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Cupmwio-Jlom6 pmo I. 1. E2-2005-88
JlelicTBUA 1 Cyllepd CTULBI, KOPHEBBIE OIIEP TOPbI
u rpynn Jlopeny SO(3,1)

B p MK X TEOpeTHKO-IpyIIIOBOrO IOOXOX HccienyeTcd IpobjeM KB HTOBO-
MEX HHYECKUX OIEp TOPOB, CONEPXK LIMX KB AP THble KOpHU. [l 3TOH uemu p c-
CM TPHB €TCS PENATUBHCTCKHU-HUHB DU HTHOE I€OMETPUYECKOE NEUCTBHE Y CTHLBI B
CYNepHpoCTp HCTBE, IPOBOJAUTCS KB HTOB HHUE DTOH MOAENH, H XOAUTCS CHEKTp pu-
3UYECKMX COCTOSHMH, I KOTOPhIX ()OpM I MHJIBTOHM H C KB AP THBIM KOpPHEM
He MeHsercs. Beomiarcs rexep topst SO(3, 1)-rpymisl, 1 KB HTOB HHE MOIEIH IIPO-
BOZIUTCS TIOJTHOCTBIO. [loydeHHbIH cHeKTp (PU3MYecKHX COCTOSHHUM (C T MHJIBTOHH-

HOM, 3 I B €MBIM KB JJp THBIM KOPHEM) Cp BHUB €TCS CO CHEKTPOM, H HIEHHBIM C
MOMOIIBI0 I MUJIBTOHH H B CT HJ PTHOH hopMe (KB Op THUYHOIO IO HUMILYJIBC M).
ITox 3 HO, 4TO AelcTBUE I' MWIBTOHM H C KB JP THbIM KOPHEM OIIPEAEJIEHO JIUUIb

Il COCTOSIHMH, COOTBETCTBYIOIIMX IPEICT BICHUIO C HU3LMIUM BecoM A = 1/4 u
A =3/4.

P 6or sBemomnen B JI 6op Topmm Teopermueckoi ¢muku mMm. H.H.Boro-
mob6os OUAU.
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Superparticle Actions, Square Root Operators
and the Lorentz Group SO(3,1)

The problem of the square root quantum operators is analyzed from the point of
view of the theoretical group. To this end, we considered the relativistic geometrical
action of a particle in the superspace in order to quantize it and to obtain the spectrum
of physical states with the Hamiltonian remaining in the natural square root form.
The generators of the group SO(3,1) are introduced and the quantization of this
model is performed completely. The obtained spectrum of physical states, with the
Hamiltonian operator in square root form, is compared with the spectrum obtained
with the Hamiltonian in the standard form (i.e., quadratic in momenta). We show
that the only states that the square root Hamiltonian can operate correspond to the
representations with the lowest weights A = 1/4 and A = 3/4.
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INTRODUCTION

The problem of the square root operator in theoretical physics, in particular
in Quantum Mechanics and QFT, is well known [6]. Several attempts to avoid
the problem of locality and quantum interpretation of the Hamiltonian as square
root operator were described in the literature: differential pseudoelliptic opera-
tors, several expansions of the fractional-exponential operator, etc. [5]. The main
characteristic of all these attempts is to eliminate the square root of the Hamil-
tonian. In this manner, the set of operators into the square root operates freely on
the physical states, paying the price to lose locality and quantum interpretation of
the spectrum of a well formulated field theory.

Recently [15, 16, 17], several works have appeared where the problem of the
quantization procedure and the square root operators was carefully analyzed. In
these articles it was demonstrated for different simple problems (harmonic oscil-
lator, massive particle on hyperboloid, etc.) that the spectrum changes drastically
if the Hamiltonian operator has the square root form or has not: the explicit
computation of the Casimir operator of the symmetry group puts this difference
in evidence.

In this work, strongly motivated for the several fundamental reasons described
above, we considered the simple model of superparticle of Volkov and Pashnev
[1], that is the type G4 in the description of Casalbuoni [2, 3], in order to
quantize it and to obtain the spectrum of physical states with the Hamiltonian
remaining in the natural square root form. To this end, we used the Hamiltonian
formulation described by Lanczos in [7] and the inhomogeneous Lorentz group
as a representation for the obtained physical states [12, 13, 14]. The quantization
of this model is performed completely and the obtained spectrum of physical
states, with the Hamiltonian operator in its square root form, is compared with
the spectrum obtained with the Hamiltonian in the standard form (i.e. quadratic
in momenta). We show that the only states that the square root Hamiltonian
can operate correspond to the representations with the lowest weights A; o = 1/4
and A1 2 = 3/4. In this manner, we also show that the superparticle relativistic
actions as of Ref.[1] are a good geometrical and natural candidate for describe
quartionic states [9, 10, 11] (semions).

1. THE SUPERPARTICLE MODEL

In the superspace the coordinates are given not only by the spacetime x,,

coordinates, but also for anticommuting spinors 6% and 6", The resulting metric



[1, 4] must be invariant to the action of the Poincare group, and also invariant to
the supersymmetry transformations

@), =2y + 1 (0“ (0) 58 — € (a>a55‘3); 00 =g e g =7 + €.

The simplest super-interval that obeys the requirements of invariance given
above is the following:

ds? = whw, + awwa — a*wdwd, (1)
where
wu:dxu—i(dO ng—Oaudg), w® = 0%, w =19

are the Cartan forms of the group of supersymmetry [4].
The spinorial indexes are related as follows :

0% = €a695, 0, = GBega, €aB = —E€Bas e = P =621

and of analogous manner for the spinors with punctuated indexes. The complex
constants @ and a* in the line element (1) are arbitrary. This arbitrarity for the
choice of a and a*are constrained by the invariance and reality of the interval (1).

As we have extended our manifold to include fermionic coordinates, it is
natural to extend also the concept of trajectory of point particle to the superspace.

To do this we take the coordinates x (7), 6 (7) and 8 (7) depending on the
evolution parameter 7. Geometrically, the function action that will describe the
world-line of the superparticle, is

2 o . ECES 2 —
S = —m/ dT\/u?Hw“ +af 0o —a*0 0, = / drL (x,@,@) , (@
71 71
where w, =, —i (9 0,0 —0 0, 5) and the upper point means derivative with

respect to the parameter 7, as usual.
The momenta, canonically conjugated to the coordinates of the superparticle,
are

Py =0L/dxt = (m?/L) W,

Po = DL/ 00°= 1P, ("), 0" + (m*a/L) b,

Py = 0L/ 00" = iP,0% (o), — (m?a/L) B, . 3)



It is difficult to study this system in the Hamiltonian formalism framework because
of the constraints and the nullification of the Hamiltonian. As the action (2) is
invariant under reparametrizations of the evolution parameter

r—F=f(r)

one way to overcome this difficulty is to make the dynamic variable z( the time.
For this, it is sufficient to use the chain rule of derivatives (with special care of
the anticommuting variables)* and to write the action in the form

T2 o . _'(.y
S = —m/ z dT\/[l — iW%]2 — [a? - VWO]2 +a0,0% —a* 6,0,
71

where the W/ was defined by

00

o =i [1—iw?],
&' =a® [ay — i)

whence ¢ (7) turns out to be the evolution parameter

z0(T2) Lo
S= dxo\| [1=iW9)* = [¢1-Wi)* +a 0”00 —a* 0 G,= [ dxoL
=—m To [—z 70] —[a:— 70] +af 0o —a o= rolL.
xo(71)
Physically this parameter (we call it the dynamical parameter) is the time measured
by an observer’s clock in the rest frame.

Therefore, the invariance of a theory with respect to the invariance of the
coordinate evolution parameter means that one of the dynamic variables of the
theory (xo (7) in this case) becomes the observed time with the corresponding
non-zero Hamiltonian

N . Yoo
H=P,z +11%¢, +11* 6§, —L

= \/m2 — <Pi73i + EHO‘HQ — i*HdHC-Y), 4)
a a
where .
Mo = Pa+i Puloh),, 0,
I, =P, —iPu0% (") ¢ -

*We take the Berezin convention for the Grassmannian derivatives: 6F(0) = %—550.



That gives the well-known mass shell condition and losing, from the quantum
point of view, the operatibility of the Hamiltonian.

In the work [1], where this type of superparticle action was explicitly pre-
sented, the problem of nullification of the Hamiltonian was avoided in the standard
form. This means that the analog to a mass shell condition (4) in superspace was
introduced by mean of a multiplier (einbein) to obtain a new Hamiltonian

. 1 1 .
H = g {m2 — PyP° — (Pﬂﬂ + anana - EH“HQ) } . (5)

With this Hamiltonian it is clear that in order to perform the quantization of the
superparticle the problems dissapear: Ppis restored into the new Hamiltonian,
and the square root is eliminated. The full spectrum from this Hamiltonian was
obtained in [1] where the quantum Hamiltonian referred to the center of mass

was /
23 2M .
(o) 5
a 1= (00),55"5°] ©6)

with the mass distribution of the physical states being the following two scalar

1/2 21/2
supermultiplets M, = 1/ | | +m? and Moy = \/ + m? —

one vector supermultlplet M =

We will show in this work that it is possible, in order to quantize the
superparticle action, to remain the Hamiltonian in the square root form. As
it is very obvious, in the form of square root the Hamiltonian operator is not

Hepn =m? — M? +

linearly proportional to the operator n, = 5°s®. The Fock construction for the
Hamiltonian into the square root form agrees formally with the description given
above in Ref. [1], but the operability of this Hamiltonian is over basic states with
the lowest helicities A = 1/4,3/4. This means that the superparticle Hamiltonian
preserving the square root form operates over physical states of particles with
fractionary quantum statistics and fractional spin (quartions).

2. HAMILTONIAN TREATMENT IN LANCZO’S FORMULATION
In order to solve our problem from the dynamical and quantum mechanical
points of view, we will use the formulation given in [7, 8]. This Hamiltonian

formulation for dynamical systems was proposed by C. Lanczos and allows us to
preserve the square root form in the new Hamiltonian. We start from expres-

sion (4)
1 1.
H = \/m2 — (77173z + —II~I1, — —*H(’Ha)
a a




if
dt dx® 9
dr ~ dr =9(Po, Pi, Wa, Wy, @0, i, ba, 0,)

with the arbitrary function g given by

\/m2 = PyPO — (PPt + HTIoTI, — L1IT,)
\Jm? = (PP + 1oL, — L1ST,) + Py

@)

g

the new Hamiltonian H takes the required «square root» form

o1 1_.
H=g(H+P) = \/m2 — PyPO — (Pﬂm + -, gHoznd), ®)

and the variable Py is clearly identified by the dynamical expression

o _ _ OH o 4Py _ O
dr 9920 dr 0Ot

This means that Py = —H + const.
In order to make an analysis of the dynamics of our problem, we can com-

pute the Poisson brackets between all the canonical variables and their conjugate
momenta [1, 2, 3]

©)

Pu={Pu. H},, =0, (10)
- 111«
6 =1{0° M}y, =~ (11)
7 {?d,H} _1m (12)
ob a* H
, 1 i o Vo i o /3
(E“: {J)H,H}pb = ﬁ 7)“ + a 11 (U“)aﬁe + E@ (O'H)QBH 5 (13)
Toe (o, H}, = —Lp 11 14
Ha*{ o3 }pb*m aB ) ( )
: —21
~ _ 2 sp

= wy
where P . = Py (o )aﬁ .
equations to solve is easily seen

. 4Pp2 .
IIo= — <W> Hd; (16)

From the above expressions the set of classical



2 4P\ -
m.=— (sz) o - (17)
2
2

Assigning W = w”, and having account for II} = —II., the solution of
a

Egs. (16) and (17) takes the form
Ha — fa eiw‘r + N efiw‘r,
H('y _ _ﬁ(_y W _ gd e T (18)

By means of the substitution of the above solutions into (14) and (15), we find
the relation between &, and 7,

_ (2 i
Mo = (a*Hw) Pait -

From Egs. (18) and above we obtain

TWT 2 _B —iwT
Mo = & o <a%}) P E e, (19)
I =— 2 é—ﬁzp TWT _E —iwT (20)
a aHw pa © o ’

where we used the fact that the constant two-component spinors &, verify Ed =
&1, Integrating expressions (11) and (12), we obtain explicitly the following:

_ _ [ WT 2 ._B —iwT
0o = Ca W Hw |:€a € @ Ho ,Paﬁg e :| ) (21)
) z i _ 2 gﬂf}) wT +E —iwT (22)
o*Hw | aHw ga © a© ’

where (, and Zd = (I are two-component constant spinors.
Analogously, from expression (13), we obtain x,, in explicit form

e
o [— T (E,0) + g e (G0, +

_“2 [Cafaeiwr _Zdzé eiw-r:| . (23)



3. QUANTIZATION

Because of the correspondence between classical and quantum dynamics, the
Poisson brackets between coordinates and canonical impulses are transformed into
quantum commutators and anti-commutators

[T, Pu) =i {xuapu}pb = —iGuv,
{9(1; Pﬁ} =1 {ga, Pﬁ}pb = _Z55 a,

{eaﬁ}_i{gd,p} — 6, 24)
E 8 0 5

and the new Hamiltonian (8) operates quantitatively as follows:

\/m2 —PoPO — <7>i7>i + éHaHa - %HQHQ W) =0, 25

where |W) are the physical states. From (anti)commutation relations (24) it is

possible to obtain easily the commutators between the variables &, fd, Cas Coo
Qs Pp,

{li} = Par {@T} =~ (@) Pase 0P = ~ig.
(26)
To obtain the physical spectrum we use the relations given by (26) taking the
Hamiltonian in the following form:

H =\ m? — PO — Ppi — 232 /(P)? 282 cap _EB e
' lal lal /(P27

Passing to the center-of-mass system, and defining new operators s, = (1/v M)&,,

5, = (1/VM)E,, do = V2M(y, d;, = V/2MC,,, where M = Py, Hem is

Hem = \/mQ - M2+ [1 = (00),,5 3"8“} (28)
being
{sami}=-00as (o} =—(0)ua (29)

the anti-commutation relations of the operators s,, 3, da, d,. Now the question
is: how the square-root H Hamiltonian given by expression (28) does operate
on a given physical state? The problem of locality and interpretation of the



operator like (25) is known very well. Several attemps to avoid these problems
were given in [5, 6]: differential pseudoelliptic operators, several expansions
of the fractional-exponential operator, etc. The main characteristic of all these
attempts is to eliminate the square root of the Hamiltonian. In this manner, the
set of operators into the square root operates freely on the physical states, paying
the price to lose locality and quantum interpretation of the spectrum of a well
possesed field theory.

Our plan is: to take the square root to a bispinor in order to introduce the
physical state into the square root Hamiltonian. In the next section we will
perform the square root of a bispinor and obtain the mass spectrum given by the
Hamiltonian H.

4. MASS SPECTRUM AND SQUARE ROOT OF A BISPINOR

The square root from a spinor was extracted in Kharkov in 1965 by S. S. San-
nikov [13]. Taking the square root from a spinor was performed also by
P. A.M. Dirac [14] in 1971.

We know that the group SL(2,C) is locally isomorph to SO(3,1), and
SL(2,R) is locally isomorph to SO(2,1). For instance, the generators of the
group SO(3,1) for our case can be constructed from the usual operators a, a™
(or g and p) in the following manner. We start from an irreducible unitary infinite-
dimensional representation of the Heisenberg—Weyl group, which is realized in
the Fock spaces of states of one-dimensional quantum oscillator [10, 11, 12].
Creation operators and annihilation operators of these states obey the conventional
commutation relations [at,a] = 1, [a,a] = [aT,at] = 0. To describe this
representation to the Lorentz group one can also use the coordinate-momentum

realization (q,p = —ia—) of the Heisenberg algebra, which relates to the a,a™
q

realization by the formulas

a+:q_Zp +:(Z+Zp (30)

V2 Y TR

as usual. Let us introduce the spinors

o aq . as
=5 ) =) o

The commutation relations take the form

(L, Lg] = icag, [Ld, LB] =ic, . (32)



The generators of SL(2,C) are easily constructed [11] from L, and Ld

1
Sap = i8u(0")as = 7 {Las Lo},
S 1S, (o) 1 (33)
= =1iS,(o aﬁ 1 ,
and satisfy the conmutation relation
[Su,Su] = —ig,w,S”. (34)
Then the quantities
o = (V| La |T) .= (U] L, |) (35)

are the two-components of a bispinor, and |¥) is the square root of this bispinor,
that is very easy to verify. Notice that the four components of the bispinor operate
on the same function |¥). In terms of ¢ the basic vectors of the representation
can be written as [10, 12, 13]

(@ |n) = ¢n(g) = V@) 2 Hy (q) e /2, (36)

[ dagin @60 @) = 6 (37
(where H,, (q) are the Hermite polynomials) and form a unitary representation of
SO (3,1), and

[n) = ()" (a*)" 10) (38)
the normalized basic states where the vacuum vector is annihilated by a. The
Casimir operator, that is S,S*, has the eigenvalue AA=1) = _13_6 (for each

subgroup 150(2,1) given by Eq.(33)) and indeed corresponds to the represen-
tations with the lowest weights A = 1/4 and A = 3/4. The wave functions
which transform as linear irreducible representation of I.SO(2,1), subgroup of
I150(3,1) generated by operators (33) are

+o0
Uy (2,0,q) =k =0 for (,0) 0o () , (39)
+o0
W34 (2,0,q) =k =0 fori1 (2,0) @2x11 (q) - (40)

We can easily seen that the Hamiltonian M (28) operates over the state |¥),
which become into H as its square ®, and ®,. It is natural to associate, up a
proportional factor, the spinors d,, and d(‘y with

do = (®174) , = (Waya| La [W1/a), d = (Prya),, = (Vrja| L [P17a) (41)



and of analog manner the spinors s, and B with
Saq — (@3/4)a = <\I/3/4| La ‘\P3/4>, g(y — (@3/4)@ = <\I/3/4‘ La |\I/3/4> . (42)

Relations (41) and (42) give a natural link between the spinors &, (Ed)and

Ca (Ed), solutions of the dynamical problem, with the only physical states that

can operate freely with the Hamiltonian 7H: the «square root» states |¥) from the
bispinors ®,,.

Commutation relations (29) obey the Clifford’s algebra for spinorial creation-
annihilation operators. In this manner, operators s, and d, in the representation
given by the associations (41) and (42) acting on the vacuum give zero: s, |0) =
do, |0) = 0. The Fock’s construction in the center of mass consists in the following
vectors:

Sy = |0) M, Eia=d,[0)eM, P = E"Eb 10 M,
o . . ‘ s .
Hoa =3 0 zMit7 Va =35.d4.10 th7 Hap = dd. |0 th’
2 §“|>e 3 Sa@|>e 30 = 5, ﬁ|>e 43)
P, =3 |0) etMt Sip = ddgf’gb |0) e?M?t

—B= e ;
So=d d,és s&|0>eMt.

From expression (28) and taking into account that the number operator is

P = ng, because 5% and s® work as creation-annihilation operators, we can
easily obtain the mass for the different supermultiplets :

21/2 2 )
i) ng = 0 — M, = _W + W—f—m; Scalar supermultiplet

(51,210, P1).
1) ns = 1 — M, = m; Vector supermultiplet.

9 ) 21/2
i) ng = 2 — Mas = W +m* + ﬁ; Scalar supermultiplet.
a a

We emphasize now that the computations and algebraic manipulations given
above were with E& — ((I)l/‘l)d and 5, — (CI>3/4)d (the square of the true states)
into the square root Hamiltonian. Notice from expressions (35), (41) and (42)
that the physical states for the Hamiltonian in the square root form are one half
the number of physical states for the Hamiltonian quadratic in momenta.

Looking at commutation relations (29) one can see that the square norm of
the vector supermultiplet and the states =;,, Z4, becomes negative (i.e. the
spectrum has «ghosts»).

10



On the other hand, there is the possibility in the discussed problem to elim-
inate these «ghost states». This possibility is connected with the fact that the
product of the masses of scalars supermultiplets equals to square of the mass of
the vector supermultiplet. There is a way: if we fix the mass of the first scalar

supermultiplet
My =22 /la] +3/2/laf +m2 = p (44)

sending the parameter a — 0 and m — oo keeping condition (44), we get infinite
values for the mass of the second scalar and vector supermultiplet.

It means, as it was pointed in [1], that effective contributions of these mul-
tiplets to the processes of scattering is equal to zero, and only one scalar super-
multiplet with a fixed mass p is left in the model. The discussed procedure is
analogous to the transition from linear to non-linear realization o models through
taking the limit when the mass of ¢ particles goes to infinity.

It is interesting to note that the arbitrary C-parameters a and a* generate a
deformation of the usual line element for a superparticle in proper time, and this
deformation is responsible, in any meaning, for the multiplets given above. This is
not a casuality: one can easily see how the quantum Hamiltonian (28) is modified
in the center-of-mass system by the C-parameters a and a*. The implicancies of
this type of superparticle actions with deformations of the quantization will be
analyzed in a future work.

CONCLUSIONS

In this work the problem of the square root quantum operators was analyzed
considering the simple model of superparticle of Volkov and Pashnev [1]. The
quantization of this model was performed completely and the obtained spectrum
of physical states, with the Hamiltonian operator in its square root form, was
compared with the spectrum obtained with the Hamiltonian in the standard form
(i.e. quadratic in momenta). To this end we used the Hamiltonian formulation
described by Lanczos in [7] and the inhomogeneous Lorentz group as a represen-
tation for the obtained physical states [12, 13, 14] without any other manipulation
like the usual quantum equations from the mathematical or operational point of
view. We have shown that, in contrast to [1], the only states that the square root
Hamiltonian can operate correspond to the representations with the lowest weights
A =1/4 and X = 3/4. For instance, we conclude that quantitatively it is not the
same to operate with the square root Hamiltonian as that with its square; the main
problem is not the square root operator itself but the group theoretical description
for the states under which such a type of Hamiltonians operates. It is interesting
to see that the results presented here for the superparticle are in complete agree-
ment with the results, symmetry group and discussions for non-supersymmetric
examples given in [15, 16, 17]; and seeing that the lowest weights of the states

11



under the square root Hamiltonian can operate, and because not concrete action
is known to describe particles with fractionary statistics, superparticle relativis-
tic actions as of [1] can be good geometrical and natural candidates to describe
quartionic states [9, 10, 11, 12] (semions).
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