P14-2004-174

А. Хофман, А.Ю. Дидык, В. Штеке*, Е. Хаевска*, Т. Вагнер*, В.К. Семина

ВЛИЯНИЕ ЯДЕРНЫХ РЕАКЦИЙ НА СВОЙСТВА СПЛАВОВ Al-Mg-Si ПОСЛЕ ДЛИТЕЛЬНОЙ ЭКСПЛУАТАЦИИ В ИССЛЕДОВАТЕЛЬСКИХ РЕАКТОРАХ

^{*}Институт атомной энергии, Сверк, Республика Польша

Хофман А. и др. Влияние ядерных реакций на свойства сплавов Al-Mg-Si после длительной эксплуатации в исследовательских реакторах

Исследовано влияние облучения быстрыми нейтронами (E > 0,1 МэВ) на механические свойства и морфологию излома сплавов Al–Mg–Si (PAR-1 и CAB-1) после 40 лет эксплуатации. Образцы были вырезаны из элементов конструкции исследовательского реактора EWA (Сверк, Польша). Облучение вызывает деградацию механических свойств: увеличение пределов текучести и прочности и уменьшение относительного удлинения. Причина изменения механических свойств — старение сплавов Al–Mg–Si. Во время облучения в реакции Al(n, γ)Si нарабатывается Si. Присутствие Si вызывает увеличение прочности сплавов Al– Mg–Si благодаря выделению частиц Mg₂Si или чистого Si в Al-матрице. Послерадиационные исследования активности конструкционных элементов реактора EWA показали, что за счет ядерных реакций образуются изотопы ⁶⁰Co и ⁶⁵Zn с высокой активностью.

P14-2004-174

P14-2004-174

Работа выполнена в Лаборатории ядерных реакций им. Г. Н. Флерова

Сообщение Объединенного института ядерных исследований. Дубна, 2004

Hofman A. et al. Effect of Nuclear Reactions on the Properties of Al–Mg–Si Alloys after Long-Time Exploitation in Research Reactors

Effect of fast neutron (E > 0.1 MeV) irradiation on the mechanical properties and fracture morphology of the Al–Mg–Si alloys (PAR-1 and CAB-1) after 40 years of exploitation in research nuclear reactors has been studied. Tested specimens were cut from structural elements of reactor EWA (Świerk, Poland). Irradiation induces degradation in mechanical properties, namely yield strength and ultimate strength increase, but elongation reduces. The mechanical property changes are caused by ageing of Al–Mg–Si alloy. During irradiation Si is formed from Al by the Al(n, γ)Si reaction. The presence of Si might cause strengthening of the Al–Mg–Si alloys by increasing precipitation of Mg₂Si or pure Si in the Al matrix. Post-irradiation activity studies of EWA reactor structural elements show that the high-activity ⁶⁰Co and ⁶⁵Zn isotopes have been formed by the nuclear reactions.

The investigation has been performed at the Flerov Laboratory of Nuclear Reactions.

Communication of the Joint Institute for Nuclear Research. Dubna, 2004

введение

Как известно, в настоящее время многие атомные реакторы типа ИРТ-2000, ВВР-2, ВВР-Ц, ВВР-К, ВВР-М, МР и другие проработали запланированный проектный срок эксплуатации, а в ряде случаев и с превышением этого срока. Поэтому в текущий период они выводятся из эксплуатации. Из списка МААЭ реакторов, подлежащих закрытию, реактор EWA в Польше отработал наибольший срок. Отдельные конструкционные элементы, такие как сепаратор, экспериментальные каналы, каналы для стержней безопасности, изготовленные из сплавов Al-Mg-Si, находились в эксплуатации примерно 90 тыс. ч и набрали за этот период дозы по быстрым и тепловым нейтронам $\sim 9.10^{21}$ и $\sim 4.10^{22}$ нейтрон/см² соответственно. Поэтому образцы, изготовленные из этих элементов, дают возможность изучить свойства сплавов Al-Mg-Si, набравших высокие дозы облучения, и тем самым обрести данные, которые трудно получить в исследовательских реакторах с заранее изготовленными образцами или «образцами-свидетелями». Изучение радиационных повреждений, основанное на традиционно используемых параметрах, таких как флюенс и плотность потока нейтронов, число смещений на атом, температура облучения, воздействие теплоносителя, оказалось недостаточным, так как имеет место явление старения, которое происходит в сплавах Al-Mg-Si (CAB-1, PAR-1) и Al-6063 и зависит от времени эксплуатации. Кроме того, при процессах старения необходимо учитывать также и вклад от ядерных реакций, в результате которых происходит накопление атомов Mg и Si.

Цель данной работы — оценить роль и вклад ядерных реакций, которые произошли в сплавах Al-Mg-Si за время эксплуатации в исследовательском реакторе EWA, а также влияние длительного отжига и облучения нейтронами на свойства этих материалов.

1. СВОЙСТВА СПЛАВОВ Al-Mg-Si В КОНСТРУКЦИОННЫХ ЭЛЕМЕНТАХ ИССЛЕДОВАТЕЛЬСКИХ РЕАКТОРОВ

Алюминиевые сплавы, имеющие высокую коррозионную стойкость, малый атомный номер и небольшое сечение захвата быстрых и тепловых нейтронов, высокую теплопроводность, обеспечивающую снижение термомеханических напряжений, находят широкое применение как конструкционные материалы в ядерной промышленности.

Применительно к исследовательским реакторам это главным образом алюминиевые сплавы Al-Mg-Si после холодной обработки, такие как CAB-1 и PAR-1. Именно такие сплавы и были использованы в исследовательских реакторах EWA и MARIA в Польше, а также в целом ряде стран Восточной Европы. В западных странах для этих целей используются сплавы Al-6063 и Al-6601. Элементный состав сплавов представлен в табл. 1.

Cootton	Содержание, масс. %					
COCTAB	Mg	Si	Fe	Cu	Mn	Ti
PAR-1 [1]	0,6–0,8	0,8–1,2	0,08	0,005	0,001	0,005
Al-6063 [2]	0,7	0,4	-	до 0,1	-	-
CAB-1*	0,60-0,62	0,82-0,86	$9,4.10^{-4}$	0,001	$<2,5\cdot10^{-5}$	$1,1.10^{-4}$

Таблица 1. Элементный состав сплавов САВ-1, PAR-1 и Al-6063

Состав	Ni	Zn	Co	Cd	В	Al
PAR-1 [1]	0,001	0,01	10^{-5}	10^{-5}	10^{-5}	ост.
Al-6063 [2]	-	-	-		-	98,9
CAB-1*	$1,2.10^{-5}$	-	-	1	-	ост.

* CAB-1 используется в реакторе EWA (плита сепаратора).

Алюминий образует с Mg и Si твердые растворы с ограниченной растворимостью, что дает возможность применения термической обработки закалки и старения. Это приводит к упрочнению в результате выделений и изменению механических свойств.

В тройной системе Al–Mg–Si находится промежуточная фаза Mg_2Si с максимальной растворимостью 1,85% Mg_2Si при температуре 585°C, которая понижается с уменьшением температуры до нуля при комнатной температуре.

Облучение, как и старение, приводит к выделению фазы Mg_2Si , а также к наработке Si из Al в результате реакции Al $(n, \gamma)Si$. Увеличение концентрации Si также должно приводить к возрастанию прочности из-за образования дополнительных выделений фазы Mg_2Si или Si в Al.

Радиационные дефекты и явления, происходящие в конструкционных материалах под действием облучения нейтронами, зависят от энергии связи, температуры, спектральных характеристик нейтронного потока и, естественно, от времени воздействия реакторного облучения, химического состава и структурного состояния материала конструкций, а также воздействия среды. В табл. 2 представлены максимальные флюенсы быстрых и тепловых нейтронов, которые получили элементы конструкции реактора EWA, сделанные из сплавов CAB-1 и PAR-1.

Теплоносителем в исследовательских реакторах EWA и MARIA является дистиллированная вода. Поэтому обеспечение надежного водного режима имеет первостепенное значение для коррозионной стойкости материалов, имеющих контакт с водой [3]. Химическая реакция коррозии алюминия

Элемент конструкции	Сплав	Время работы, ч	Максимальный флюенс по быстрым нейтронам, нейтрон/см ²	Максимальный флюенс по тепловым нейтронам, нейтрон/см ²
Сепаратор	CAB-1	89900	$8,1 \cdot 10^{21}$	$2,8 \cdot 10^{22}$
Сборник сепаратора	CAB-1	89900	$8,7 \cdot 10^{21}$	$4,0.10^{22}$
Каналы для стержней безопасности	PAR-1	58500	$2,1\cdot 10^{22}$	$4,0.10^{22}$

Таблица 2. Время эксплуатации и максимальные набранные флюенсы быстрых (E>0,5~ МэВ) и тепловых нейтронов, воздействовавших на элементы конструкций реактора EWA

в воде приводит к образованию гидроокиси и выделению водорода:

 $2Al + 6H_2O \rightarrow 2Al(OH)_3 + 3H_2.$

Продуктами коррозии в тепловом интервале 60–70°С является $\beta Al_2O_3 \cdot 3H_2O$ (байерит) из этой химической реакции, а при температурах выше $80^{\circ}C - Al_2O_3 \cdot H_2O$ (бемит), который получается по реакции $2Al + 4H_2O \rightarrow Al_2O_3 \cdot H_2O + 3H_2$. Считая, что реакция происходит до конца, получим, что 1 см³ H_2O дает 0,042 моля H_2 .

Облучение быстрыми нейтронами приводит к радиолизу воды, в результате чего получаются, как известно, водород, кислород и перекись водорода: $H_2O \rightarrow H + OH, 2H_2O \rightarrow 2H_2 + O_2$, $OH + OH \rightarrow H_2O_2$. Процесс радиолиза оказывает влияние на коррозию через влияние водорода, так как участвует в реакциях окисления и восстановления металлов: XMe + $yH_2O \leftrightarrow$ MeXO₄ + yH_2 . Кроме того, кислород, растворимый в воде, оказывает влияние и на межкристаллическую коррозию.

Химический состав воды также имеет большое значение в процессах коррозии конструкционных материалов, происходящей во время эксплуатации реактора. Из примесей, которые ускоряют коррозию алюминия и его сплавов, наиболее важные — ионы Cl, Cu и Fe. Анализ данных, проведенный в 1978–1983 г. [1, 2] показал, что концентрация хлоридов находилась в пределах 26–172 мг/см³ (30–200 ppm), что было намного выше допустимого уровня по нормам безопасности 10–60 мг/см³ (10–70 ppm). Железа оказалось 23 мг/см³ (23 ppm) при норме 10–15 мг/см³ (10–15 ppm), а концентрация ионов Cu составила 0,4 ppm при допуске 0,02 ppm. В процессе отмывки теплообменников появились также ионы нитратов в количестве до 1400 мг/см³.

3

2. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для исследований была взята часть из сборника сепаратора реактора EWA, сделанного из сплава CAB-1, из которой в «горячей» камере приготовлены образцы для анализа химического состава, исследований микроструктуры и механических свойств.

2.1. Анализ химического состава. Изучение химического состава было проведено спектрометрическим методом. В табл. 3 представлены результаты этих исследований.

Таблица 3. Химический состав сплава САВ-1 до и после облучения (флюенс быстрых нейтронов (E>0,5~МэВ) — 3,9·10²¹ нейтрон/см², а тепловых — 7,8·10²¹ нейтрон/см²)

Ofmanau	Содержание, ат. %					
Образец	Mg	Si	Fe	Cu		
CAB-1,	0,45-0,90	0,60-1,20	0,2	0,01		
литература						
W,	0,60-0,62	0,82-0,86	0,0094	0,001		
САВ-1 до						
облучения						
A21,	0,727–0,736	1,3478-1,3651	0,09546-0,09715	0,01742-0,03736		
CAB-1						
после						
облучения						

	Mn	Ti	Ni
САВ-1, литература	0,01	0,01	0,03
W, САВ-1 до облучения	<0,00025	0,0011	0,00012
А21, САВ-1 после облучения	0,0021	0,00407–0,00414	0,0084–0,0089

В табл. 4 представлены данные анализа на содержание кремния в образцах облученного сплава PAR-1 [1] в зависимости от флюенса нейтронов. В сплавах CAB-1, PAR-1 и Al-6063 основными легирующими добавками являются Mg и Si. Их концентрация увеличивается в результате ядерных реакций: концентрация Si возрастает в результате реакции Al(n, γ)Si, а концентрация Mg — по реакции Si(γ, α)Mg.

No of posto	Флюенс нейтро	онов, нейтрон/см ²	Conerwound Si or
№ ооразца	тепловых	быстрых	Содержание 51, аг. %
1	0	0	1,2
2	$1,56 \cdot 10^{22}$	$1,0.10^{22}$	1,5
3	$1,67 \cdot 10^{22}$	$1,2 \cdot 10^{22}$	1,9
4	$2,20 \cdot 10^{22}$	$1,9.10^{22}$	1,8

Таблица 4. Концентрация кремния в облученных образцах PAR-1

Как видно из табл. 3 и 4, в результате облучения нейтронами в сплавах алюминия кроме радиационных повреждений происходят изменения концентрации легирующих добавок. Если концентрация легирующих добавок превышает предел растворимости, то имеет место выделение другой фазы. Этот процесс, как и миграция атомов примесей к скоплениям дефектов (дислокациям, границам зерен и другим), влияет на изменение свойств материалов.

2.2. Измерение активности сборника сепаратора. Измерения мощности дозы гамма-облучения на воздухе были проведены на фрагменте сборника сепаратора (размеры: длина — 680 мм, ширина — 370 мм, толщина — 8 мм и масса — 3,8 кг) на расстоянии 10 м с использованием дозиметрических приборов FH40F2 и VAJ-15. Измеренная мощность дозы оказалась равной 14 мкЗв/ч (или 1,4 мР/ч) при использовании прибора FH40F2 и 12 мкЗв/ч (или 1,2 мР/ч) — прибора VAJ-15. На основе измеренной мощности дозы рассчитана активность отрезанного фрагмента сборника сепаратора: 0,67 ГБк (⁶⁵Zn) и 3,85 ГБк (⁶⁰Co). Результаты измерений средней активности на единицу массы представлены в табл. 5.

Как видно из табл. 5, измерения показали высокую активность сборника сепаратора. Остался не ясным вопрос: откуда появились 60 Co и 65 Zn? В необлученном сплаве PAR-1 59 Co присутствует, но в небольшом количестве — 10^{-5} масс.%.

	Активность сборника Активность стружки		Активность отрезанной			
сепаратора на основе		при отрезании части		части сборника,		
	расчетов, Бк/г		от сборника сепаратора,		вычисленная из мощности	
			Бк/г		дозы, Бк/г	
	⁶⁵ Zn	⁶⁰ Co	⁶⁵ Zn	⁶⁰ Co	⁶⁵ Zn	⁶⁰ Co
	$10,3.10^4$	$8,2.10^{5}$	$7,7.10^4$	$5,1.10^{5}$	$1,76 \cdot 10^4$	10.10^{5}

Таблица 5. Результаты измерений активности сборника сепаратора

Примечание: Активность вычислена на основе измерения мощности дозы облучения по гамма-излучению отрезанной части сборника на расстоянии 10 м и считается наиболее достоверной.

В табл. 6 приведены ядерные реакции, которые могут происходить при взаимодействии тепловых нейтронов и примесей Fe, Cu и Co. На меди кроме

Таблица 6. Ядерные реакции, которые могут происходить при взаимодействии тепловых нейтронов и примесей Fe, Cu, Co [4], Ti и Ni [5, 6]

Примесь	Пороговая реакция	Период полураспада	Эффективная пороговая энергия, МэВ	Среднее сечение реакции, мб
Fe	54 Fe $(n,p){}^{54}$ Mn	312,5 сут	3,0	82,5
Cu	63 Cu $(n, \alpha)^{60}$ Co	5,27 лет	6,7	0,50
Co	59 Co $(n, \gamma)^{60}$ Co	5,27 лет	тепловые и	нейтроны
Ti	${}^{46}\text{Ti}(n,p){}^{46}\text{Sc}$	84 сут	5,0	12,0
Ni	60 Ni $(n,p)^{60}$ Co	_	-	-

реакции, указанной в таблице, могут также пройти реакции: 63 Cu $(n,\alpha)^{59}$ Co, 63 Cu $(p,n)^{63}$ Zn, 63 Cu $(p,2n)^{62}$ Zn [7]. Возможно, 60 Co и 65 Zn появились в результате ядерных реакций из Cu или Ni (см. табл. 6). А медь и никель могли появиться в воде из труб, которые были изготовлены из стали 1X18H9T. Следует оценить, сколько нужно меди и никеля, чтобы получить активности, приведенные в табл. 6. Это и будет сделано в дальнейшем.

2.3. Механические свойства сплавов CAB-1 и PAR-1. Образцы для механических испытаний — прямоугольные с размерами 50×6 мм или кольцевые, вырезанные из трубы канала атомного реактора. Исследования на растяжение проводились при комнатной температуре на испытательной машине INSTRON при скорости деформации $2 \cdot 10^{-3} \text{ c}^{-1}$. Поверхность разорванного образца была просмотрена в сканирующем электронном микроскопе (Philips SEM type 505).

В табл. 7 приведены основные характеристики механических свойств образцов сплава PAR-1, который находился в реакторе 58500 ч (6,67 лет) при температуре 40–60°С.

Таблица 7. Механические свойства сплава PAR-1 после облучения быстрыми нейтронами (E > 0,5 МэВ) [1, 2]. Флюенсы облучения приведены в таблице

Флюенс быстрых нейтронов, нейтрон/см ²	Предел текучести $\sigma_{0,2}, {\rm M} {\rm \Pi} {\rm a}$	Предел прочности σ_B , МПа	Относительное удлинение δ , %
до облучения	156	215	26,7
$1,9 \cdot 10^{22}$	255	278	4,87
САВ-1 [8] до	-	-	16,5
3.5·10 ²² *	_	_	2.5

* Образцы сплава CAB-1 канала атомного реактора, отработавшего в реакторе ВВР-М в течение 7 лет.

На конструкционные материалы CAB-1, PAR-1 и сплав Al-6063 во время работы в реакторе действуют не только тепловые и быстрые нейтроны, нужно учитывать и другие факторы. Сплавы работают в условиях продолжительного отжига при температуре в интервале 40–60°С, и фактор времени (~40 лет) имеет большое значение для изменения механических свойств. Результаты исследований образцов сплава Al-6063 [9] после отжига в течение 2,5 лет при температуре 52°С показали, что в результате возникающего во время облучения поля температур имеет место длительный отжиг, влияющий на изменение механических свойств сплавов типа Al-Mg-Si. Кроме того, следует обратить внимание и на тот факт, что во время облучения в результате ядерных реакций нарабатывается Si из реакции Al(n, γ)Si. Его присутствие стимулирует увеличение концентрации выделений Mg₂Si и Si, что оказывает влияние на механические свойства сплавов.

В чистом Al (табл. 8), где упрочнение является результатом облучения быстрыми нейтронами ($E>0,1~{
m M}$ эВ), после набора сравнимого флюенса увеличение предела текучести [$\Delta\sigma_{0,2}/\sigma_{0,2}^{{
m Heo6n}}$] составляет 7%, а в сплаве PAR-1 — 21%.

Флюенс нейтронов, нейтрон/см ²	Предел текучести $\sigma_{0,2}$, МПа	Предел прочности	Относительное удлинение δ , %
0	26	59	3
$1 \cdot 10^{17}$	26	53	10
1.10^{18}	29	64	15

28

 $5 \cdot 10^{18}$

Таблица 8. Механические свойства отожженных образцов Al после облучения быстрыми нейтронами (E > 0,1 МэВ) [10]

В табл. 9 приведены результаты по измерению механических свойств «образцов-свидетелей» из сплава PAR-1 в зависимости от флюенса облучения быстрыми нейтронами.

64

14

Таблица 9. Механические свойства «образцов-свидетелей» из сплава PAR-1 после облучения быстрыми нейтронами [1]

Флюенс	Предел	Предел
нейтронов,	текучести $\sigma_{0,2}$,	прочности σ_B ,
нейтрон/см ²	МПа	МПа
0	121	240
$1,5 \cdot 10^{18}$	147	258
$6,1\cdot 10^{18}$	152	265
$6,3 \cdot 10^{18}$	147	255
$2,1\cdot 10^{21}$	184	286

2.4. Фрактографические исследования. Фрактографические исследования поверхности изломов разорванных образцов показали, что облучение изменяет морфологию поверхности изломов. Излом необлученных образцов (рис. 1, *a*) показывает транскристаллитный характер разрушения. После облу-

Рис. 1. Морфология поверхности излома образца сплава РАR-1: a — необлученный образец, δ и s — образцы, облученные до флюенсов $0,7\cdot10^{21}$ и $1,95\cdot10^{22}$ нейтрон/см² соответственно

чения морфология поверхности излома превращается в смесь транскристаллитного и интеркристаллитного разрушения (рис. 1, δ). Область интеркристаллитного разрушения растет с увеличением флюенса нейтронов (рис. 1, δ). Похожие изменения морфологии излома наблюдались после длительного временного отжига при 52°С в работе [9] (рис. 2, *a* и рис. 2, *b*).

Рис. 2. Морфология поверхности излома образца сплава Al-6063: a — перед отжигом, δ — после отжига при 52°C в течение 30 месяцев

выводы

Исследования образцов сплава Al–Mg–Si (сплавы PAR-1 и CAB-1), вырезанных из конструкционных элементов реактора EWA (сборника сепаратора и каналов) после 40 лет эксплуатации, показали, что в результате ядерных реакций произошли изменения их химического состава (увеличение концентраций Si и Mg). Кроме того, измерения активности сборника сепаратора показали высокую активность двух химических элементов ⁶⁰Со и ⁶⁵Zn, которые, вероятно, появились в результате ядерных реакций. Прежде всего, для объяснения обнаруженного эффекта следует выяснить следующее: какие примеси металлов могли находиться в теплоносителе-воде и могли бы привести к появлению ⁶⁰Со и ⁶⁵Zn на поверхности сборника сепаратора.

9

Важным фактором, влияющим на микроструктуру и механические свойства, является длительный термический отжиг в результате действия температуры во время облучения. Продолжительный отжиг в температурном интервале 40–60°С дает эффект, похожий на эффект облучения. В обоих случаях изменяется морфология поверхности излома от транскристаллической до смеси транскристаллической и межкристаллической структур. Причем вклад межкристаллического режима разрушения увеличивается с ростом флюенса.

ЛИТЕРАТУРА

- 1. *Hajewska E.* Investigation of the properties of aluminium alloys used in the construction of nuclear research reactors. Raport IAE-2155/VI, Otwock-Świerk, 1993.
- Szpunar E. Analiza możliwości pekania elementów konstrukcyjnych reactora EWA. Raport IAE-2053/E-VI/r/b, Otwock-Świerk, 1988.
- Koziel J., Hofman A. Przegląd i analiza doświadczeń światowych w zakresie zachowania się paliwa reaktorów badawczych podczas jego eksploatacji i skiladowania w środowisku wodnym. Raport IAE-84/A, Otwock-Świerk, 2002.
- 4. Амаев А. Д. и др. Радиационная повреждаемость и работоспособность конструкционных материалов. Санкт-Петербург: Политехника, 1997.
- 5. Nuclear cross-sections for charged-particle induced reactions Ni, Cu. Report ORNL-CPX-2, Oak-Ridge, 1964.
- Абагян Л. П., Захарова С. М. Сечения нейтронных реакций, сопровождающихся вылетом заряженных частиц. Бюллетень информационного центра по ядерным данным: М.: Атомиздат, 1967. В. 4. С. 234–285.
- Ибрагимов Ш. Ш. Роль ядерных реакций в образовании первичных повреждений в металлах. // Радиационные эффекты в металлах и сплавах. Материалы III Всесоюзного совещания, Алма-Ата, 30 мая — 1 июня 1983 г. Алма-Ата: Наука, 1985. С. 16–20.
- Карасев В. С. и др. Пластические свойства сплава САВ-1 после длительной эксплуатации в реакторе ВВР-М // Вопросы атомной науки и техники, сер. Физика радиационных повреждений и радиационное материаловедение. 1989. В. 2(49). С. 39–40.
- Minitz A. et al. Mechanical properties and microstructure of neutron irradiated cold worked Al-6063 alloy // J. Nucl. Mater. 1998. V. 252. P. 79–88.
- Hofman A. et al. Defekty struktury i umocnienie radiacyjne wewnetrznej powierzchni koszulki aluminiowej elementów paliwowych ze stopu uran-aluminium wywolane przez produkty rozpadu — symulacja przy użyciu ciężkich jonów. Raport IAE-94/A, Otwock-Świerk, 2003.

Получено 15 ноября 2004 г.

Редактор М. И. Зарубина

Подписано в печать 18.02.2005. Формат 60 × 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 0,62. Уч.-изд. л. 0,73. Тираж 285 экз. Заказ № 54793.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@pds.jinr.ru www.jinr.ru/publish/