chamber). In this experiment, we had got 20407 12CC interactions at

Fig. 1. dN/d|p| as a function of the measured momentum of the secondary particles
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a momentum of 4.2 A·GeV/c (for methodical details see [17]) contents 4226 events
with more than ten tracks of charged particles. Thus, it was known in advance the
accuracy of measurements for available range of the momentum distribution of
secondary particles. Consequently, our analysis has been done for different range
of values of the momentum distribution to illuminate the degree of the accuracy.

In Fig. 1 the dependence dN/d|p| as a function of the measured momentum
(0.15Ä7.5 GeV/c) of the secondary particles is displayed. The numerical data
N(p) were approximated by the polynomial function of the sixth order and we
obtain the distribution of various spacings si in 2636 events satisfying the condi-
tion of 1.0. Momenta are well deˇned in the region 0.15Ä1.14 GeV/c (region I,
Fig. 2, a), where the minimal value of the proton momentum is 0.15 GeV/c.

Fig. 2. Nearest-neighbor spacing momen-
tum distribution p(s) for different regions
of measured momenta: a) 0.15 < |p| <
1.14 GeV/c; b) 1.14 < |p| < 4.0 GeV/c;
c) 4.0 < |p| < 7.5 GeV/c. The solid line
is the WignerÄDyson distribution and the
dashed line is the Poisson distribution
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The intermediate region (region II, Fig. 2, b) covers the values of 1.14Ä4.0 GeV/c.
The region 4.0Ä7.5 GeV/c is the less reliable one (Fig. 2, c). The spacing proba-
bility nicely reproduces this tendency depending on the region of the momentum
distribution. The function p(s) has the Poisson distribution for region I, where
the momentum distribution was deˇned with a high accuracy. Region II corre-
sponds to the intermediate situation, when the spacing distribution lies between
the Poisson and the Wigner distributions. The less reliable region of the values
has a Wigner-type distribution for the spacing probability (Fig. 2, c). Indeed, the
distribution re�ects a strong deviation from the regular behavior, observed for the
measurements with a high degree of accuracy.

Summarizing, we propose a method to analyze data obtained at relativistic
heavy-ion collisions. The method does not depend on the background of the
measurements and provides a reliable information about correlations brought about
by external or internal perturbations. In particular, we demonstrate that the
method manifests the perturbations due to the uncertainty in the determination of
the momentum distribution of secondary emitted particles.
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