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An Algorithm for Construction of Dipole Magnets
Computer Models with Quality Control and Its Application
for the PANDA Forward Spectrometer

This paper presents an algorithm for creating computer models of spectrometer
dipole magnets with required parameters. It contains the following steps: 1) analyti-
cal estimates for ampere turns, magnet length and yoke thickness; 2) construction of
a computer model for the coil and formation of the magnet yoke; 3) quality control
of the computer model; 4) output of obtained magnet characteristics.

The following input parameters are used in the proposed algorithm: the magnet
bending power, the magnet working region, steel type and conductor material. As
an example of its application we consider the problem of creation of the computer
dipole model for the PANDA experiment at GSI (Darmstadt).

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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INTRODUCTION

The main requirements to spectrometer dipole magnets usually are a mag-
nitude of the magnet's bending power, a volume of working region, operating
conditions, a conductor material and a steel type. Based on the input parameters,
the process of the computer dipole model development can be described by the
algorithm:

1) estimate the ampere turns, the magnet length and the yoke thickness by
means of analytical formulas;

2) construct a computer model for the coil and form a geometry of the magnet
yoke;

3) analyze the quality of the developed computer model;
4) calculate the most important magnet characteristics, for example:
Å functions of the ˇeld along the rays in the polar coordinate system centered

in the interaction point to estimate the bending power;
Å ˇeld behavior in the iron to estimate saturation effects;
Å body forces and torques acting on conductors with using the formula:

J × B;
Å ˇeld behavior around the magnet;
Å stored energy;
Å forces acting on the magnetic parts (Maxwell stress) and others.
As an example of the algorithm application, we consider the problem of

creating the computer dipole model for the PANDA experiment at GSI, Darmstadt.
The main requirements to the dipole magnet of the PANDA Forward Spec-

trometer are the following:
Å the magnet bending power should be greater than 1.5 T·m and less or

equal to 2 T·m;
Å the acceptance angles are ±5 degrees in vertical plane and ±10 degrees

in horizontal plane in the polar coordinate system with the centre outstanding
from the magnet at the distance of 3.5 m;

Å it is desirable to use standard materials for steel and conductor.
There is an additional condition: the magnet length must be greater or equal

to 2 m and less or equal to 2.5 m. It was also suggested to introduce an iron plate
into the dipole to protect a beam against the magnetic ˇeld. The iron plate should
have 10 cm in thickness and the full width of the dipole in other two directions.
The beam channel of 7Ä8 cm in diameter inside the plate is presupposed.
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In accordance with these requirements, a computer dipole magnet model
with iron plate (Fig. 1) has been constructed and presented by the authors at the
PANDA collaboration meeting, INP (Juelich), 29 November Ä 1 December 2004.

Let us describe all steps of the algorithm.

Fig. 1. Computer dipole model for the PANDA (1/2 symmetrical part)

1. ANALYTICAL ESTIMATES FOR AMPERE TURNS, MAGNET
LENGTH AND YOKE THICKNESS

We use static Maxwell's equations in the form

∇ ·B = 0, ∇× H = 0, B = µ0µH

for a magnetic region,

∇ ·B = 0, ∇× H = J, B = µ0H
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for a nonmagnetic region, and

[B · n] = 0, [H × n] = 0

for a boundary between the two regions, where B,H,J are magnetic �ux density,
ˇeld intensity and current density, respectively; µ is a function of magnetic
permeability; and µ0 is the magnetic constant. For simplicity we assume that in
the Cartesian coordinate system the magnet center has zero coordinates, and By

is the main ˇeld component. Let us estimate the magnet length and ampere turns
using such an information about the magnet as the given bending power and the
volume of the working region. We will presuppose that operation conditions of
the magnet permit one to apply low carbon steel 3 and that the permissible level
of average yoke saturation is less than 1.5 T.

From the equations mentioned above and from the Gauss theorem about
circulation we have ∫

L

H · dl = 2 · Jz, (1)

where L is a closed contour (see Fig. 2 or Fig. 3).

Fig. 2. Cross section of a
magnet with coil placement
of the ˇrst type

Fig. 3. Cross section of a magnet with
coil placement of the second type

Due to the symmetry and construction peculiarities of the dipole magnets
from Eq. (1) we obtain

1
µ0

B0h0 ≈ Jz,

where B0 is the ˇeld in the magnet center. If C denotes the current density and
SC is the area of the coil cross section, then

Jz = CSC
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and
B0 ≈ µ0

h0
CSC =

µ0

h0
Cx2. (2)

Here for simplicity we presuppose that SC = x2. Let d be a magnet length. For
the bending power B̂ we have

d/2−x∫
−d/2+x

Bydz = B̂.

From approximate formula

B̂ =

d/2−x∫
−d/2+x

Bydz ≈ B0 · (d − 2x)

and from Eq. (2) we obtain the following cubic equation:

B3
0 −

(
Cµ0

4h0

)
d2B2

0 +
(

Cµ0

4h0

)
2dB̂B0 −

(
Cµ0

4h0

)
B̂2 = 0. (3)

The approximate solutions of Eq. (3) are presented in Table 1 for the following
values of parameters: C = 220 A/cm2, h0 = 0.5 m, B̂ = σ · 2(T · m), σ =
0.8, 0.9, 0.95, 1.0, d = 2.0, 2.1, 2.2, . . . , 3.2 m.

Table 1

d (m) 2.0 2.1 2.2 2.3 2.4 2.5 2.6

σ = 0.8 B0 (T) 1.99 1.52 1.30 1.15 1.04 0.96 0.89
x (m) 0.60 0.52 0.48 0.46 0.43 0.42 0.40

σ = 0.9 B0 (T) Å Å 1.60 1.39 1.24 1.13 1.04
x (m) Å Å 0.54 0.50 0.47 0.45 0.43

σ = 0.95 B0 (T) Å Å 1.79 1.52 1.34 1.22 1.12
x (m) Å Å 0.57 0.52 0.49 0.47 0.45

σ = 1.0 B0 (T) Å Å Å 1.66 1.46 1.31 1.20
x (m) Å Å Å 0.55 0.51 0.49 0.47

d (m) 2.7 2.8 2.9 3.0 3.1 3.2

σ = 0.8 B0 (T) 0.83 0.78 0.74 0.70 0.67 0.63
x (m) 0.39 0.38 0.37 0.36 0.35 0.34

σ = 0.9 B0 (T) 0.97 0.90 0.85 0.80 0.76 0.73
x (m) 0.42 0.40 0.39 0.38 0.37 0.36

σ = 0.95 B0 (T) 1.03 0.97 0.91 0.86 0.81 0.78
x (m) 0.43 0.42 0.41 0.39 0.38 0.37

σ = 1.0 B0 (T) 1.11 1.03 0.97 0.91 0.87 0.82
x (m) 0.45 0.43 0.42 0.41 0.40 0.30

4



For σ = 0.9, 0.95, 1.0, d = 2, 2.1 m and σ = 1.0, d = 2.2 m the equation
has no solutions.

Table 1 shows that B0 ≈ 2 T for σ = 0.8 and d = 2 m (bending power is
about 1.6 T·m). If we use the steel with magnetic characteristic from Fig. 4, then
the permissible level of the ˇeld entering the pole is less than 1.5 T. Therefore,
we should use d > 2 m.

Fig. 4. The magnetic characteristic
µ(|B|) for steel 3

Fig. 5. The �ux rotation in volume V

Let us estimate the thickness of the iron yoke using the magnetic steel
characteristic. Presuppose that the magnetic �ux rotates in the yoke as in Fig. 5
and Bz ≈ 0. Then from the formula∫

V

∇ · BdV =
∫

∂V

B · ndS,

where n is an outward normal vector, we obtain the approximations

B1,yd1 ≈ B2,xd2, B2,xd2 ≈ −B3,yd3.

Since B1 is the ˇeld entering the pole and d1 is deˇned by the volume of a
working region, we can estimate d2, d3 choosing B2,x, B3,y from the permissible
level of a yoke saturation. Futher the obtained estimates are an additional input
information for the next step of the algorithm.

2. CONSTRUCTION OF A COMPUTER MODEL FOR THE COIL
AND FORMATION OF THE MAGNET YOKE

Resistive coils are usually used for spectrometer dipole magnets in view of
their simple construction. The so-called ®racetrack¯, ®bedstead¯ coil types and
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the coil wound on the surface of a cylinder are widely spread but they are not
optimal for the class of spectrometers with a magnet working region in the form
of a truncated pyramid or a cone. In this case for the coil description we have to
take into account that the coil should be placed around the working region and it
is useful to introduce special angles ϕ, θ, ψ which describe rotations of a point
x = (x1, x2, x3) around the coordinate axes according to formulas [1]:

A1(ϕ) =


 cosϕ − sinϕ 0

sin ϕ cosϕ 0
0 0 1


 , A2(θ) =


 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ


 ,

A3(ψ) =


 1 0 0

0 cosψ − sinψ
0 sin ψ cosψ


 .

If we calculate the coil ˇeld BS by the BiotÄSavart's law

BS(x) =
µ0

4π

n∑
i=1

∫
ΩS,i

Ji(y) ×∇y
1

|x − y|dΩy ,

where ΩS,i (i = 1, . . . , n) are the coil elements, |x − y| is the distance between
points x and y, then we have

BS(x) =
µ0

4π

n∑
i=1

∫
ΩS,i

AiJi(y
′
) × Ai∇y′

1
|x − y′ |dΩy′ , (4)

where Ai = A1(ϕi)A2(θi)A3(ψi) and y
′

belongs to ith local coordinate system
in which ith coil element has a simple geometry. In view of the conditions
∇ ·BS = 0 and ∇×BS = J in the next section we shall discuss how to control
the accuracy of computations with formula (4).

The area of the coil cross section depends on a chosen conductor material
(usually copper or aluminum) and a cooling method. Figure 6 shows a top view
of the coil model which may be used for the PANDA dipole. Figure 7 presents
the coil ˇeld for plane y = 0 calculated with using the estimates for ampere turns.

In order to construct an additional iron ˇeld, we use the Maxwell's equations
with substitutions: H = ∇u for magnetic regions and H = ∇v + BS/µ0 for air
regions. As a result, we have the mathematical model [2]

∇ · µ∇u = 0 (5)

for a magnetic region,
∇ · ∇v = 0 (6)
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Fig. 6. The magnet cross section by
the plane y = 0.7 m for x � 0

Fig. 7. The coil ˇeld in working region
for plane y = 0

for a nonmagnetic region, with boundary conditions between the two regions

µ(∂u/∂n) = ∂v/∂n + n · BS/µ0,

u = v + vS ,
(7)

and with condition v = 0 at inˇnity points. Here vS is deˇned by equations [3]:

(∇vS − BS/µ0) × n = 0,

vS(x0) = 0,
(8)

where x0 belongs to the boundary. If µ is a constant, then we have a linear
problem and for µ = µ(|∇u|) we obtain a nonlinear case.

Use an iterative process for yoke formation. As a starting point of the
process, a space around the coil is ˇlled by iron in accordance with the analytical
estimates and Figs. 2, 3. Further the following procedure is carried out step by
step:

1) for all elements ωi, i = 1, . . . , k in iron: calculate |Bi| in the middle point
of the ith element;

2) for all elements in iron (1 � i � k): if |Bi| is greater than the permissible
ˇeld level for iron yoke saturation, then the element ωi is ˇlled by air;

3) if the yoke geometry has been changed in such a way, we repeat steps 1
and 2, otherwise the yoke formation process is ˇnished.

On the ˇnal stage the obtained yoke conˇguration should be considered from
the point of manufacturing simplicity.
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Fig. 8. Distribution of |B| in yoke and ˇeld
behavior for plane z = 0 and x, y � 0

Fig. 9. Distribution of |B| in yoke and
ˇeld behavior for plane x = 0 cm and
y � 0

Table 2 and Figs. 8, 9 show the distribution of |B| in the iron yoke of the
PANDA dipole model.

Table 2. The magnet parts saturation

Part V , cm3 1

|V |

∫

V

|B|dV , T

0 � x � 100.625
Front part of the pole 47.0625 � y � 91.5 1.0124

−70 � z � 0

0 � x � 123.75
Back part of the pole 49.5 � y � 97.1875 0.9782

0 � z � 70

99 � x � 175
Upper beam 85 � y � 198 1.3474

−80 � z � 80

149 � x � 276
Side wall 0 � y � 98 1.3798

−80 � z � 80

0 � x � 175
Plate 0 � y � 5 0.5360

−125 � z � 125
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Fig. 10. Average integral SA as a rel-
ative current I/I1 function

Figure 10 presents the average ˇeld in-
tegral SA as a relative current function. This
dependence is an important characteristic of
the magnet model and it is a linear function
in case of a nonsaturated magnet.

In Table 3 and Fig. 10

SA,i =
1

nx · ny

nx∑
k=1

ny∑
m=1

∫
Lkm

By,idL,

Lkm =

{
x =

(
k − 1

2

)
tan 10◦ · 6.8 m/nx;

y =
(

m − 1
2

)
tan 5◦ · 6.8 m/ny;

0 � z � 6.8 cm

}
k = 1, 2, . . . nx, m = 1, 2, . . . ny,

where nx = 48, ny = 24, By,i is the ˇeld obtained with current Ii,

S∗
A,i =

Ii

I1
· SA,1,

and I0 is the nominal current.

Table 3

i 1 2 3 4

Ii 0.5I0 0.75I0 I0 1.1I0

SA,i (T) 0.8647 1.2966 1.7207 1.8833

S∗
A,i (T) 0.8647 1.2971 1.7294 1.9024

|SA,i − S∗
A,i| (T) 0 0.0005 0.0088 0.0191

Figure 10 and Table 3 show that the average integral SA (bending power)
and the extrapolated integral S∗

A,i have practically a linear dependence on current
in the coil. Therefore, under the nominal current the iron yoke saturation is not
observed on the whole in the presented magnet model.
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3. QUALITY CONTROL OF THE COMPUTER MODEL

When solving the magnetostatic problems by the ˇnite element method, we
obtain generalized numerical solutions. Under the correct application of the
method on a sequence of condensed meshes we have a sequence of approximate
solutions convergents to the exact solution of the problem. The accuracy of
numerical solutions of mathematical model (5)Ä(7) depends on both the accuracy
of calculation of the vector BS by formula (4) and the accuracy of solving
the mesh problem. Let us regard possible reasons of the errors arising when
calculating the vector BS . The ˇrst one is in piecewise constant approximation
of the vector J for every element of the coil.

Deˇne ΩS =
n∑

i=1

ΩS,i. Then we have

1
µ0

∇× BS(x)=∇×∇×
∫
ΩS

J
4π|x − y|dΩy=∇


∇

∫
ΩS

J
4π|x − y|dΩy


−

−∇2

∫
ΩS

J
4π|x − y|dΩy=∇

n∑
i=1


 ∫

ΩS,i

∇ · Ji

4π|x − y|dΩy−
∫

∂ΩS,i

J · n
4π|x − y|dΩy


 +J.

From here we obtain the condition

[Ji · n] = 0, y ∈ ∂ΩS,i, i = 1, 2, · · · , n.

Under this condition (1/µ0)∇× BS = J.
Second, errors in calculations of the vector BS appear under integration by

means of cubature formulas. These errors are connected with the limited accuracy
of the cubature formulas and with the restricted accuracy of the isoparametric
transformation [4] used as a rule for mapping, for example, a hexahedron into
the unit cube.

To test the correctness of the vector BS calculation, it is possible to use the
ˇnite-difference operators in the form

Dh
ijB

S(x) = (BS
i (xj + h) − BS

i (xj))/h, 1 � i, j, � 3,

where h is a parameter. Finite-difference operators ∇h· and ∇h× can be con-
structed from these operators. As it follows from the approximation theory, for
the BS calculated correctly we have to obtain the following two sequences:

∇h ·BS(x),∇h/2 ·BS(x), . . . ,∇h/m ·BS(x),

∇h × BS(x),∇h/2 × BS(x), . . . ,∇h/m × BS(x),

which converge to corresponding exact values.
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At the beginning of the model construction process we usually solve linear
and nonlinear problems on rough meshes. The necessity to obtain a more precise
model is connected with mesh reˇnement. There are some approaches for a
quality control of the model for the magnetic system [5]. We use two a posteriori
estimates in terms of characteristics ηi and θi.

The ˇrst one is useful to check how the solutions satisfy the Maxwell's
equations in a classical sense [6]. For the reason we apply the local error indicator
ηi [7] in the air region

ηi =
1

|wi|


|

∫
wi

∇× Bf,2

|Bf,1(yi)|
dw| + |

∫
wi

∇ · Bf,2

|Bf,1(yi)|
dw|


 , (8)

where

Bf,1(x) = µ0

8∑
j=1

ζj∇N
(1)
j (x), Bf,2(x) = µ0

27∑
k=1

ζk∇N
(2)
k (x).

Here ζj , ζk are potential values in points xj , xk. They have been obtained by

solving the problem with linear base functions on some mesh; N
(1)
j , N

(2)
k are

base functions of linear and quadratic elements, respectively; yi is the middle
point of element wi; |wi| denotes the volume of wi. It should also be noted that
we have used the same characteristic ηi for testing the magnetic ˇeld functions
based on measured data [7].

For iron region this local error indicator has another form in view of the
constant piecewise approximation for function µ = µ(|H|). In fact, ∇×Bf,2 = 0
in air due to the property of operator ∇× so this term can be omitted. We have
the same situation in the iron region for H = ∇u. Therefore, for iron ηj can be
deˇned by the formula

ηj =
1

|ŵj |


|

∫
ŵj

∇ · Bint,2

|Bint,1| dw|


 ,

where ŵj is a hexahedron with the nodes obtained as the middle points of the
elements which surround the jth mesh node inside the iron;

Bint,2 =
8∑

m=1

BmN (1)
m (x), Bint,1 =

1
8

8∑
m=1

Bm,

here Bm is the ˇeld in the same middle points.
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The other local error indicator θi is useful to obtain a smooth (more correct)
distribution of the calculated magnetic ˇeld. It has the form [8]:

θi =
1

|wi|

∫
wi

|Bf,1 − Bf,2|
|Bf,1(yi)|

dw.

Small values of θi point to the magnitude of discontinuities in the ˇeld vectors
derived from the linear elements.

Table 4 presents ηi and θi for the calculated ˇeld.

Table 4. Quality characteristics of magnetic ˇeld calculations

Part V , cm3 1
n

n∑
i=1

θi, % 1
n

n∑
i=1

ηi, %

0 � x � tan 10◦(z + 475)
Working region tan 0.81◦(z + 475) � y �
of the magnet � tan 5.82◦(z + 475) 0.561 0.103

−180 � z � 180

0 � x � 100.625
Front part 47.0625 � y � 91.5 1.478 1.199
of the pole −70 � z � 0

0 � x � 123.75
Back part 49.5 � y � 97.1875 2.458 1.152
of the pole 0 � z � 70

0 � x � 175
Upper beam 85 � y � 198 1.123 0.895

−80 � z � 80

149 � x � 276
Side wall 0 � y � 98 1.556 0.375

−80 � z � 80

0 � x � 3.5
Region inside 0 � y � 3.5 0.032 0.052
the channel −110 � z � 110

Using the local error indicators is important when we want to be sure that
the errors of approximate numerical solutions do not have an essential in�uence
on the ˇeld behavior. An example of this situation is the calculated ˇeld inside
the channel in the iron plate because the level of the magnetic ˇeld magnitude
can be comparable with the level of approximation errors.

As is known from the results of the EXCHARM experiment [9], the char-
acteristics ηi should be less than 1% [7]. In Table 4 this average characteristic
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Fig. 11. The behavior of the main ˇeld component in the channel (polar coordinate system),
ϕ = 0◦

inside the channel of 7 cm in diameter is less than 0.052%. This result points
to a sufˇcient good approximation used in the ˇeld calculation. Figure 11 shows
the behavior of main ˇeld component in the channel.

4. OUTPUT OF OBTAINED MAGNET CHARACTERISTICS

Here we present some characteristics of the developed dipole model for the
PANDA experiment. Figures 12Ä18 show the behavior of the ˇeld components
along rays in the polar coordinate system (r, θ, ϕ) with the center at the point
(Ä475;0;0). Table 5 gives the magnet bending power along the rays. Figure 19
presents the distribution of bending power homogeneity in the working region of
the model. To prepare this picture, 1152 integrals have been calculated and we
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ˇnally conclude that the ˇeld integral homogeneity in 90% of the working region
is less than 5%.

Fig. 12. The behavior of the main ˇeld com-
ponent along rays in the polar coordinate
system for ϕ = 22.5◦

Fig. 13. The behavior of the main ˇeld com-
ponent along rays in the polar coordinate
system for ϕ = 45◦

Fig. 14. The behavior of the main ˇeld com-
ponent along rays in the polar coordinate
system for ϕ = 90◦

Fig. 15. The behavior of the Bx ˇeld com-
ponent along rays in the polar coordinate
system for ϕ = 22.5◦

Figures 20, 21 give the distribution of |B| in the iron plate for two sections.
These pictures show that under the nominal current the iron plate saturation is
not observed.
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Fig. 16. The behavior of the Bx ˇeld com-
ponent along rays in the polar coordinate
system for ϕ = 45◦

Fig. 17. The behavior of the Bz ˇeld com-
ponent along rays in the polar coordinate
system for ϕ = 22.5◦

Table 5. The magnet bending power∫
Bydl (T · m)

θ = 2◦ θ = 5◦ θ = 7◦ θ = 10◦

ϕ = 22.5◦ Å 1.7119 1.7056 1.7227

ϕ = 45◦ 1.7185 1.7285 1.7443 Å

ϕ = 90◦ 1.7215 1.7352 Å Å

Fig. 18. The behavior of Bz ˇeld compo-
nent along rays in polar coordinate sys-
tem for ϕ = 45◦

In Figs. 22, 23 the body forces acting on conductors are presented for sym-
metrical parts of the coil. The forces have been calculated in accordance with the
formula

Fi =
∫

ΩS,i

J × BdΩ, i = 1, . . . 23,

where ΩS,i is the enumerated part of the coil volume from Fig. 22.
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Fig. 19. Distribution of bending power homogeneity in the working region

Fig. 20. Distribution of |B| in the iron plate and ˇeld behavior for plane z = 0 and
x, y > 0
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Fig. 21. Distribution of |B| in the iron plate for plane y = 4.125 cm and x � 0

Fig. 22. Top view of the coil and force
components iFx + kFz

Fig. 23. Side view of the coil and force
components jFy + kFz
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CONCLUSION

We have described an algorithm for constructing dipole computer models
with quality control of computations. We did not consider the question of ˇeld
uniformity because it is a special problem. Note that some widely used computer
aided design (CAD) programs intended for computation of 3D magnetic ˇelds
do not have the iterative loop to generate an iron yoke and do not have special
routines for users to control the quality of magnet models. The suggested new
characteristic ηi for the ˇeld quality control has two important advantages:

Å it has a clear physical meaning because in essence it is the Maxwell
equations in every ˇnite element;

Å it is a convenient tool for comparison of the calculated magnetic ˇeld
functions, used for further simulations (for example, for tracking), with functions
based on measured data.

All steps of the algorithm have been demonstrated for the PANDA dipole
magnet model suggested by the authors in accordance with the requirements
formulated in Introduction.
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