
E10-2004-135

Cs. Téoréok*, M. R�evayov�a**, A. Matejcikov�a***

GENERICS-BASED VECTORIZATION
IN MS.NET ROTOR

*E-mail: torokcs@tuke.sk
**E-mail: martina.revayova@tuke.sk

***E-mail: andrea.matejcikova@tuke.sk

’µ·µ± —., �¥¢ ¥¢ Œ., Œ É¥°Î¨±µ¢ �. E10-2004-135
‚¥±Éµ·¨§ Í¨Ö ´ µ¸´µ¢¥ Generics ¢ MS.NET Rotor

‚ ´ ¸ÉµÖÐ¥¥ ¢·¥³Ö ±µ³¶ ´¨Ö ®Microsoft¯ · §· ¡ ÉÒ¢ ¥É ´µ¢Ò¥ ¶·µ£· ³³´Ò¥
É¥Ì´µ²µ£¨¨ ¢ · ³± Ì .NET. ‚ µ¸´µ¢¥ .NET ´ Ìµ¤ÖÉ¸Ö ¸¨¸É¥³ Common Language
Infrastructure ¨ ´µ¢Ò° Ö§Ò± ¶·µ£· ³³¨·µ¢ ´¨Ö MS Visual C#. � ¡µÉ ¶µ¸¢Ö-
Ð¥´ · §· ¡µÉ±¥ ±µ³¶µ´¥´Éµ¢ ¤²Ö ¢¥±Éµ·´µ£µ ¶·µ£· ³³¨·µ¢ ´¨Ö ´ µ¸´µ¢¥ ¶ -
· ³¥É·¨Î¥¸±µ£µ ¶µ²¨³µ·Ë¨§³ . �´ µ¶¨¸Ò¢ ¥É ¶µ²¨³µ·Ë¨Î¥¸±¨° ve¸tor-±² ¸¸,
¸µ§¤ ´´Ò° ¢ MS SSCLI ´ ¡ §¥ ¶·µ£· ³³´ÒÌ ³µ¤Ê²¥° Gyro ¢ MS Visual C#.
‚ ÔÉµÉ generic-±² ¸¸ ¢Ìµ¤ÖÉ ¶¥·¥£·Ê§± µ¶¥· Í¨°, indexer, ¨§³¥´¥´¨¥ É¨¶µ¢ ¨
´¥±µÉµ·Ò¥ ¤·Ê£¨¥ µ¸´µ¢´Ò¥ ËÊ´±Í¨¨. ‚ÒÎ¨¸²¨É¥²Ó É¨¶ ·¥ ²¨§Ê¥É¸Ö Î¥·¥§ ¨´-
É¥·Ë¥°¸. �·¨¢µ¤¨É¸Ö É ±¦¥ µ¡¸Ê¦¤¥´¨¥ ¥£µ ÔËË¥±É¨¢´µ¸É¨.

� ¡µÉ ¢Ò¶µ²´¥´ ¢ ‹ ¡µ· Éµ·¨¨ ¨´Ëµ·³ Í¨µ´´ÒÌ É¥Ì´µ²µ£¨° �ˆŸˆ.

‘µµ¡Ð¥´¨¥ �¡Ñ¥¤¨´¥´´µ£µ ¨´¸É¨ÉÊÉ Ö¤¥·´ÒÌ ¨¸¸²¥¤µ¢ ´¨°. „Ê¡´ , 2004

Téoréok Cs., R�evayov�a M., Matejcikov�a A. E10-2004-135
Generics-based Vectorization in MS.NET Rotor

Recently, Microsoft has been developing new programming technologies in the
framework of .NET. The Common Language Infrastructure and the new program-
ming language MS Visual C# lie at the center of .NET. The paper is devoted to
design and implementation for support of vectorial programming based on paramet-
ric polymorphism. It describes a polymorphic vector class, created in MS SSCLI
based on Gyro with MS Visual C#. The implementation of generic class contains
operator overloading, indexer, casting and some other basic functionalities. The type
evaluator is realized through an interface evaluator. Discussion on its performance
is given too.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 2004

INTRODUCTION

Vectorization enables one to create a program code clearer than coding based
only on loops. In the 1990s many researchers that needed computations in their
work turned from Fortran or Pascal to such systems as SPlus, SAS and Matlab.
The main beneˇt of these and similar systems is the support of vectorial/matrix
programming (with a rich set of functions and toolboxes). However, the drawback
of coding in these systems is connected with code reuse. Therefore, many of them
turned to Visual Basic or C++.

One of the reasons why we dropped Visual Basic and turned to C++ and
afterward to C# is the fact that VB does not support operator overloading, a lan-
guage feature, that enables one to write vector/matrix expressions (vectorization,
vectorial programming) like

C = 2∗A∗x − 3∗ sin (B∗y),

where the variables represent vectors and matrices. The main object-oriented
features, inheritance and polymorphism, are implemented to both C# and the new
.NET version 7 of VB. However, the latter, unlike C# and VC++, miss operator
overloading. So far C# 1 lacks some important features too. To avoid code
duplicates in creating similar types (for example �oat, double or string vectors)
you can not leverage the concept of polymorphic programming (also known as
generics, templates). It is not part of C# by now; however, the main architect
of C# A. Hejlsberg promised in 2000 that it will be included into the higher
versions. Gyro [1] as part of Rotor [2] supports generics.

Rotor
The MS Common Language Runtime (CLR) is Microsoft's commercial im-

plementation of the MS Common Language Infrastructure (CLI) speciˇcation.
MS CLI provides a set of speciˇcations for executable code and the execu-
tion environment in which it runs. The MS Shared Source Common Language
Infrastructure (SS CLI) Implementation, known as Rotor, is a complete imple-
mentation of the ECMA-334 (C#) and ECMA-335 (CLI) standards in million
source code lines form (compilers, memory management, JIT code generators,
component infrastructure, etc.). MS SSCLI is derived from the source code of
the MS CLR (CLR is the core runtime engine in the Microsoft .NET Framework
for executing applications) and it is free [2].

2

Generics
Generics refer to classes and methods that work uniformly on values of

different types. It is an extension to the CLR's type system that allows developers
to deˇne types for which certain details are left unspeciˇed. These details are
speciˇed when the code is referenced by consumer code. Gyro is a set of ˇles to
support generic type deˇnitions and generic methods through modifying Microsoft
Shared Source CLI 1.0.

The paper [3] showed the basic techniques of the process of vectorization in
C#. In [4] the LinAlg component library is presented that has been developed at
the authors' department. LinAlg enables vectorial programming and incorporates
numerical, statistical, graphical, and database methods. Our aim is to redesign
and reimplement LinAlg based on parametric polymorphism. This paper presents
the ˇrst steps sto achieving this goal.

Section 1 shows the basic work with one-dimensional arrays, generics, and
the design of the base generic vector class. Section 2 is devoted to the construc-
tion of the parametric class Vector<T> and introduces several constructors for
instantiating objects of the new class. The following section implements some
useful functions. Section 4 shows how to print the whole vector based on overrid-
ing of ToString() method and how to provide access to the vector elements
via indexer. Then we show shortly how the operator overloading works. Creating
user-deˇned operators via operator overloading enables one to write vector arith-
metic expressions. Sections 6 and 7 deal with casting between vectors and arrays,
and the implementation of the vector counterparts of mathematical functions, re-
spectively. The results of differences in performance of generic and non-generic
vector classes will be presented in the last but one section.

Requirements: to run the code you need to install Perl [5], the Shared Source
Common Language Infrastructure (SSCLI) [2] and Gyro [3]. You can download
the code discussed in the paper from http://svfweb.tuke.sk/pracoviska/km/torok/
04Publications.html#DOTNET

1. ARRAYS AND GENERIC VECTORS

In this section, we show brie�y how to declare an array of �oat type and
how to instantiate arrays as .NET Framework System.Array types. Then we
present the main design and implementation steps in creating generic vectors.

Arrays

The declaration and instantiation of one-dimensional array can be done in
either one or two steps. To create a one-dimensional array x of double values
declare it

double[] x;

3

and initialize its three elements (the elements are set by default to zero):

x = new double[3];

The same can be written with one code line:

double[] x = new double[3];

You can use indices to work with the array elements and change their values:

x[0] = 1.2;

Curly brackets enable a very useful way of array declaration and initialization
with concrete values:

float[] y = {1f, 2.1F, (float)3};

Class Array serves as the base class for all arrays in the common language
runtime and provides methods for creating, manipulating, searching and sorting
arrays. The main object and static methods for arrays are:

Length, GetLength(), Rank(), Sort(), Reverse(), BinarySearch().

The number of methods is not so much and what is more important, they do
not support vectorial computation. However, the .NET Framework has the tools
to design vector and matrix data structures that are equipped with a wide range
of functions for handling various numerical, statistical, and graphical tasks.

Generics and Vectors
Managing of almost identical classes (such as VectorFloat or

VectorDouble classes) is tedious, and to make the most of code reuse, it
is desirable to build these data components based not only on inheritance but also
on generics.

Parametric polymorphism allows parametric or generic types (classes, inter-
faces, and structs) and method deˇnitions. To understand the fundamentals of
generics, you can consult the papers [6, 7]. We only give here for illustration
one code line of generic deˇning code and two code lines of generic referencing
code for a parameterized class ClassName, and its int and long objects,
respectively:

ClassName<T>{ ... }
...
ClassName<int> obj1 = new ClassName<int>;
ClassName<long> obj2 = new ClassName<long>;

The polymorphic type parameter T and the type arguments int and long
are enclosed by the angle brackets 〈 and 〉.

One of the main features of generics is the fact that operators +,− etc. on
generic type parameters can not be used by default. The evaluation of expressions
that contain type parameters must be handled by evaluators. The primary task of
vector objects is computation, so when designing the parameterized Vector<T>
classes, we need to take into account evaluators.

4

Vector<float> and Vector<double> objects will be initialized
from the polymorphic Vector<T> class together with vector evaluator objects
of type EvaluatorF and EvaluatorD, respectively:

EvaluatorF eF = new EvaluatorF();
Vector<float> xF = new Vector<float>(eF, n);
float s = xF.Sum;
Vector<double> xD = new Vector<double>(new EvaluatorD(), n);

Before implementing the parameterized Vector<T> class, we deˇne a
polymorphic evaluator interface:

public interface IEvaluator<T>{...}

with the desired functions. These functions will be implemented by the evaluators
EvaluatorF and EvaluatorD that are derived from the parametric interface
IEvaluator<T>:

public class EvaluatorF: IEvaluator<float>{...}

The Vector<T> and MathVec<T> classes will operate with an object of
type IEvaluator<T> enabling referencing the functions declared in interface
IEvaluator<T>. Figure shows the architecture and use of the polymorphic
vector class.

Generic deˇning and referencing code scheme

5

2. POLYMORPHIC CLASS VECTOR

We introduce in this section a user-deˇned parametric class Vector<T>
with three private ˇelds and several constructors. The functionality of the class
will be enhanced in the successive sections.

using System;

public interface IEvaluator<T>
{

T Add(T a, T b);
bool Equals(T a, T b);
T Sin(T x);

}

public class Vector<T>
{

public IEvaluator<T> _evalT;
T[] _vecT; string _vecTName = "Vector";

public Vector(){ }
public Vector(int n)
{

_vecT = new T[n];
_vecTName = "vecTn";

}

public Vector(IEvaluator<T>
eval, int n)

{
_evalT = eval;
_vecT = new T[n];
_vecTName = "vecTn";

}

public Vector(IEvaluator<T>
eval, int n, T from, T by)

{
_evalT = eval;
_vecT = new T[n];
_vecTName = "vecTn";
T s = from;
_vecT[0] = from;
for(inti = 1; i<_vecT.Length; i++)
{

s = _evalT.Add(s, by);
_vecT[i] = s;

}
}

}

6

As it was explained in the previous section, the ˇeld _evalT is used for
calculation with parametric type values. Let us see how you can create instances of
the class Vector<T>. If you intend to work with float and double vectors,
you must ˇrst create the corresponding evaluators derived from the parametric
interface IEvaluator<T>

public class EvaluatorF: IEvaluator<float>
{

public float Add(float a, float b)
{ return a + b; }

public bool Equals(float a, float b)
{ return a == b; }

public float Sin(float x)
{ return (float)Math.Sin(x); }

}

public class EvaluatorD: IEvaluator<double>
{

public double Add(double a, double b)
{ return a + b; }

public bool Equals(double a, double b)
{ return a == b; }

public double Sin(double x)
{ return Math.Sin(x); }

}

Now we are ready to create objects of types Vector<float> and
Vector<double>.

class VectorTest
{

static void Main()
{

EvaluatorF eF = new EvaluatorF();
Vector<float> v = new Vector<float>(eF, 5, 0f, 0.1f);

}
}

The created vector contains elements
(0, 0.1, 0.2, 0.3, 0.4).

3. USEFUL PROPERTIES

This section contains implementation of three simple properties for the
Vector<T> class: Name, Length and Sum.

7

public string Name
{

get{ return _vecTName;}
set{ _vecTName = value;}

}

public int Length
{

get{ return _vecT.Length;}
}

public T Sum
{

get
{

T s = _vecT[0];
for (int i=1; i<_vecT.Length; i++)
s = _evalT.Add(s, _vecT[i]);
return s;

}
}

Their use is illustrated by the codelines:

Vector<float> w;
w = new Vector<float>(eF, 5, 1f, 2f);
float s = w.Sum;
Console.WriteLine("Sum = " + s.ToString());

The property Name will be used by the method Print() in the following
section.

4. PRINT AND ACCESS TO ELEMENTS

Now we show how to print the whole vector and declare indexer for the class
Vector<T> to provide array-like access to the elements of its instances.

First, we create a method Print() based on ToString(). The method
ToString() returns a string that represents the current Object. To actualize
this method for our class Vector<T>, we must override it.

public override string ToString()
{

string s = null;
s = _vecTName + " of length " + _vecT.Length + ":";
for(int i = 0; i < _vecT.Length; i++)

s += "\r\n" + _vecT[i].ToString();
return s;

}
public void Print()

8

{
Console.WriteLine(ToString());
}

We will implement an idexer to enable access to the elements of vector x.
An indexer is a member that enables an object to be indexed in the same way as
an array. Indexers are similar to properties except for some differences, e.g. an
indexer must have at least one parameter.

public T this[int nIndex]
{

get{ return _vecT[nIndex]; }
set{ _vecT[nIndex] = value;}

}

this stands for the element introduced by the indexer. Now you can access
the vector elements through indices. To test indexer and the Print() method
write

w.Name = "w";
w[0] = 1234.567f;
w.Print();

5. OPERATOR OVERLOADING

This section shows how we can deˇne user-deˇned operators via operator
overloading. To overload the addition operator you deˇne a function called
operator +. The Vector<T> addition operator + is implemented only for
the case, when both of the operands are of type Vector<T>. The compiler
distinguishes between the different meanings of an operator by examining the
types of its operands.

All unary and binary operators have predeˇned implementations that are au-
tomatically available in any expression. User-deˇned operator implementations
always take precedence of predeˇned operator implementations and their decla-
rations always require at least one of the parameters be of the class or struct type
that contains the operator declaration.

The unary operators that can be overloaded are

+, -, !, ~, ++, --, true, false

The binary operators that can be overloaded are

+, -, *, /, %, &, |, ^, <<, >>

The binary comparison operators

==, !=, <, >, <=, >=

9

must be overloaded in pairs:

== together with !=, < together with > (not >=)

You can not overload the other operators. So the assignment operators = and
+= cannot be overloaded.

public static Vector<T> operator +(Vector<T> x, Vector<T> y)
{

return x.Add(y);
}

public Vector<T> Add(Vector<T> y)
{

int m = _vecT.Length;
Vector<T> z = new Vector<T>(m);
for(int i=0; i<m; i++)

z[i] = _evalT.Add(_vecT[i], y[i]);
return z;

}

To test the operator +, write the code:

Vector<float> x = new Vector<float>(eF, 3, 0f, 1f);
Vector<float> y = new Vector<float>(eF, 3, 10f, 1f);
Vector<float> z = x + y; // <=> z = x.Add(y);
z.Print();

The overloading of addition operator was simple. The overloading of = =
operator needs a little more work. Operator = = requires a matching operator
!= to be also deˇned. In addition to the implementation of the user-deˇned
operators = = and != we must override Object.Equals(object o) and
Object.GetHashCode() too.

GetHashCode() uses the binary ^ operator that computes the bitwise
exclusive-OR of its integral type operands:

public override int GetHashCode()
{

int M = this.Length;
int hc = _vecT[0].GetHashCode();
for(int m = 1; m < M; m++)

hc=hc ^ _vecT[m].GetHashCode();
return hc;

}

public override bool Equals(object obj)
{

Vector<T> x = (Vector<T>) obj;
int m = _vecT.Length;
for(int i = 0; i < m; i++)

10

if(!_evalT.Equals(_vecT[i], x[i]))
return false;

return true;
}

public bool Equals(Vector<T> vT)
{

int m = Length;
int n = vT.Length;
if(m != n)

throw new Exception("Error");
for(int i = 0; i < m; i++)

if(!_evalT.Equals(_vecT[i], vT[i]))
return false;

return true;

public static bool operator ==(Vector<T> x, Vector<T> y)
{

return x.Equals(y);
}

public static bool operator !=(Vector<T> x, Vector<T> y)
{

return !x.Equals(y);
}

After executing the following test code you will see that it determines the
equality of two vectors correctly:

Vector<float> u1 = new Vector<float>(eF, 5, 0f, 1f);
Vector<float> u2 = new Vector<float>(eF, 5, 0f, 1f);
u1.Print();
bool b = (u1 == u2); // <=> b = u1.Equals(u2);
Console.WriteLine(b.ToString());

6. CASTING

It would be desirable that the Vector<T> class implement casting to arrays.
The following code enables casting between vector objects and arrays of the same
type.

public static implicit operator T[](Vector<T> xV)
{

int m = xV.Length;
T[] xA = new T[m];
for(int i = 0; i < m; i++)

xA[i] = xV[i];
return xA;

}

11

public static implicit operator Vector<T>(T[] xA)
{

int m = xA.Length;
Vector<T> xV = new Vector<T>(m);
for(int i = 0; i < m; i++)

xV[i] = xA[i];
return xV;

}

The following codelines illustrate the implemented implicit casting:

float[] xArr = {\{}1f, 2f, 3f{\}};
Vector<float> xVec;
xVec = xArr; // from array to vector
xArr = xVec; // from vector to array

The presented simple casting does not solve the question of type evaluation.
Casting between Vector<float> and Vector<double> with Gyro is a
real challenge Å try to implement it. There are several solutions that differ in
complexity and performance; however, their presentation is beyond the scope of
this paper.

7. MATHEMATICAL OPERATIONS WITH VECTORS

You may need a number of functions when you are building scalar expres-
sions. The .NET Framework provides a wide range of mathematical functions that
you can use when performing calculations. Besides operators for building vector
expressions you may also need mathematical functions. This section describes
how to achieve calculation of functions on vectors without looping.

The System namespace's Math class provides constants and static methods
for trigonometric, logarithmic, and other common mathematical functions. Class
Math can be used this way:

double a = Math.Sin(Math.PI/2);

After creating a new polymorphic public class MathVec<T> with a
IEvaluator<T> private variable

public class MathVec<T>
{

public IEvaluator<T> _evalT;
public MathVec(IEvaluator<T> eval)
{

_evalT = eval;
}

public Vector<T> Sin(Vector<T> x)

12

{
int m = x.Length;
for(int i = 0; i < m; i++)

x[i] = _evalT.Sin(x[i]);
return x;

}
}

you may write code:

EvaluatorD eD = new EvaluatorD();
Vector<double> xx = new Vector<double>(eD,5,0.0,0.1);
xx.Print();
xx[0] = Math.PI/2.0;
MathVec<double> m = new MathVec<double>(eD);
Vector<double> yy = m.Sin(xx);
yy.Print();

Mention must be made that the implementation and use of MathVec differs
from Math. Math has static methods, whereas MathVec, object methods,
since static methods can not be built in generics so far.

8. PERFORMANCE MEASURING

Our investigation in comparing the performance of generic and non-generic
vector classes conˇrms the known fact that, unfortunately, there is a loss of
performance in computation with generic vector objects. E. Gunnerson [8] used
classes for value evaluators and found a 50% loss. We observed a less than 5%
loss due to using interface evaluators. You ˇnd the code for the performance
comparison in the downloadable ˇle. The question is: Whether an even better
performance can be reached and how?

CONCLUSIONS

The paper presented the design and implementation of a generic vector class
Vector<T> with some constructors and base functionality, including operator
overloading, casting and support of mathematical functions with vector arguments.
The key role in generic classes supporting computation over their objects plays the
type evaluator. Our interface based evaluator wins over class evaluator, however,
loses against the non-generic class implementation. To answer the questions
whether an even better performance can be reached and how, we should wait for
the new, the second, version of the MS Visual C#. We also hope that the generics
in C# 2 will provide more support for handling casting.

Acknowledgements. Our thanks to VEGA for supporting the project
1/1006/04.

13

REFERENCES

1. http://research.microsoft.com/projects/clrgen/

2. http://msdn.microsoft.com/net/sscli

3. Téoréok Cs. Vectorization and operator overloading in C# // Proc. of 7th Intern. Scientiˇc
Conf. ®Applied Mathematics¯, Ko�sice, 2002.

4. Téoréok Cs. Visualization and Data Analysis in the MS .NET Framework. JINR Preprint
E10-2004-136. Dubna, 2004.

5. http://www.activestate.com/Products/Download/Download.plex?id=ActivePerl

6. Kennedy A., Syme D. Design and Implementation of Generics for the .NET Common
Language Runtime. http://research.microsoft.com/projects/clrgen/generics.pdf

7. Lowy J. An Introduction to C# Generics. http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dv vstechart/html/csharp generics.asp

8. Gunnerson E. Generics Algorithms. http://weblogs.asp.net/ericgu/archive/ 2003/11/14/
52852.aspx

Received on August 31, 2004.

�¥¤ ±Éµ· H. C. ‘±µ±µ¢

�µ¤¶¨¸ ´µ ¢ ¶¥Î ÉÓ 30.09.2004.
”µ·³ É 60× 90/16. 	Ê³ £ µË¸¥É´ Ö. �¥Î ÉÓ µË¸¥É´ Ö.

“¸². ¶¥Î. ². 0,87. “Î.-¨§¤. ². 1,28. ’¨· ¦ 300 Ô±§. ‡ ± § º 54617.

ˆ§¤ É¥²Ó¸±¨° µÉ¤¥² �¡Ñ¥¤¨´¥´´µ£µ ¨´¸É¨ÉÊÉ Ö¤¥·´ÒÌ ¨¸¸²¥¤µ¢ ´¨°
141980, £. „Ê¡´ , Œµ¸±µ¢¸± Ö µ¡²., Ê². †µ²¨µ-ŠÕ·¨, 6.

E-mail: publish@pds.jinr.ru
www.jinr.ru/publish/

