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The problem of the square root quantum operators is analyzed from the point of
view of the theoretical group. To this end, we considered the relativistic geometrical
action of a particle in the superspace in order to quantize it and to obtain the spectrum
of physical states with the Hamiltonian remaining in the natural square root form.
The generators of the group SO(3, 1) are introduced and the quantization of this
model is performed completely. The obtained spectrum of physical states, with the
Hamiltonian operator in square root form, is compared with the spectrum obtained
with the Hamiltonian in the standard form (i.e., quadratic in momenta). We show
that the only states that the square root Hamiltonian can operate correspond to the
representations with the lowest weights λ = 1/4 and λ = 3/4.
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INTRODUCTION

The problem of the square root operator in theoretical physics, in particular
in Quantum Mechanics and QFT, is well known [6]. Several attempts to avoid
the problem of locality and quantum interpretation of the Hamiltonian as square
root operator were described in the literature: differential pseudoelliptic opera-
tors, several expansions of the fractional-exponential operator, etc. [5]. The main
characteristic of all these attempts is to eliminate the square root of the Hamil-
tonian. In this manner, the set of operators into the square root operates freely on
the physical states, paying the price to lose locality and quantum interpretation of
the spectrum of a well formulated ˇeld theory.

Recently [15, 16, 17], several works have appeared where the problem of the
quantization procedure and the square root operators was carefully analyzed. In
these articles it was demonstrated for different simple problems (harmonic oscil-
lator, massive particle on hyperboloid, etc.) that the spectrum changes drastically
if the Hamiltonian operator has the square root form or has not: the explicit
computation of the Casimir operator of the symmetry group puts this difference
in evidence.

In this work, strongly motivated for the several fundamental reasons described
above, we considered the simple model of superparticle of Volkov and Pashnev
[1], that is the type G4 in the description of Casalbuoni [2, 3], in order to
quantize it and to obtain the spectrum of physical states with the Hamiltonian
remaining in the natural square root form. To this end, we used the Hamiltonian
formulation described by Lanczos in [7] and the inhomogeneous Lorentz group
as a representation for the obtained physical states [12, 13, 14]. The quantization
of this model is performed completely and the obtained spectrum of physical
states, with the Hamiltonian operator in its square root form, is compared with
the spectrum obtained with the Hamiltonian in the standard form (i.e. quadratic
in momenta). We show that the only states that the square root Hamiltonian
can operate correspond to the representations with the lowest weights λ1,2 = 1/4
and λ1,2 = 3/4. In this manner, we also show that the superparticle relativistic
actions as of Ref. [1] are a good geometrical and natural candidate for describe
quartionic states [9, 10, 11] (semions).

1. THE SUPERPARTICLE MODEL

In the superspace the coordinates are given not only by the spacetime xµ

coordinates, but also for anticommuting spinors θα and θ
.
α

. The resulting metric
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[1, 4] must be invariant to the action of the Poincare group, and also invariant to
the supersymmetry transformations

x′
µ = xµ + i

(
θα (σ)

α
.

β
ξ

.

β − ξα (σ)
α

.

β
θ

.

β
)

; θ′α = θα + ξα; θ′
.
α

= θ
.
α

+ ξ
.
α
.

The simplest super-interval that obeys the requirements of invariance given
above is the following:

ds2 = ωµωµ + aωαωα − a∗ω
.
αω .

α, (1)

where

ωµ = dxµ − i
(
dθ σµθ − θ σµdθ

)
, ωα = θα, ω

.
α = θ

.
α

are the Cartan forms of the group of supersymmetry [4].
The spinorial indexes are related as follows :

θα = εαβθβ, θα = θβεβα, εαβ = −εβα, εαβ = −εβα, ε12 = ε12 = 1

and of analogous manner for the spinors with punctuated indexes. The complex
constants a and a∗ in the line element (1) are arbitrary. This arbitrarity for the
choice of a and a∗are constrained by the invariance and reality of the interval (1).

As we have extended our manifold to include fermionic coordinates, it is
natural to extend also the concept of trajectory of point particle to the superspace.

To do this we take the coordinates x (τ), θ (τ) and θ
.
α

(τ) depending on the
evolution parameter τ . Geometrically, the function action that will describe the
world-line of the superparticle, is

S = −m

∫ τ2

τ1

dτ

√
◦

ωµ

◦
ωµ +a

.

θ
α .

θα −a∗
.

θ

.
α .

θ .
α =

∫ τ2

τ1

dτL
(
x, θ, θ

)
, (2)

where
◦

ωµ=
.
xµ −i

(
.

θ σµθ − θ σµ

.

θ

)
and the upper point means derivative with

respect to the parameter τ , as usual.
The momenta, canonically conjugated to the coordinates of the superparticle,

are
Pµ = ∂L/∂xµ =

(
m2/L

) ◦
ωµ,

Pα = ∂L/
.

∂θα= iPµ (σµ)
α

.

β
θ

.

β
+

(
m2a/L

) .

θα,

P .
α = ∂L/

.

∂θ
.
α
= iPµθα (σµ)α

.
α −

(
m2a/L

) .

θ .
α . (3)
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It is difˇcult to study this system in the Hamiltonian formalism framework because
of the constraints and the nulliˇcation of the Hamiltonian. As the action (2) is
invariant under reparametrizations of the evolution parameter

τ → τ̃ = f (τ)

one way to overcome this difˇculty is to make the dynamic variable x0 the time.
For this, it is sufˇcient to use the chain rule of derivatives (with special care of
the anticommuting variables)∗ and to write the action in the form

S = −m

∫ τ2

τ1

.
x0 dτ

√[
1 − iW 0

,0

]2 −
[
xi − W i

,0

]2 + a
.

θα

.

θα −a∗
.

θ .
α

.

θ
.
α
,

where the Wµ
,0 was deˇned by

◦
ω

0
=

.
x

0 [
1 − iW 0

,0

]
,

◦
ω

i
=

.
x

0 [
xi

,0 − iW i
,0

]
,

whence x0 (τ) turns out to be the evolution parameter

S= − m

∫ x0(τ2)

x0(τ1)

dx0

√[
1−iW 0

,0

]2 −
[
xi−W i

,0

]2 +a
.

θ
α .

θα −a∗
.

θ

.
α .

θ .
α≡

∫
dx0L.

Physically this parameter (we call it the dynamical parameter) is the time measured
by an observer's clock in the rest frame.

Therefore, the invariance of a theory with respect to the invariance of the
coordinate evolution parameter means that one of the dynamic variables of the
theory (x0 (τ) in this case) becomes the observed time with the corresponding
non-zero Hamiltonian

H = Pµ
.
x

µ +Πα
.

θα +Π
.
α

.

θ .
α −L

=

√
m2 −

(
PiP i +

1
a
ΠαΠα − 1

a∗Π
.
αΠ .

α

)
, (4)

where

Πα = Pα + i Pµ (σµ)
α

.

β
θ

.

β
,

Π .
α = P .

α − iPµθα (σµ)α
.
α .

∗We take the Berezin convention for the Grassmannian derivatives: δF (θ) = ∂F
∂θ

δθ.
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That gives the well-known mass shell condition and losing, from the quantum
point of view, the operatibility of the Hamiltonian.

In the work [1], where this type of superparticle action was explicitly pre-
sented, the problem of nulliˇcation of the Hamiltonian was avoided in the standard
form. This means that the analog to a mass shell condition (4) in superspace was
introduced by mean of a multiplier (einbein) to obtain a new Hamiltonian

H =
κ

2

{
m2 − P0P0 −

(
PiP i +

1
a
ΠαΠα − 1

a∗Π
.
αΠ .

α

)}
. (5)

With this Hamiltonian it is clear that in order to perform the quantization of the
superparticle the problems dissapear: P0 is restored into the new Hamiltonian,
and the square root is eliminated. The full spectrum from this Hamiltonian was
obtained in [1] where the quantum Hamiltonian referred to the center of mass
was

Hcm = m2 − M2 +
23/2M

|a|
[
1 − (σ0)α

.

β
s

.

βsα
]

(6)

with the mass distribution of the physical states being the following: two scalar

supermultiplets M1s =
21/2

|a| +
√

2
|a| + m2 and M2s =

√
2
|a| + m2 − 21/2

|a| ; and

one vector supermultiplet Mv = m.
We will show in this work that it is possible, in order to quantize the

superparticle action, to remain the Hamiltonian in the square root form. As
it is very obvious, in the form of square root the Hamiltonian operator is not

linearly proportional to the operator ns = s
.

βsα. The Fock construction for the
Hamiltonian into the square root form agrees formally with the description given
above in Ref. [1], but the operability of this Hamiltonian is over basic states with
the lowest helicities λ = 1/4, 3/4. This means that the superparticle Hamiltonian
preserving the square root form operates over physical states of particles with
fractionary quantum statistics and fractional spin (quartions).

2. HAMILTONIAN TREATMENT IN LANCZO'S FORMULATION

In order to solve our problem from the dynamical and quantum mechanical
points of view, we will use the formulation given in [7, 8]. This Hamiltonian
formulation for dynamical systems was proposed by C. Lanczos and allows us to
preserve the square root form in the new Hamiltonian. We start from expres-
sion (4)

H =

√
m2 −

(
PiP i +

1
a
ΠαΠα − 1

a∗Π
.
αΠ .

α

)
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if
dt

dτ
≡ dx0

dτ
= g

(
P0, Pi, Πα, Π .

α, x0, xi, θα, θ .
α

)
with the arbitrary function g given by

g =

√
m2 − P0P0 −

(
PiP i + 1

aΠαΠα − 1
a∗ Π

.
αΠ .

α

)√
m2 −

(
PiP i + 1

aΠαΠα − 1
a∗ Π

.
αΠ .

α

)
+ P0

(7)

the new Hamiltonian H takes the required ®square root¯ form

H ≡ g (H + P0) =

√
m2 − P0P0 −

(
PiP i +

1
a
ΠαΠα − 1

a∗Π
.
αΠ .

α

)
, (8)

and the variable P0 is clearly identiˇed by the dynamical expression

dP0

dτ
= −g

∂H
∂x0

or
dP0

dτ
= −∂H

∂t
. (9)

This means that P0 = −H + const.
In order to make an analysis of the dynamics of our problem, we can com-

pute the Poisson brackets between all the canonical variables and their conjugate
momenta [1, 2, 3]

·
Pµ= {Pµ,H}pb = 0, (10)

.

θ
α
= {θα,H}pb =

1
a

Πα

H , (11)

.

θ

·
α

=
{

θ
·
α
,H

}
pb

= − 1
a∗

Π
·
α

H , (12)

·
xµ= {xµ,H}pb =

1
H

{
Pµ +

i

a
Πα(σµ)

α
.

β
θ

.

β
+

i

a∗ θα(σµ)
α

.

β
Π

·
β

}
, (13)

·
Πα= {Πα,H}pb =

2i

a∗HP
α

.
β
Π

·
β , (14)

·
Π ·

α
=

{
Π ·

α
,H

}
pb

=
−2i

aH ΠβPβ
.
α, (15)

where P
α

.

β
≡ Pµ (σµ)

α
.

β
. From the above expressions the set of classical

equations to solve is easily seen

··
Πα= −

(
4P2

|a|2 H2

)
·
Π ·

α
, (16)
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··
Π ·

α
= −

(
4P2

|a|2 H2

)
·
Πα . (17)

Assigning
4P2

|a|2 H2
≡ ω2, and having account for Π+

α = −Π ·
α

, the solution of

Eqs. (16) and (17) takes the form

Πα = ξα eiωτ + ηα e−iωτ ,

Π ·
α

= −η ·
α

eiωτ − ξ ·
α

e−iωτ . (18)

By means of the substitution of the above solutions into (14) and (15), we ˇnd
the relation between ξα and ηα

ηα =
(

2
a∗Hω

)
P

α
.

β
ξ

.

β
.

From Eqs. (18) and above we obtain

Πα = ξα eiωτ +
(

2
a∗Hω

)
P

α
.

β
ξ

.

β
e−iωτ , (19)

Π ·
α

= −
(

2
aHω

)
ξβPβ

.
α eiωτ − ξ ·

α
e−iωτ , (20)

where we used the fact that the constant two-component spinors ξα verify ξ ·
α

=
ξ+
α . Integrating expressions (11) and (12), we obtain explicitly the following:

θα = ζα − i

aHω

[
ξα eiωτ − 2

a∗Hω
P

α
.

β
ξ

.

β
e−iωτ

]
, (21)

θ .
α = ζ ·

α
+

i

a∗Hω

[
− 2

aHω
ξβPβ

.
α eiωτ + ξ ·

α
e−iωτ

]
, (22)

where ζα and ζ ·
α

= ζ+
α are two-component constant spinors.

Analogously, from expression (13), we obtain xµ in explicit form

xµ = qµ − 1
H

[
Pµ − ωH

P2

(
ξσµξ

)]
τ+

+
1

Hω

[
1
a

eiωτ
(
ξσµζ

)
+

1
a∗ e−iωτ

(
ζσµξ

)]
+

+
Pµ

2P2

[
ζαξαeiωτ − ζ

·
α
ξ ·

α
e−iωτ

]
. (23)
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3. QUANTIZATION

Because of the correspondence between classical and quantum dynamics, the
Poisson brackets between coordinates and canonical impulses are transformed into
quantum commutators and anti-commutators

[xµ,Pµ] = i {xµ,Pµ}pb = −igµν ,

{θα,Pβ} = i {θα,Pβ}pb = −iδ α
β ,{

θ
·
α,P ·

β

}
= i

{
θ

·
α,P ·

β

}
pb

= −iδ
·
α

·
β

, (24)

and the new Hamiltonian (8) operates quantitatively as follows:√
m2 − P0P0 −

(
PiP i +

1
a
ΠαΠα − 1

a∗Π
.
αΠ .

α

)
|Ψ〉 = 0, (25)

where |Ψ〉 are the physical states. From (anti)commutation relations (24) it is
possible to obtain easily the commutators between the variables ξα, ξ ·

α
, ζα, ζ ·

α
,

qµ, Pµ{
ξα, ξ ·

α

}
= −Pα

.
α,

{
ζα, ζ ·

α

}
= −

(
1

2P2

)
Pα

.
α, [qµ,Pµ] = −igµν.

(26)
To obtain the physical spectrum we use the relations given by (26) taking the
Hamiltonian in the following form:

H =

√
m2 − P0P0 − PiP i − 23/2

√
(Pµ)2

|a| − 23/2

|a|
√

(Pµ)2
ξαP

α
.

β
ξ

.

β
. (27)

Passing to the center-of-mass system, and deˇning new operators sα = (1/
√

M)ξα,
s .

α = (1/
√

M)ξ .
α, dα =

√
2Mζα, d .

α =
√

2Mζ .
α, where M = P0, Hcm is

Hcm =

√
m2 − M2 +

23/2M

|a|
[
1 − (σ0)α

.

β
s

.

βsα
]

(28)

being {
sα, s ·

α

}
= − (σ0)α

.
α

{
dα, d ·

α

}
= − (σ0)α

.
α (29)

the anti-commutation relations of the operators sα, s .
α, dα, d .

α. Now the question
is: how the square-root H Hamiltonian given by expression (28) does operate
on a given physical state? The problem of locality and interpretation of the
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operator like (25) is known very well. Several attemps to avoid these problems
were given in [5, 6]: differential pseudoelliptic operators, several expansions
of the fractional-exponential operator, etc. The main characteristic of all these
attempts is to eliminate the square root of the Hamiltonian. In this manner, the
set of operators into the square root operates freely on the physical states, paying
the price to lose locality and quantum interpretation of the spectrum of a well
possesed ˇeld theory.

Our plan is: to take the square root to a bispinor in order to introduce the
physical state into the square root Hamiltonian. In the next section we will
perform the square root of a bispinor and obtain the mass spectrum given by the
Hamiltonian H.

4. MASS SPECTRUM AND SQUARE ROOT OF A BISPINOR

The square root from a spinor was extracted in Kharkov in 1965 by S. S. San-
nikov [13]. Taking the square root from a spinor was performed also by
P. A. M. Dirac [14] in 1971.

We know that the group SL(2, C) is locally isomorph to SO(3, 1), and
SL(2, R) is locally isomorph to SO(2, 1). For instance, the generators of the
group SO(3, 1) for our case can be constructed from the usual operators a, a+

(or q and p) in the following manner. We start from an irreducible unitary inˇnite-
dimensional representation of the HeisenbergÄWeyl group, which is realized in
the Fock spaces of states of one-dimensional quantum oscillator [10, 11, 12].
Creation operators and annihilation operators of these states obey the conventional
commutation relations [a+, a] = 1, [a, a] = [a+, a+] = 0. To describe this
representation to the Lorentz group one can also use the coordinate-momentum

realization (q, p = −i
∂

∂q
) of the Heisenberg algebra, which relates to the a, a+

realization by the formulas

a+ =
q − ip√

2
, a+ =

q + ip√
2

(30)

as usual. Let us introduce the spinors

Lα =
(

a1

a+
1

)
, L ·

α
=

(
a2

a+
2

)
. (31)

The commutation relations take the form

[Lα, Lβ] = iεαβ,

[
L ·

α
, L ·

β

]
= iε ·

α
·
β
. (32)
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The generators of SL(2, C) are easily constructed [11] from Lα and L ·
α

Sαβ ≡ iSµ(σµ)αβ =
1
4
{Lα, Lβ} ,

S ·
α

·
β
≡ iSµ(σµ) ·

α
·
β

=
1
4

{
L ·

α
, L ·

β

}
, (33)

and satisfy the conmutation relation

[Sµ, Sν ] = −iεµνρS
ρ. (34)

Then the quantities

Φα ≡ 〈Ψ|Lα |Ψ〉 Φ ·
α
≡ 〈Ψ|L ·

α
|Ψ〉 (35)

are the two-components of a bispinor, and |Ψ〉 is the square root of this bispinor,
that is very easy to verify. Notice that the four components of the bispinor operate
on the same function |Ψ〉. In terms of q the basic vectors of the representation
can be written as [10, 12, 13]

〈q |n〉 = ϕn (q) = π−1/4 (2nn!)−1/2
Hn (q) e−q2/2, (36)∫

dqϕ∗
m (q) ϕn (q) = δmn (37)

(where Hn (q) are the Hermite polynomials) and form a unitary representation of
SO (3, 1), and

|n〉 = (n!)−1/2 (
a+

)n |0〉 (38)

the normalized basic states where the vacuum vector is annihilated by a. The

Casimir operator, that is SµSµ, has the eigenvalue λ(λ − 1) = − 3
16

(for each

subgroup ISO(2, 1) given by Eq. (33)) and indeed corresponds to the represen-
tations with the lowest weights λ = 1/4 and λ = 3/4. The wave functions
which transform as linear irreducible representation of ISO(2, 1), subgroup of
ISO(3, 1) generated by operators (33) are

Ψ1/4 (x, θ, q) =
+∞

k = 0
∑

f2k (x, θ)ϕ2k (q) , (39)

Ψ3/4 (x, θ, q) =
+∞

k = 0
∑

f2k+1 (x, θ)ϕ2k+1 (q) . (40)

We can easily seen that the Hamiltonian H (28) operates over the state |Ψ〉,
which become into H as its square Φα and Φ .

α. It is natural to associate, up a
proportional factor, the spinors dα and d ·

α
with

dα →
(
Φ1/4

)
α
≡

〈
Ψ1/4

∣∣Lα

∣∣Ψ1/4

〉
, d ·

α
→

(
Φ1/4

)
·
α
≡

〈
Ψ1/4

∣∣L ·
α

∣∣Ψ1/4

〉
(41)
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and of analog manner the spinors sα and s ·
α

with

sα →
(
Φ3/4

)
α
≡

〈
Ψ3/4

∣∣ Lα

∣∣Ψ3/4

〉
, s ·

α
→

(
Φ3/4

)
·
α
≡

〈
Ψ3/4

∣∣L ·
α

∣∣Ψ3/4

〉
. (42)

Relations (41) and (42) give a natural link between the spinors ξα

(
ξ ·

α

)
and

ζα

(
ζ ·

α

)
, solutions of the dynamical problem, with the only physical states that

can operate freely with the Hamiltonian H: the ®square root¯ states |Ψ〉 from the
bispinors Φα.

Commutation relations (29) obey the Clifford's algebra for spinorial creation-
annihilation operators. In this manner, operators sα and dα in the representation
given by the associations (41) and (42) acting on the vacuum give zero: sα |0〉 =
dα |0〉 = 0. The Fock's construction in the center of mass consists in the following
vectors:

S1 = |0〉 eiMt, Ξ1α = d ·
α
|0〉 eiMt, P1 = d

·
β
d ·

β
|0〉 eiMt,

Ξ2α = s ·
α
|0〉 eiMt, Vαβ = s ·

α
d ·

β
|0〉 eiMt, Ξ3α = s ·

α
d

·
β
d ·

β
|0〉 eiMt,

P2 = s
·
αs ·

α
|0〉 eiMt, Ξ4α = d ·

α
s

·
βs ·

β
|0〉 eiMt,

S2 = d

·
β
d ·

β
s

·
αs ·

α
|0〉 eiMt.

(43)

From expression (28) and taking into account that the number operator is

s
.

βsα ≡ ns, because s
.

β and sα work as creation-annihilation operators, we can
easily obtain the mass for the different supermultiplets :

i) ns = 0 → M1s = −21/2

|a| +

√
2

|a|2
+ m2; Scalar supermultiplet

(S1, Ξ1α, P1).
ii) ns = 1 → Mv = m; Vector supermultiplet.

iii) ns = 2 → M2s =

√
2

|a|2
+ m2 +

21/2

|a| ; Scalar supermultiplet.

We emphasize now that the computations and algebraic manipulations given
above were with d ·

α
→

(
Φ1/4

)
·
α

and s ·
α
→

(
Φ3/4

)
·
α

(the square of the true states)
into the square root Hamiltonian. Notice from expressions (35), (41) and (42)
that the physical states for the Hamiltonian in the square root form are one half
the number of physical states for the Hamiltonian quadratic in momenta.

Looking at commutation relations (29) one can see that the square norm of
the vector supermultiplet and the states Ξ1α, Ξ4α becomes negative (i.e. the
spectrum has ®ghosts¯).
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On the other hand, there is the possibility in the discussed problem to elim-
inate these ®ghost states¯. This possibility is connected with the fact that the
product of the masses of scalars supermultiplets equals to square of the mass of
the vector supermultiplet. There is a way: if we ˇx the mass of the ˇrst scalar
supermultiplet

M1s = 21/2/|a| +
√

2/|a|2 + m2 ≡ µ (44)

sending the parameter a → 0 and m → ∞ keeping condition (44), we get inˇnite
values for the mass of the second scalar and vector supermultiplet.

It means, as it was pointed in [1], that effective contributions of these mul-
tiplets to the processes of scattering is equal to zero, and only one scalar super-
multiplet with a ˇxed mass µ is left in the model. The discussed procedure is
analogous to the transition from linear to non-linear realization σ models through
taking the limit when the mass of σ particles goes to inˇnity.

It is interesting to note that the arbitrary C-parameters a and a∗ generate a
deformation of the usual line element for a superparticle in proper time, and this
deformation is responsible, in any meaning, for the multiplets given above. This is
not a casuality: one can easily see how the quantum Hamiltonian (28) is modiˇed
in the center-of-mass system by the C-parameters a and a∗. The implicancies of
this type of superparticle actions with deformations of the quantization will be
analyzed in a future work.

CONCLUSIONS

In this work the problem of the square root quantum operators was analyzed
considering the simple model of superparticle of Volkov and Pashnev [1]. The
quantization of this model was performed completely and the obtained spectrum
of physical states, with the Hamiltonian operator in its square root form, was
compared with the spectrum obtained with the Hamiltonian in the standard form
(i.e. quadratic in momenta). To this end we used the Hamiltonian formulation
described by Lanczos in [7] and the inhomogeneous Lorentz group as a represen-
tation for the obtained physical states [12, 13, 14] without any other manipulation
like the usual quantum equations from the mathematical or operational point of
view. We have shown that, in contrast to [1], the only states that the square root
Hamiltonian can operate correspond to the representations with the lowest weights
λ = 1/4 and λ = 3/4. For instance, we conclude that quantitatively it is not the
same to operate with the square root Hamiltonian as that with its square; the main
problem is not the square root operator itself but the group theoretical description
for the states under which such a type of Hamiltonians operates. It is interesting
to see that the results presented here for the superparticle are in complete agree-
ment with the results, symmetry group and discussions for non-supersymmetric
examples given in [15, 16, 17]; and seeing that the lowest weights of the states
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under the square root Hamiltonian can operate, and because not concrete action
is known to describe particles with fractionary statistics, superparticle relativis-
tic actions as of [1] can be good geometrical and natural candidates to describe
quartionic states [9, 10, 11, 12] (semions).
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