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Resonant Tunneling of UCN through the Moving
Interference Filter and Experimental Test
of the UCN Dispersion Law

With the aim to test experimentally the dispersion law validity for very slow neutrons we
investigated spectra of ultracold neutrons (UCN) under the condition of resonance tunneling
through the moving Neutron Interference Filters. The neutron spectrum in this case has a
narrow width resonance, whose parameters depend on the ˇlter characteristics and dispersion
law of neutron waves in matter. For a number of samples we detected noticeable shift of the
resonance position when ˇlter moved parallel to its surface. This shift is in strong contradiction
with the commonly accepted dispersion law. Further investigations have shown that spectrum
of tunneling neutrons is not exactly deˇned by the solution of one-dimensional quantum
problem, but substantially affected by neutron scattering from ˇlter imperfections. The cross
section of this scattering depends on the neutron wave number and increases dramatically in
resonance conditions. Experimental results as well as comprehensive theoretical analysis have
led us to the unambiguous conclusion that observed phenomena of the resonance shift in a
moving sample are caused by scattering of neutron tunneling states rather than by a deviation
from the commonly accepted dispersion law.

The investigation has been performed at the Frank Laboratory of Neutron Physics, JINR,
and Institute LaueÄLangevin, France.

Communication of the Joint Institute for Nuclear Research. Dubna, 2004



INTRODUCTION

A neutron interference ˇlter (IF) is an analog of an optical FabryÄPerot
interferometer. In the simplest case, it represents a three-layer thin-ˇlm structure
of two different materials deposited onto a substrate transparent to neutrons.
Neutron refraction at the interfaces between layers is described with the use of
an effective potential U associated with each material:

U =
2π�

2

m
ρb. (1)

Here ρ is the number of nuclei per unit volume, b is the coherent scattering
length, and m is the neutron mass. Materials for the ˇlter are chosen in such
a way that the effective potential of the exterior layers is higher than that of the
interior layer. Therefore the potential structure of the ˇlter represents two barriers
and a well in between. If the thickness of the interior layer is not overly small,

Fig. 1. Neutron interference ˇlter. Three thin ˇlms of two kinds of materials deposed
at a silicon wafer (a). Potential structure of the system (b). Transmittivity of ˇlter as a
function of energy (c)
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the quasi-bound states appear with characteristic energy levels. In the vicinity of
these levels, neutron transmission features the resonance structure (see Fig. 1).

The position of the resonance is determined by the matching of the wave
functions at the layer boundaries, whereas its width depends on the penetrability
of the exterior layers. According to the commonly accepted dispersion law, all
features in the transmission of an ideal ˇlter are determined entirely by the normal
components of real- or imaginary-valued wave vectors.

The possibility to produce a two-humped potential structure for implementing
a resonance transmission of ultracold neutrons (UCN) was indicated in 1977 by
Seregin [1]. Later on it was proposed to use such interference ˇlters as a very
sensitive device for the measurement of a small energy or momentum transfer
utilizing UCN [2]. In 1980, the resonance tunneling of UCN through the three-
layer CuÄAlÄCu ˇlter was demonstrated experimentally by A. Steyerl with co-
authors [3] and later by M. Novopoltsev and Yu. Pokotilovsky [4, 5]. The effect
of resonance splitting in a system of two coupled resonators was also demonstrated
in an experiment with ˇve-layer IF [6, 7]. Frank and Nosov proposed to use a
spectrometer with IF in order to detect the discrete spectrum of UCN that arises
as a result of diffraction by a grating, which moves in the direction transverse
to the incident neutron beam [8, 9]. Somewhat later, it was proposed to use a
similar device in order to test the commonly accepted dispersion law for UCN in
medium [10]. This and some other possibilities were analyzed in [11].

In 1997, the UCN spectrometer with IF was built up [12] and experimental
test of the UCN dispersion law started. First results were reported in [13].
Description of the spectrometer, results of the further investigations and new
proposals were published in [14Ä17]. The same device was used in the experiment
on neutron diffraction by a moving grating [18, 19], which was proposed in [8, 9].

In the process of the work, it was recognized that spectrum of UCN after
tunneling through the ˇlter differs, sometimes remarkably, from the spectrum
predicted by the elementary theory. In this paper, we investigate this phenomenon
and its in�uence on the test of the dispersion law validity.

1. NEUTRON TRANSMISSION THROUGH THE MOVING
INTERFERENCE FILTER AND EXPERIMENTAL TEST

OF THE UCN DISPERSION LAW

1.1. The Idea of the Experiment. In this section, we describe brie�y the ex-
periment for testing the UCN dispersion law. It is well known that the dispersion
law for the neutron wave in medium may be written as [20]

k2 = k2
0 − χ2

0, χ2
0 = 4πρb, b = b′ − ib′′, (2)
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where k0 and k are neutron wave vectors in vacuum and in medium respectively.
The effective potential (1) corresponds just to this relation. It is commonly
accepted that precision of Eq. (2) in case of very cold neutrons is very high and
rises as wave length increases [21Ä23]. However some theoretical arguments put
in doubt the correction of this concept [10, 24]. Below we present experimental
results, which could establish the extent to which the relations (1), (2) are valid
in UCN physics.

The idea of the experiment is based on the speciˇc properties of the potential
dispersion law [25, 26]. Let us consider a neutron wave refracted at the bound-
ary of medium and suppose that the dispersion law differs from Eq. (2) by an
additional term ε(k2

0):
k2 = k2

0 − χ2
0 + ε(k2

0). (3)

For a homogeneous medium the wave vector component k0,t, parallel to the plane
of the interface, does not change by refraction. Subtracting k2

t = k2
0,t from both

sides of Eq. (3) we obtain

k2
⊥ = k2

0⊥ − χ2
0 + ε(k2

0). (4)

One may conclude that the existence of the nonpotential term ε(k2
0) causes the

normal component of the wave vector in medium k⊥ to depend on the value of
the wave vector in vacuum k0. The goal of the presented experiment is a search
for this dependence with utilizing a neutron interference ˇlter as a high sensitive
device.

Let us consider a ˇlter moving parallel to its surface. In the frame of reference
of this ˇlter, the lateral component k0,t of the incident wave as well as the total
vector k0 are changed. Obviously the normal component k0,t of the wave vector
of the incident wave does not depend on the movement. However, in the case of
nonpotential dispersion law the normal component of the wave vector k⊥ inside
the medium depends on the movement and changes according to Eq. (4). This
consequently leads to a shift of the resonance position. This shift can be detected
with a high-precision UCN spectrometer described below.

1.2. Experimental Set-up. Gravity Spectrometer with Interference Filters.
We have constructed a special spectrometer dedicated to the experimental test of
the UCN dispersion law [13Ä14] (see Fig. 2). Main elements of the spectrometer
are two different IFs, each having only one resonance in transmission. They are
placed horizontally at different heights, one above the other, inside a hexagonal
neutron mirror guide with vertical glass walls. Neutron spectrum after the upper
ˇlter (monochromator) is deˇned by the resonance in transmission of this ˇlter
and varies with height as neutrons fall in a gravity ˇeld. The lower ˇlter (analyser)
features the resonance at a higher neutron energy compared to the upper ˇlter.
So the total transmission of two ˇlters depends on the distance between them.
Changing the height of the ˇlter-analyser and measuring a count rate as a function
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of the distance between the ˇlters, one may scan the energy spectrum of neutrons
passed through the upper ˇlter-monochromator. Both ˇlter-monochromator and
ˇlter-analyser feature the relatively narrow resonance with a width of about 4 neV.

Fig. 2. Gravity UCN spectrometer with interference ˇlters. 1 is an entrance chamber;
2 is a vacuum vessel; 3 is a high-speed motor; 4 is a mirror neutron guide; 5 is a ˇlter-
monochromator (movable); 6 is a ˇlter-analyser; 7 is a removable ˇlter (premonochromator
in special experiments); 8 is a detector; 9 is a stepper motor

UCNs enter the spectrometer from the source and after several re�ections
off the walls of the entrance chamber pass through the cylindrical corridor. The
corridor guides the neutrons to the ˇlter-monochromator and enables the UCNs
to irradiate only the peripheral area of the silicon disk with a deposited ˇlter on
it. The disk is attached to the motor shaft and may rotate around the vertical axis
that causes the lateral component k0,t of the incident wave to vary in the frame
of reference of the ˇlter. A precise stepper motor is used to change the vertical
position of the ˇlter-analyser. Neutrons passed through this ˇlter are counted
with a 3He proportional detector.
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1.3. Experimental Procedure and Main Results. The experiment was per-
formed at the UCN source of the ILL [27]. To test the validity of Eq. (2), the scan-
ning curve mentioned above was measured twice: with the ˇlter-monochromator
at rest (or spinning very slowly) and with fast spinning ˇlter. The result of scan-

Fig. 3. Scanning curves obtained in 1998. The error bars are smaller than the point size.
Raw data are presented at the top. The same resuls after normalizing and subtracting the
background are at the bottom. The insert shows the behaviour of the difference between
two normalized scanning curves

ning is the convolution of the spectrum f(E) after the ˇlter-monochromator and
the spectral function of the ˇlter-analyser g(E):

F (z) =
∫

f(E)g(E − z)dE, (5)

where z = mg∆H and ∆H is the distance between the ˇlters. Taking into
account that g(E) does not depend on the rotation of the ˇlter-monochromator,
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one may conclude that any changes in scanning curve F (z) may result only from
the variation of the spectrum f(E).

During the ˇrst experiments in 1997 [13, 14], it has been found that spectrum
of neutrons, passed through the ˇlter-monochromator, varies when ˇlter is put in
rotation. These variations are the following: a) a peak area decreases; b) a count
rate outside the peak increases slightly, which may be interpreted as increase of the
background; c) a noticeable shift of the peak is observed when ˇlter is spinning.

Fig. 4. Lay-out of the test experiment

One may see all these variations in
Fig. 3, where two scanning curves
with and without ˇlter rotation are
presented. The rotation frequency
was 5400 rpm and linear velocity
of the ˇlter rim was about 36 m/s.
The peak shift was measured to be
∆E = +0.098± 0.016 neV.

We performed this experiment
again in 1998 [15, 16] both with old
and new ˇlters. Some ˇlters were
made of new materials. The results

obtained during this run are in good agreement with the previous ones. Our
investigations showed that neither statistical �uctuations nor any trivial parasitic
effects [15, 16] could explain the peak shift observed in these measurements.

Fig. 5. Calculated transmittivity of the
ˇlters in test experiment

We describe here one of the test ex-
periments. The aim was to exclude from
consideration the hypothesis that observed
changes in the neutron spectrum are due to
interaction of neutron waves with different
imperfections of a rotating disk like macro-
scopic waviness or wedge shaping. In this
experiment we used ˇlter-monochromator
ˇxed at the exit of annular corridor (see
Fig. 4). Neutrons with relatively narrow
spectrum after this ˇlter irradiate another
ˇlter with wide transmission peak (Fig. 5).
This second ˇlter is located just below the
ˇrst one and may be put in rotation with
a motor. The experimental procedure and

data processing were the same as in the main experiment. No change in the peak
position under ˇlter spinning was observed: ∆E = +0.009± 0.024 neV.

Nevertheless in 1999 we designed new ˇlters utilizing Ni(N)ÄTi/Zr layers.
For these ˇlters we did not observed any shift of the transmission peak position
when we changed frequency of ˇlter rotation from 3 Hz to 90 Hz. The obtained
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result [15, 16] was in a dramatic contradiction with the previous one. Another
distinctive feature of these ˇlters is a much less decrease of a peak area under
rotation (less than 3%), which indicates the better quality of interfaces. The
summary of the results are presented in table below.

Measured shift of the resonance position under variation of initial wave vector from
k0

∼= 8.5 · 105 cm−1 to k0
∼= 5 · 106 cm−1

Date Filter-monochromator ∆E, neV Peak area

Number Type decrease, %

1 1997 1 Ni(N)ÄTi/Zr +0.098 ± 0.016
2 1998 1 Ni(N)ÄTi/Zr +0.093 ± 0.024 10
3 1998 1 Ni(N)ÄTi/Zr (Improved +0.075 ± 0.019

experimental conditions)
4 1998 2 Ni(N)ÄTi splitted +0.180 ± 0.045 40
5 1998 3 Ni(N)ÄTi +0.202 ± 0.085 40
6 1998 4 Ni(N)ÄTi/Zr (nine layers) +0.040 ± 0.014 6
7 1999 5 NiV(7%)ÄTi +0.084 ± 0.017 17
8 1999 6 Ni(N)ÄTi/Zr splitted −0.060 ± 0.082 < 3
9 1999 7 Ni(N)ÄTi/Zr +0.001 ± 0.007 < 3

For most of the measurements, we used ˇve-layer ˇlters with three-barrier
potential structure. Such quasi-symmetrical structure is characterized by the split-
ting of the resonance levels. The value of this splitting is deˇned by a width of
the central barrier located between the wells. For ˇlters 1Ä3, 5, and 7 (see table),
such splitting is less than the width of the resonance and two states degenerate.
For ˇlters 2Ä6, two resonance levels are resolved clearly [14, 17]. Filter 4 is a
nine-layer ˇlter with a relatively wide resonance.

So we may summarize our results as follows: 1) for a number of ˇlters we
observed the transformation of the transmitted spectrum under rotation; 2) this
transformation has a complicated character and includes a shift of the peak po-
sition; 3) this phenomenon is not universal and depends on the ˇlter properties.
To explain these results, one may suppose that the origin of this transformation
is neutron scattering at internal imperfections of ˇlter. Obviously such scattering
depends on the value of the wave vector and thus may vary when ˇlter rotates.

2. FILTER IMPERFECTIONS AND MODIFICATION
OF THE TRANSMITTED NEUTRON SPECTRUM

2.1. Neutron Scattering by Roughness at Resonance Tunneling. It is obvi-
ous that materials of a real ˇlter are not absolutely homogeneous and interfaces
between layers are not ideally �at and smooth. In both cases the deviation from
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the ideal structure may be described via introduction of perturbation potential
∆U(r), which results in scattering. The latter occurs in addition to the trans-
mission through, re�ection from, and refraction in the mean optical potential
U(z) = 〈∆U(r)〉 averaged over lateral directions. This part of the interaction
potential is a function of the only coordinate z normal to the sample surface. If
the scattering effect is weak then corrections to the exact wave function found
for the main potential U(z) can be accounted for within the framework of the
perturbation theory approach, i.e. of the Distorted Wave Born Approximation
(DWBA) [28Ä32]. Scattering cross section and scattering amplitude in DWBA
are then deˇned as

dσ

dΩ
= |f(kf ,k)|2 , f(kf ,k) = − m

2π�2

∫
drΨi(r,k)∆U(r)Ψ̃f (r,kf ), (6)

where Ψi(r,k) = ψ(z,pi) exp (i, κiρ) and Ψ̃f (r,kf ) = ψ̃(z,pf ) exp (−i, κiρ)
are exact solutions for the same potential U(z), but with different asymptotic
conditions: Ψi(r,k) is the wave function of neutrons, which are free before

Fig. 6. Scattering by roughness

interaction with the potential and im-
pinging onto the sample surface with
the wave vector k = {κi,pi}, while
Ψ̃f (r,kf ) corresponds to the propaga-
tion of neutrons asymptotically free at
inˇnity and falling onto the sample with
wave vector kf = {−κi,−pf} reversed
with respect to that of scattered from the
sample [31] (see Fig. 6). Here pf =
kf sin (Θf ), and pf = −kf sin (Θf )
are transverse, while κi and κf are lateral
components of the incoming and outgo-

ing wave vectors, respectively; Θi is the glancing angle of incidence and Θf

is the glancing angle of scattering, �
2k2

i = 2mEi, �
2k2

f = 2mEf , Ei and Ef

are energy of incident and, respectively, ˇnal neutron state. At elastic scattering
Ei = Ef .

Substitution of the explicit form wave function allows one to rewrite the
scattering cross section via the Fourier transform of the correlator 〈∆U(r)∆U(r′)〉
of the scattering potential �uctuations:

dσ

dΩ
=

( m

2π�2

)2
∫

drdr′ eiq(ρ−ρ′)ψ(z,pi)ψ∗(z′,pi)×

× 〈∆U(r)∆U(r′)〉ψ(z,pf )ψ∗(z′,pf ), (7)

where ρ and ρ′ are the lateral coordinates, q = ρ − ρ′ is the lateral momentum
transfer.
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It is easy to see that modulus of the scattering amplitude |f(pi,pf )| increases
dramatically when both incident and scattered wave vectors satisfy (or almost
satisfy) condition for the resonance tunneling. If the initial wave function is
normalized to unity, i.e. |Ψi(0,k)|2 = 1 at the ˇlter surface, then corresponding
gain factor reaches a value of the order of |Ψ(z,kr)|2 at a certain distance z
where a scattering object (imperfection) is located. For a ˇfe-layer ˇlter this gain
factor may reach 100 (see Fig. 7). As a scattering cross section is proportional to
amplitude squared, so one may expect the scattering to become very strong at the
resonance.

Fig. 7. Calculated |Ψ|2(z, E) inside a ˇve-layer interference ˇlter. Resonance splitting is
of the order of the width of the resonance

Indeed our calculations based on the DWBA show the unlikely large value of
the cross section in the close vicinity of the resonance conditions. This means that
the DWBA, being a speciˇc version of the perturbation theory, is not applicable
within this range, where one should take into account modiˇcation of the wave
functions in Eq. (6) due to scattering, i.e. solve the problem self-consistently.
This would result in an effective additional broadening of the resonance lines due
to the loss of intensity scattered from the well into the solid angle. If the total
scattering cross section is, however, small with respect to the loss of intensity due
to the ˇnite width of the walls, then scattering contribution to the total broadening
can be neglected. Otherwise, one may hope that DWBA describes the problem
qualitatively.

The results of DWBA calculation under the assumption of uncorrelated rough-
ness are as follows:

a) The scattering cross section is very large when both initial and ˇnal normal
components of the k vector pi, pf are close to the resonance value kr. The waves
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thus scattered may propagate either to the down hemisphere (transmission) or to
the upper one (nonspecular re�ection) resulting in a decreasing of a peak area.

b) The peak area also decreases due to scattering to the region out of the
resonance. This decreasing is partly compensated by inverse process Å scattering
into the peak from far out-of-resonance regions. This process is also accompanied
by off-specular scattering.

c) Calculations did not indicate any shift of the transmitted neutron spectrum.
d) When lateral component of the initial k vector increases due to ˇlter

moving, the scattering cross section decreases very fast.
Taking this into account, one may conclude that rotation is able to in�uence

the intensity of the tunneled neutrons, but it causes its increase in apparent
contradiction with experimental results. This discouraging conclusion is based on
the results of traditional form of DWBA valid only for the case of purely elastic
scattering, i.e. from a potential independent of time. This is certainly not the case
for moving inhomogeneities, which implies explicit dependence of the potential
∆U(r, t) on t.

Then one should develop perturbation theory for the solution of nonstationary
Schréodinger equation with time-dependent perturbation. This can easily be done
within the DWBA applicability range. Indeed, taking into consideration that the
mean potential U(z) is independent of time, one can use the same exact reference
wave functions as found from the stationary Schréodinger equation Ψi(r,k, t) =
Ψi(r,kr) eiεit and Ψ̃f(r,kf , t) = Ψ̃f(r,kf ) eiεf t, modiˇed with oscillating in
time exponents, and write down the equation for double differential cross section
as follows [32]:

d2σ

dΩdω
=

m2

8π2�5

∫
drdr′dt eiωtΨi(r,k)Ψ∗

i (r
′,k)×

× 〈∆U(r, t)∆U(r′, 0)〉Ψ̃∗
f (r′,k′)Ψ̃f (r,k′), (8)

where �εi = Ei, �εf = Ef and �ω = Ef −Ei is the energy transfer. Taking into
account that at moving with the velocity vector V the correlator
〈∆U(r, t)∆U(r′, 0)〉 = 〈∆U(r−Vt)∆U(r′)〉 and Eq. (8), one immediately ˇnds
that

d2σ

dΩdω
=

dσ

dΩ
= δ(ω − qv/�). (9)

Here it is very important to note that q = kf (εf ) − ki(εi) and the equation
�ω = qv have solutions depending on angles of incidence and scattering as well
as on the velocity V. At certain values of those parameters it may have no
solution at all.

Later we consider the model that can explain observed results but now we
present experimental data that revealed the distinguishing features of the resonance
scattering.
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2.2. Neutron Resonance Scattering and Mode Mixing. According to Eq. (6)
the gain in scattering may take place not only for the small angle scattering when
k vectors of initial and scattered waves are both close to the same resonance
value kr but also for a scattering when initial and scattered k vectors correspond

to different resonances k ≈ k(i)
r → k′ ≈ k(j)

r , where i, j = 1, 2 is the number
of resonance. To verify this statement, two interference ˇlters, each having two
resonances in the spectrum of transmitted neutrons, have been examined. These
resonances are resolved clearly by the spectrometer. The modulus of undisturbed
wave function inside each ˇlter is presented in Fig. 8. Note that ®energy¯ scale

in Fig. 8 corresponds to the value En =
�

2

2m
k2

0⊥ but not to the total energy. This

means that transition between two different resonances in transmission may be
caused by the scattering which does not change the total neutron momentum but
only one of its components. We performed the measurements with two ˇlters of
different roughness to reveal clearly the effect of resonance scattering.

Fig. 8. Calculated |Ψ2|(z, E) inside a ˇve-layer interference ˇlter. Resonance splitting is
greater than the widths of the resonance

The measurements were done at slow (3 Hz) and fast (90 Hz) rotations and
with two different spectra of incident neutrons. One of them is the spectrum at
the exit of the corridor while another one is modiˇed by transmission of a thin
ˇlm of Fomblin oil, deposited onto 10 µm aluminum foil (see Fig. 9) attached
just below the corridor. In the last case, one may expect the intensity of the right
peak on the scanning curve to be diminished signiˇcantly. At the same time the
resonance scattering has the ability to reconstruct partly this peak, and the degree
of this reconstruction depends on the neutron wavelength in the ˇlter's frame of
reference.
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Fig. 9. Modiˇcation of the incident spectrum with Fomblin oil. Points represent count
rate with and without spectrum ˇltering by ®Fomblin¯. Dash line represents relative
transformation of the spectrum

Fig. 10. Mode mixing due to resonance scattering

Figure 10 shows results of these measurements with two different ˇlters. Data
presented in the upper row correspond to the unmodiˇed incident spectrum, and
the lower ones, to the modiˇed spectrum. One may easily see that ˇlters feature
very different properties. The intensity of neutrons, tunneled through the ˇrst ˇlter
(left column) decreases remarkably when ˇlter rotates with a high frequency. This
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decreasing is about the same for both resonances. Notice that two different scales
are used to plot the count rate for two spinning velocities. Besides, fast rotation
is accompanied by the increasing of background. It is easy to see that the form of
the transmitted spectrum depends on the rotation frequency. Under ˇlter spinning
both resonances get narrower and shift remarkably. With this ˇlter all features of
spectrum transformation may be seen by eye without any special data treatment.
There is good reason to believe that this ˇlter has magnetic inhomogeneities and
these inhomogeneities increase in time. With modiˇed spectrum we observed
that the intensity of the right peak depends much more crucially on the rotation
frequency than the intensity of the left peak.

So, the observed patterns are in good qualitative agreement with the assump-
tion of partial reconstruction of spectrum due to resonance scattering. Indeed the
rotation of ˇlter causes an increase in the neutron wave vector in the ˇlter's frame
of reference and thus a decrease of the scattering cross section, which in turn di-
minishes the effect of spectrum reconstruction. At the same time for the ˇlter with
small inhomogeneities (Fig. 10, right column) the right resonance is suppressed
signiˇcantly with modiˇcation of an incident spectrum and its intensity depends
only slightly on the rotation frequency. From here on we will use the term
®mode-mixing¯ for the resonance coupling effect observed in these experiments.

2.3. Neutron Scattering at Correlated Roughnesses. Here we continue to
discuss our results obtained with ˇlters that feature only one resonance in trans-
mission. One may assume that detected decrease of a peak area and accompanied
increase of the background result from the neutron scattering by moving rough-
nesses or inhomogeneities. At the same time the calculations of the scattering
cross section in the ˇrst order of DWBA do not conˇrm this assumption. How-
ever it should be remembered that these calculations were made under assumption
of noncorrelated scatters, whereas the joint action of correlated scatters may differ
signiˇcantly from the action of a single scatter. Fast movement of an object with
correlated scatters on/in it may lead to new effects in scattering which are not
observed when the sample is at rest. Recently observed neutron diffraction by
a moving grating [8, 18, 19] provides an example where a regular structure of a
grating comprises a limiting case of correlated scatters.

Let us assume that a regular structure with a space period L is moving with
a velocity V across the neutron beam along the positive direction of the y axis.
Generally waves passed through the different areas of the grating differ in their
intensities or/and phases. Thus the moving grating modulates the transmitted
waves at each point of the beam cross section with the frequency Ω = 2πV/L.
The resulting spectrum of the transmitted waves will therefore be discrete and
described by the following wave function:

Ψ(x, t) =
∞∑

n=−∞
an exp [i(knx − ωnt)], (10)
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where ωn = ω + nΩ, and kn = k(1 + n(Ω/ω))1/2 for the case of Ω/ω � 1. The
resulting frequencies ωn correspond to the particle energies En = �(ω + nΩ),
where � is the Planck constant. The intensities of partial waves are In |an|2,
where an are the Fourier coefˇcients of the modulation function.

In [8, 9], this result was obtained with the use of another and more rigorous
approach. The diffraction problem has been solved by subsequent application
of the Galilean transformation to the wave function. The result for the small
diffraction angles is

Ψ(x, y, t) =
∑

n

cn exp [i(knx + αny − ωnt)], (11)

where αn = (2π/L)n.
Equation (11) differs from Eq. (10) by the diffraction term αny. Besides,

Fourier coefˇcients cn in (10) are obtained from the k ↔ x Fourier transformation
of the spatial variation of the transmitted wave amplitude, while coefˇcients
an in (11) result from ω ↔ t Fourier transformation of temporal variation of
the transmitted amplitude. Equation (11) transforms into Eq. (10) if the grating
velocity V and grating space period L are both become large with the same
modulation time T = L/V . Thus fast moving of grating across the neutron beam
may be considered as temporal modulation of the transmitted neutron wave.
As a consequence the set of coherent waves with the spectrum deˇned by the
modulation function appears.

Fig. 11. Diffraction from the rough interfaces

Coming back to the case of the ˇlter with correlated roughnesses, we can
now predict qualitatively the result of its fast moving. Utilizing the main idea of
the DWBA as a perturbation theory (see, for example, [30]), we may represent
the ˇlter as a combination of an ideal multilayer structure and aperiodic potential
∆U(y, z) caused by correlated roughness or waviness (see Fig. 11).

Zero-order solution for the wave function which describes neutron beam
passed through an ideal multilayer structure may be found with any standard
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method. Due to ideality of the structure this solution is invariant with respect to
the sample movement parallel to the ˇlter surface. At the same time the potential
∆U(y, z) moving along y axis will modulate neutron waves acting as an aperiodic
moving grating. For the transferred energy and momentum, in this case one may
write

∆E ≈ �
πv

�
, ∆Qz ≈ 2π

�

V

vz
, (12)

where � is the correlation length of roughness or waviness, and vz is the normal
component of the neutron velocity.

It is worth noting that in case of resonance transmission even relatively small
deviations from an ideal structure may result in a deep modulation of intensity
and phase of the transmitted wave.

The model described above can explain our experimental results concerning
the peak area and background changes. Indeed as the transferred momentum
is relatively large so all ®accelerated¯ neutrons may pass freely through the
ˇlter-analyser, which gives rise to the additional background. At the same time,
as neutrons with resonance energy exhibit a much stronger scattering, the peak
area decreases. In addition some neutrons may decrease their energy after passing
through a rotating ˇlter. Such ®decelerated¯ neutrons are re�ected by the analyser
and ˇnally are lost.

2.4. Forward Scattering and Interference Cross Section. Shift of the res-
onance position under ˇlter rotation observed in our ˇrst measurements and lack
of any shift in the last measurements is evidently the most intriguing result. As
already noticed above, calculations in the ˇrst order of DWBA do not explain
this effect. However situation changes dramatically if one takes into account the
interference of the scattered wave with that part of the incident wave that passes
through the ˇlter without scattering. Such interference plays an important role
providing the conservation law of the total �ux [31].

Corresponding interference cross section is deˇned as

σti = −4π

k
Im {T ∗f(k,k)}, (13)

where T is the amplitude of transmission through the ideal ˇlter and f(k,k) is
given by Eq. (6) with k = kf . Both values T and f are complex functions. Fig-
ure 12 displays the behaviour of the interference cross section σti in the region of
resonance calculated for our ˇlters. Notice that interference cross section changes
its sign in the region of resonance. Taking into account that positive sign of the
cross section corresponds to the destructive interference decreasing the transmitted
�ux, whereas negative sign corresponds to the constructive interference increasing
the transmitted �ux, one can conclude that the transmitted neutron spectrum will
be effectively shifted to the low-energy region. It is worth to note that due to
1/k factor in (13) this interference effect becomes most important in the event of
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Fig. 12. Interference cross section for the forward scattering in the case of ˇve-layer ˇlter
and spectrum of transmitted neutrons for the ideal ˇlter (dashed line)

normal incident of neutrons onto a ˇlter at rest. In this case, the line shape and
position of the resonance obtained for a nonideal ˇlter greatly differs from that
obtained for the ideal one with the same set of parameters. Under rotation, when
total k vector is large enough, the effect of interference becomes relatively small.

This means that ˇlter rotation leads to the reconstruction of the spectrum
typical for an ideal ˇlter, which in turn leads to the shift of the resonance position
to the high-energy region. It is precisely the result we observed in our experiments
(see table).

Fig. 13. Interference cross section for the forward scattering in the case of nine-layer ˇlter
used in the test experiment and spectrum, and spectrum of transmitted neutrons, which
was formed by premonochromator (dashed line)

This model can be also applied to explain results obtained in the test exper-
iment described in Sec. 1.3. The variation of spectrum in this special case was
found to be relatively small since the interference cross section calculated for
the broad-band spinning ˇlter differs noticeably from zero only in regions where
there are no neutrons passed through the ˇlter-premonochromator (Fig. 13). So
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the forward scattering interference in the spinning ˇlter has no effect on the ˇnal
transmitted spectrum.

CONCLUSION

We may summarize that the spectrum of UCN passed through a nonideal
interference ˇlter differs from the solution for one-dimensional problem. Gen-
erally it is distorted and shifted due to scattering by roughness and ˇlter's in-
homogeneities. Resonance nature of the transmission leads to the gain factor
in scattering cross section of some orders of magnitude. This effect depends
strongly on the total wave vector and becomes essential only for the very long-
wave-length neutrons. Exploring the DWBA method, one may explain qualitative
effects of the resonance shift and mode mixing observed with ˇlters which feature
relatively strong scattering. At the same time, using ˇlters which feature only a
weak scattering we did not observe any shift of the resonance within the limits
of experimental error. Based on these results one may conclude that phenomena
of the shift of the resonance position are caused at least mostly by the resonance
scattering of neutrons during the tunneling.
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