P15-2004-122

А. А. Хассан¹, С. М. Лукьянов, Р. Калпакчиева,
Ю. Э. Пенионжкевич, Р. А. Астабатян, И. Винцоур²,
З. Длоугы², Я. Мразек², С. П. Лобастов, А. А. Кулько,
Э. Р. Маркарян, В. А. Маслов, Н. К. Скобелев, Ю. Г. Соболев

ИЗУЧЕНИЕ СЛИЯНИЯ ЯДЕР В РЕАКЦИЯХ $^{4,6}{\rm He}$ И $^{7}{\rm Li}$ С ЯДРАМИ $^{208}{\rm Pb}$ И $^{209}{\rm Bi}$

Направлено в журнал «Известия РАН, серия физическая»

 $^{^{1}}$ Zagazig University, Faculty of Science, Physics Department, Egypt 2 Институт ядерной физики, Ржеж, Чехия

Хассан А. А. и др. Изучение слияния ядер в реакциях 4,6 Не и 7 Li с ядрами 208 Рb и 209 Bi

Измерены сечения деления и слияния ядер для реакций $^{4,6}\text{He} + ^{209}\text{Bi}$ и $^{7}\text{Li} + ^{208}\text{Pb}$ в диапазоне энергий от кулоновского барьера до 200 МэВ. Эксперимент проведен на ускорителе У400М ЛЯР ОИЯИ. Показано, что в пределах экспериментальных погрешностей экспериментально измеренные функции деления и слияния для этих реакций имеют близкие значения в широком диапазоне энергий возбуждения. Проведен анализ функций возбуждения слияния и деления для исследуемых реакций $^{4}\text{He} + ^{209}\text{Bi}$, $^{6}\text{He} + ^{209}\text{Bi}$ и $^{7}\text{Li} + ^{208}\text{Pb}$, приводящих к образованию тех же самых составных систем 213,215 At. Этот анализ выполнен с использованием кодов РАСЕ-4 и ССFULL.

P15-2004-122

Работа выполнена в Лаборатории ядерных реакций им. Г. Н. Флерова ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 2004

Перевод авторов

Hassan A. A. et al. P15-2004-122 Study of Fusion Reactions Induced by ^{4,6}He and ⁷Li Beams on ²⁰⁸Bi and ²⁰⁸Pb Targets

Fission and evaporation cross sections were measured in a broad range of energies near the Coulomb barrier and up to 200 MeV in the reactions ${}^{4,6}\text{He} + {}^{209}\text{Bi}$ and ${}^{7}\text{Li} + {}^{208}\text{Pb}$. The secondary ${}^{4,6}\text{He}$ beams were produced using the beam-transport line of the U400M accelerator at FLNR, JINR. The experimental fusion and fission excitation functions obtained for the different reactions ${}^{4}\text{He} + {}^{209}\text{Bi}$, ${}^{6}\text{He} + {}^{209}\text{Bi}$ and ${}^{7}\text{Li} + {}^{208}\text{Pb}$ and leading to the same composite nuclei ${}^{213,215}\text{At}$ were analyzed using the PACE-4 and CC codes.

The investigation has been performed at the Flerov Laboratory of Nuclear Reactions, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2004

введение

В последнее время наблюдаются значительные достижения в технике получения экзотических вторичных радиоактивных пучков, или пучков ионов слабосвязанных ядер. С точки зрения понимания внутренней структуры экзотических ядер, а также динамики их взаимодействия с ядрами мишени реакции слияния этих ионов с тяжелыми мишенями являются предметом исследований в экспериментальной и теоретической ядерной физике.

Особый интерес представляют пучки нейтроноизбыточных ядер, для которых характерно наличие валентных нейтронов, приводящих к образованию нейтронного гало. Ядрами с такой структурой являются ⁶Не и ¹¹Li. Следствием более протяженного распределения плотности нейтронов в этих ядрах, по сравнению с обычными ядрами вблизи долины стабильности, становится то, что при их слиянии может проявляться «спаривание коллективных степеней свободы» [1], что в свою очередь приводит к увеличению вероятности туннелирования через потенциальный барьер. В итоге это приводит к увеличению вероятности слияния нейтроноизбыточных ядер с ядрами мишени. С другой стороны, так как эти ядра являются слабосвязанными, это должно приводить к увеличению вероятностей их развала с последующим слиянием с одним из продуктов развала или к реакциям передачи нуклонов без процесса слияния двух взаимодействующих ядер.

Однако, несмотря на понимание физики происходящих процессов, нет достаточно полных экспериментальных данных, посвященных исследованию слияния и распада составных систем, образующихся при взаимодействии пучков нейтроноизбыточных ядер с ядрами мишени при энергиях частиц над барьером слияния. Так, например, в настоящее время имеются противоречивые данные о сечениях слияния в реакциях, вызванных ионами ⁶He; одни из них свидетельствуют об увеличении сечения слияния, а другие о подавлении слияния. Для настоящих исследований был выбран и получен пучок ионов ⁶He с варьируемой энергией в диапазоне 25–200 МэВ. Впервые были получены полные данные о процессах слияния и распада составной системы (о делении и образовании испарительных остатков после испарения *x*-нейтронов), образующейся в реакции ⁶He + ²⁰⁹Bi в указанном диапазоне энергий.

При изучении взаимодействия редких экзотических ядер актуальным является вопрос о выборе соответствующих каналов реакций для сравнения и

последующего выявления характерных особенностей в динамике взаимодействия и структуре изучаемых ядер. Для полноты интерпретации экспериментальных данных в настоящей работе проведено сравнение сечения образования испарительных остатков (ER) и сечения деления в реакциях ${}^{6}\text{He} + {}^{209}\text{Bi}$ и ${}^{4}\text{He} + {}^{209}\text{Bi}$. Поскольку данные реакции приводят к образованию различных составных ядер, ${}^{215}\text{At}$ и ${}^{213}\text{At}$, для того, чтобы исключить эту неопределенность, было проведено также исследование реакции ${}^{7}\text{Li} + {}^{208}\text{Pb}$, приводящей к образованию того же составного ядра ${}^{215}\text{At}$, что и в реакции ${}^{6}\text{He} + {}^{209}\text{Bi}$.

1. ЭКСПЕРИМЕНТАЛЬНАЯ МЕТОДИКА

Схематическое изображение установки, предназначенной для одновременной регистрации актов деления и продуктов распада испарительных остатков (х*n*-каналов реакций) в режиме измерения on-line, представлено на рис. 1. Установка включает в себя две мишени (толщиной ~ 300 мкг/см² каждая) и две пары кремниевых полупроводниковых поверхностно-барьерных детекторов (ППД), окружающих эти мишени. Мишени (в данном случае ²⁰⁹Ві или ²⁰⁸Pb), на ядрах которых происходит взаимодействие с ядрами пучка, размещаются под углом 45° к оси пучка. ППД имеют достаточно большой диаметр (~ 5 см) и размещаются на расстоянии около 3 см от мишеней. Такая геометрия позволила добиться относительно большого эффективного телесного

Рис. 1. Схема экспериментальной установки, включающей в себя систему коллимации вторичного пучка, две мишени и две пары полупроводниковых Si-детекторов для регистрации мгновенных осколков деления и α -частиц от распада ядер-продуктов испарительных реакций

угла (30 % от 4 π), это дает возможность набирать в эксперименте достаточную статистику даже в условиях низкой (~ 10⁴ част./с) интенсивности вторичных пучков. Использование установки из двух мишеней позволяет увеличить статистику в два раза, поскольку потери энергии вторичного пучка в мишени составляют величину меньше 1 МэВ, что сравнимо с энергетическим разрешением самого вторичного пучка. Взаимное расположение каждой пары ППД относительно мишени было выбрано в соответствии с кинематикой для регистрации совпадений коррелированных пар осколков вынужденного деления.

Для получения функции возбуждения реакций с образованием осколков деления и испарительных остатков осуществлялась необходимая вариация энергии пучка ионов в диапазоне от 20–200 МэВ. С этой целью использовалась ионно-оптическая система транспортировки пучков ускорителя У400М ЛЯР ОИЯИ. Толстый (5–6 мм) поглотитель из бериллия устанавливался по пути первичного пучка (в данном случае пучка ионов ⁷Li с энергией 35 МэВ/нуклон) и выполнял двойную функцию: он служил в качестве производящей мишени для вторичного пучка или в качестве поглотителя для снижения энергии первичного пучка. Последующая монохроматизация вторичного пучка ⁶He и первичного пучка ⁷Li с меньшей энергией осуществлялись посредством ахроматической магнитной системой 3QDQQD2Q ускорителя У400М. Импульсный захват этой системы составлял величину около $\pm 0,7\%$, а значение энергии пучка менялось путем изменения магнитного поля системы 3QDQQD2Q.

Особое внимание было уделено регистрации и идентификации ядер испарительных остатков по α -распаду. Чтобы исключить фон от прямых реакций с образованием α -частиц, были использованы специальный «электронный ключ» и модуляция пучка. Эта методика позволяла проводить регистрацию «мгновенных» осколков деления в режиме beam-on и регистрацию α частиц в режиме beam-off от распада ядер, образовавшихся после испускания *x*-нейтронов из составного ядра.

Ниже представлены экспериментальные результаты, полученные в данной работе, по исследованию процессов деления и образования испарительных остатков в реакциях ⁴He + ²⁰⁹Bi, ⁶He + ²⁰⁹Bi и ⁷Li + ²⁰⁸Pb в надбарьерной области энергий. Сечения деления были измерены в режиме beam-on. Регистрация и идентификация долгоживущих испарительных остатков (*xn*-каналы реакций) были выполнены в режиме beam-off, а для короткоживущих ядер, испытывающих α -распад (для величин периодов $T_{1/2}$ меньших 1 с), в режиме on-line. В случае долгоживущих ядер использовался также режим off-line для измерений наведенных α - и γ -радиоактивностей в облученных мишенях.

1.1. Измерение α -спектров ядер-продуктов испарительных каналов в реакциях ${}^{4}\text{He} + {}^{209}\text{Bi}$, ${}^{6}\text{He} + {}^{209}\text{Bi}$ и ${}^{7}\text{Li} + {}^{208}\text{Pb}$. Характеристики главных мод α -распада ядер, образованных в реакциях ${}^{4,6}\text{He} + {}^{209}\text{Bi}$ и ${}^{7}\text{Li} + {}^{208}\text{Pb}$, представлены в таблице.

$xn (^{4}\text{He})$	xn (⁶ He, ⁷ Li)	Ядро-остаток	Период $T_{1/2}$	Энергия E_{α} , МэВ
—	1n	²¹⁴ At	558 нс	8,82
0n	2n	²¹³ At	125 нс	9,08
1n	3n	²¹² At	314 мс	7,68
2n	4n	²¹¹ At	7,21 ч	5,87 7,28 (²¹¹ Ро, 516 мс)
3n	5n	²¹⁰ At	8,1 ч	5,36–5,52 5,3 (²¹⁰ Ро, 138,4 дн.)

Характеристики ветве
й α -распада изотопов $^{213,215-xn}$ Аt, образующихся в реакция
х $^{4,6}\rm{He}+^{209}\rm{Bi}$ и $^7\rm{Li}+^{208}\rm{Pb}$

Для иллюстрации на рис. 2 представлен энергетический спектр α -частиц, измеренный в режиме on-line при α -распаде изотопов At, образовавшихся в реакции ⁷Li + ²⁰⁸Pb. Канал с испусканием из составного ядра трех нейтронов, приводящий к образованию ²¹²At, отчетливо идентифицируется по пику в спектре α -частиц с энергией $E_{\alpha} = 7, 8$ МэВ. Примеры спектров α -частиц, измеренных в режиме off-line, представлены на рис. 3 и 4. Эти спектры были получены при измерении продуктов реакций ⁶He + ²⁰⁹Bi и ⁷Li + ²⁰⁸Pb и использованы для идентификации канала реакции с испарением из составного

Рис. 2. Измеренный в режиме on-line энергетический спектр α -частиц испарительных продуктов, образовавшихся при распаде составного ядра в реакции ⁷Li(40, 6 МэВ) + ²⁰⁸Pb

ядра четырех нейтронов. Несмотря на малую статистику в суммарных спектрах α -частиц в случае изучения реакций на вторичном пучке ⁶Не, канал испарения 4n хорошо выделяется.

Рис. 4. Энергетический спектр α -частиц, наблюдавшихся в реакции ⁶He + ²⁰⁹Bi и соответствующих ²¹¹At как продукту испарения из составного ядра четырех нейтронов, при энергии пучка ⁶He 52,3 МэВ

1.2. Идентификация ядер-продуктов реакций «слияние–испарение» по γ -излучению при облучении ⁷Li-мишеней из ²⁰⁸Pb. Для реакций ⁷Li + ²⁰⁸Pb и ⁶He + ²⁰⁹Bi были исследованы продукты, образовавшиеся после испарения из составной системы от пяти до девяти нейтронов (будем называть их продуктами 5n-9n испарительных каналов) в режиме off-line по характеристическому γ -излучению. Идентификация ядер была проведена при анализе измеренных нами γ -спектров с выделением пиков с характерными для синтезируемых ядер значениями энергий γ -переходов и периодов полураспада ($T_{1/2}$). На рис. 5 представлен энергетический спектр γ -лучей, полученный для продуктов реакции ⁷Li + ²⁰⁸Pb при энергии бомбардирующих ионов 67 МэВ, а на рис. 6 приведены кривые изменения со временем интенсивности выде-

Рис. 5. Энергетический спектр γ -лучей и идентификация ядер-продуктов реакций с испарением 5n-7n-нейтронов при облучении ионами ⁷Li(67 МэВ) мишени из ²⁰⁸Pb

Рис. 6. Кривые распада для характерных γ -линий наведенной в мишенях γ -активности в реакции ⁷Li(67 МэВ) + ²⁰⁸Pb (идентификация характерных γ -линий для ядер-продуктов 5n-9n испарительных каналов в указанной реакции)

ленных нами линий γ -лучей для определения периодов полураспада $T_{1/2}$ и идентификации образовавшихся ядер.

1.3. Измерение осколков деления в реакциях 4,6 He + 209 Bi, 7 Li + 208 Pb и 7 Li + 209 Bi. Регистрация коррелированных пар осколков деления проводилась каждой парой Si-детекторов в совпадении, а изменение энергии налетающих ионов позволило получить функцию возбуждения деления, т.е. зависимость сечения деления ядер мишени ядрами налетающих ионов от их

Рис. 7. Двумерная матрица выходов двух коррелированных продуктов реакции от их энергии (в каналах). Область, соответствующая образованию осколков деления, отчетливо отделяется от области других продуктов реакций

энергии. Совпадение двух осколков деления позволяло четко выделять процесс деления от других каналов реакции, как это показано на рис. 7.

2. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

На рис. 8 представлены экспериментальные функции возбуждения деления, полученные для исследуемых реакций ⁴He + ²⁰⁹Bi, ⁶He + ²⁰⁹Bi и 7 Li + 208 Pb. На рис. 8, *а* представлена экспериментально измеренная в настоящей работе функция возбуждения для реакции ⁴He + ²⁰⁹Bi в надбарьерной области энергий в сравнении с результатами исследований работы [2], полученными при энергии вблизи кулоновского барьера. На рис. 8, б и в предста- ${}^{6}\text{He} + {}^{209}\text{Bi}$ аналогичные зависимости для реакций влены и $^{7}{\rm Li} + {}^{208}{\rm Pb}$, соответственно, в широком диапазоне энергии налетающих ионов от кулоновского барьера до 200 МэВ. Заметим, что представленные функции возбуждения для исследуемых реакций были измерены впервые при столь высоких энергиях возбуждения.

Сравнительный анализ функций возбуждения для трех исследованных реакций 4,6 He + 209 Bi и 7 Li + 208 Pb показывает (рис. 9), что в пределах экспериментальных погрешностей эти функции имеют близкие значения сечений деления в широком диапазоне энергий возбуждения. Этот экспериментальный факт свидетельствует о том, что процесс деления в этих реакциях носит одинаковый характер, без проявления особенностей входного канала, и, вероятно, определяется только свойствами образовавшегося составного ядра At.

Рис. 9. Экспериментальные зависимости сечений деления от энергии возбуждения для реакций $^{4,6}{\rm He}+{\rm Bi}$ и $^7{\rm Li}+^{208}{\rm Pb}$

Нужно отметить, что нет также значительной разницы в делении высоковозбужденных составных ядер ²¹³At и ²¹⁵At.

Рис. 10. Экспериментальные зависимости сечений образования испарительных остатков (х*n*-каналов) от энергии бомбардируемых ионов для реакций ^{4,6}He + Bi и ⁷Li + ²⁰⁸Pb. Кривыми представлены результаты расчетов с использованием программы РАСЕ-4

Экспериментальные данные по измерению сечений образования испарительных остатков, представлены на рис. 10. Так, на рис. 10, *а* показаны измеренные функции возбуждения для 1n-6n-каналов. Данные для 1n-канала заимствованы из работы [3], для каналов 5n-6n из работы [4]. Данные для 2n-4n-каналов измерены в настоящей работе. На рис. 10, *б* представлены полученные данные для 4n-8n-каналов в реакции ⁶He + ²⁰⁹Bi. Все функции возбуждения для реакции ⁷Li + ²⁰⁸Pb, представленные на рис. 10, *в* и 10,*г*, получены впервые в настоящей работе.

Анализ измеренных функций возбуждения деления составных ядер и продуктов хn-каналов (т. е остатков после испарения x-нейтронов) был проведен с использованием кода РАСЕ-4 [5]. Результаты расчетов на основе этого кода представлены на рис. 8 и 10 в виде кривых. Видно, что удается получить удовлетворительное описание экспериментальных данных для трех исследуемых реакций при близком наборе фитируемых параметров. Значения этих параметров приводятся для реакции с ⁷Li: радиус $r_0 = 1,3$ фм, максимальный угловой момент $l_{\rm max} = 35$ и глубина потенциала $V_0 = 67$ МэВ. Для реакции ${}^{6}{\rm He} + {}^{209}{\rm Bi}$ были получены близкие по значению параметры $r_0 = 1,35$ фм, $l_{\rm max} = 40$ и $V_0 = 45$ МэВ. Таким образом, подтверждается сделанный ранее вывод о том, что в исследуемых реакциях ${}^{4}{\rm He} + {}^{209}{\rm Bi}$, ${}^{6}{\rm He} + {}^{209}{\rm Bi}$ и ${}^{7}{\rm Li} + {}^{208}{\rm Pb}$ в надбарьерной области энергий возбуждения происходит образование и распад близких составных систем ${}^{213,215}{\rm At}$ без проявления особенностей входного канала.

На основе измеренных функций возбуждения для деления и образования испарительных остатков были построены функции возбуждения сечений полного слияния. Эти результаты представлены на рис. 11. Анализ этих функций возбуждения был проведен с использованием модели «связанных каналов» и CCFULL-кода [6]. Этот метод позволял оценить вклад процессов развала налетающих ионов в поле ядра мишени с возможным последующим слиянием. Результаты расчетов сечений полного слияния по этой модели в зависимости от энергии (в с.ц.м.) показаны на рис. 11 кривыми. Видно, что экспери-

ментальные значения сечений полного слияния для реакций ⁶He + ²⁰⁹Bi и ⁷Li + ²⁰⁸Pb при энергиях вдали от барьера имеют меньшие значения, чем расчетные, что составляет примерно одинаковую величину 78 %. А при значениях энергии вблизи барьера экспериментальные значения сечения близки к расчетным. Вероятно, этот факт свидетельствует о том, что при больших энергиях возбуждения может иметь место процесс развала слабосвязанных ядер ⁶Не и ⁷Li, как указывалось выше. Возможным объяснением могут быть одинаковые процессы развала, имеющие место как в случае взаимодействия с ядрами пучка ⁴He, так и в случае слабосвязанных ядер, каковыми являются ⁶Не и ⁷Li. Существуют модели, на основании которых эти ядра можно представить как связанные системы из «кора» (⁴He) и двух нейтронов или тритона соответственно. Видимо, имеет место процесс развала налетающих ионов в поле ядра мишени с последующим слиянием кора с ядрами мишени и делением полученного составного ядра. Как показывают литературные данные, вклады процессов деления ядер Ві нейтронами [7] или Рь тритонами [8] малы, измеренные сечения этих реакций находятся на уровне мкб.

Для исключения влияния кулоновского барьера на процесс слияния функции возбуждения были построены в зависимости от величины $E_{\rm cm}/V_{\rm B}$, где $E_{\rm cm}$ — значения энергии в системе центра масс, а $V_{\rm B}$ — кулоновский барьер для каждой системы. Эти функции даны для сранения на рис. 12. Из рисунка

Рис. 12. Функции возбуждения для полного слияния в зависимости от величины $E_{\rm cm}/V_{\rm B}$ для реакций $^{4,6}{\rm He}+^{209}{\rm Bi}$ и $^7{\rm Li}+^{208}{\rm Pb}$

видно, что в пределах экспериментальных погрешностей функции возбуждения для всех трех реакций одинаковы в широком диапазоне значений $E_{\rm cm}/V_{\rm B}.$

В заключение можно отметить следующее.

Проведены измерения сечений деления и сечений образования испарительных остатков 3n-9n в реакциях взаимодействия ядер ⁷Li с ядрами мишени ²⁰⁸Pb при энергиях ⁷Li 50–117 МэB;

Проведены измерения сечений деления и сечений образования испарительных остатков 3n-9n в реакциях взаимодействия ⁶He с ²⁰⁹Bi при энергиях ⁶He 50–140 МэB;

Измерены сечения деления и 2n-3n испарительных каналов в реакции ⁴He с ядрами мишени из ²⁰⁹Bi при энергиях ⁴He в диапазоне 20–110 МэВ. Показано, что в пределах экспериментальных погрешностей функции возбуждения деления и полного слияния для трех исследованных реакций ⁴He + ²⁰⁹Bi, ⁶He + ²⁰⁹Bi и ⁷Li + ²⁰⁸Pb имеют близкие значения в широком диапазоне энергий возбуждения.

С точки зрения механизма ядерных реакций (образования составного ядра и процессов развала), вызванных слабосвязанными ядрами, проведен анализ экспериментально измеренных функций возбуждения слияния и деления для исследуемых реакций ⁴He + ²⁰⁹Bi, ⁶He + ²⁰⁹Bi и ⁷Li + ²⁰⁸Pb. Близкие значения сечений этих процессов свидетельствуют о том, что в исследуемых реакциях происходит образование практически одинаковых составных систем ^{213,215}At без проявления особенностей входных каналов.

Работа выполнена при финансовой поддержке РФФИ (01-02-22001), INTAS (00-00463), а также грантами Полномочных представителей Болгарии и Чехии в ОИЯИ.

ЛИТЕРАТУРА

- 1. Dasgupta M. et al. // Ann. Rev. Nucl. Part. Sci. 1998. V.48. P.401.
- 2. Itkis M. G. et al. // Particles and Nuclei (Russian). 1988. V. 19. P. 701.
- 3. Barnett A. R., Lilley J. S. // Phys. Rev. C. 1974. V.9. P. 2010.
- 4. Stichler J. D., Hofstetter K. J. // Phys. Rev. C. 1974. V. 9. P. 3.
- 5. http://dnr080.jinr.ru/lise/
- 6. http://nrv.jinr.ru/nrv/
- 7. Eismont V. P. et al. // Phys. Rev. C. 1996. V. 53. P. 2911-2918.
- 8. Häusser O. et al. // Phys. Lett. B. 1972. V. 38. P. 75.

Получено 17 августа 2004 г.

Редактор М. И. Зарубина Макет Н. А. Киселевой

Подписано в печать 30.09.2004. Формат 60 × 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 0,75. Уч.-изд. л. 0,94. Тираж 300 экз. Заказ № 54618.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@pds.jinr.ru www.jinr.ru/publish/