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Scaling Regimes in the Model of Passive Scalar Advected by the
Turbulent Velocity Field with Finite Correlation Time. In	uence
of Helicity in Two-Loop Approximation

The advection of a passive scalar quantity by incompressible helical turbulent 	ow
has been investigated in the framework of an extended Kraichnan model. Statistical
	uctuations of the velocity ˇeld are assumed to have the Gaussian distribution with
zero mean and deˇned noise with ˇnite-time correlation. Actual calculations have
been done up to two-loop approximation in the framework of the ˇeld-theoretic
renormalization group approach. It turned out that the space parity violation (helicity)
of a stochastic environment does not affect anomalous scaling which is the peculiar
attribute of a corresponding model without helicity. However, stability of asymptotic
regimes, where anomalous scaling takes place, and the effective diffusivity strongly
depend on the amount of helicity.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
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INTRODUCTION

It has become common practice to say that the theoretical understanding
of turbulence remains one of the last unsolved problem of classical physics.
Within the one part of the wide concept of turbulence, namely, fully developed
turbulence, one of the most interesting open question is the theoretical explanation
of the possible deviations from the classical Kolmogorov theory [1Ä3] which is
suggested by both natural as well as numerical experiments. Such a behavior is
contained in concepts of intermittency and anomalous scaling. During the last
decade this problem was intensively studied within the scope of the models of
a passively advected scalar ˇeld (concentration of an admixture, or temperature
are examples) by a ®synthetic¯ velocity ˇeld with prescribed Gaussian statistics.
The reason is twofold. First, the deviation from the classical theory is even more
strongly noticeable for a passively advected scalar ˇeld than for the velocity
ˇeld itself, see, e. g., [3Ä6], and second, the problem of passive advection is
considerably easier for theoretical investigation [7]. Moreover, it reproduces
many of the anomalous features of genuine turbulent heat or mass transport
observed in experiments. Thus, the theoretical study of the models of a passive
scalar (or also vector) advection can be treated as the ˇrst step on the long way
of the investigation of intermittency and anomalous scaling in fully developed
turbulence. On the other hand, the problem of advection has also its own practical
importance.

The central role in the studies of a passive advection was played by a simple
model of a passive scalar quantity advected by a random Gaussian velocity ˇeld,
white in time and self-similar in space, the so-called Kraichnan rapid-change
model [8]. There, for the ˇrst time, the anomalous scaling was established on
the basis of a microscopic model [9], and corresponding anomalous exponents
were calculated within controlled approximations [10] (see also review [11] and
references therein).

An effective method for investigation of a self-similar scaling behavior is
the renormalization group (RG) technique [12Ä14]. It was widely used in the
theory of critical phenomena to explain the origin of the critical scaling and also
to calculate corresponding universal quantities (e.g., critical dimensions). This
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method can be also directly used in the theory of turbulence [13, 15Ä17] and
related models like a simpler stochastic problem of a passive scalar advected by
prescribed stochastic 	ow. In what follows we use the conventional (®quantum
ˇeld theory¯ or ˇeld theoretic) RG which is based on the standard renormalization
procedure, i. e., on an elimination of the ultraviolet (UV) divergences.

In paper [18] the ˇeld-theoretic RG and operator-product expansion (OPE)
were used in the systematic investigation of the rapid-change model. It was shown
that within the ˇeld theoretic approach the anomalous scaling is related to the very
existence of the so-called ®dangerous¯ composite operators with negative critical
dimensions in OPE (see, e. g., [13,17] for details). In the subsequent papers [19]
the anomalous exponents of the model were calculated within the ε expansion
to order ε3 (three-loop approximation). Here ε is a parameter which describes
a given equal-time pair correlation function of the velocity ˇeld (see subsequent
section).

Afterwards, various descendants of the Kraichnan model, namely, models
with inclusion of large and small scale anisotropy [20], compressibility [21] and
ˇnite correlation time of the velocity ˇeld [22Ä24] were studied by the ˇeld
theoretic approach. Moreover, advection of a passive vector ˇeld by the Gaussian
self-similar velocity ˇeld (with and without large and small scale anisotropy,
pressure, compressibility, and ˇnite correlation time) has been also investigated
and all possible asymptotic scaling regimes and cross-over among them have
been classiˇed [25]. General conclusion is: the anomalous scaling, which is the
most important feature of the Kraichnan rapid change model, remains valid for
all generalized models.

Let us describe brie	y the solution of the problem in the framework of the
ˇeld theoretic approach. It can be divided into two main stages. On the ˇrst stage
the multiplicative renormalizability of the corresponding ˇeld theoretic model is
demonstrated and the differential RG equations for its correlation functions are
obtained. The asymptotic behavior of the latter on their ultraviolet argument (r/�)
for r � � and any ˇxed (r/L) is given by infrared stable ˇxed points of those
equations. Here � and L are the inner (ultraviolet) and outer (infrared) scales. It
involves some ®scaling functions¯ of the infrared argument (r/L), whose form
is not determined by the RG equations. On the second stage, their behavior at
r � L is found from the OPE within the framework of the general solution of
the RG equations. There, the crucial role is played by the critical dimensions of
various composite operators, which give rise to an inˇnite family of independent
aforementioned scaling exponents (and hence to multiscaling).

In [22] the problem of a passive scalar advected by the Gaussian self-similar
velocity ˇeld with ˇnite correlation time [26] was studied by the ˇeld theoretic
RG method. There, the systematic study of the possible scaling regimes and
anomalous behavior were presented at one-loop level. The two-loop corrections to
the anomalous exponents were obtained in [24]. It was shown that the anomalous
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exponents are nonuniversal as a result of their dependence on a dimensionless
parameter, the ratio of the velocity correlation time, and turnover time of a
scalar ˇeld.

In what follows, we shall continue with the investigation of this model from
the point of view of the in	uence of helicity on the scaling regimes within two-
loop approximation.

Helicity is deˇned as the scalar product of velocity and vorticity and its
nonzero value expresses mirror symmetry breaking of turbulent 	ow. It plays
signiˇcant role in the processes of magnetic ˇeld generation in electrically con-
ductive 	uid [27Ä33] and represents one of the most important characteristics of
large-scale motions as well [34Ä37]. The presence of helicity is observed in vari-
ous natural (like large air vortices in atmosphere) and technical 	ows [35,38,39].
Despite of this fact the role of the helicity in hydrodynamical turbulence is not
completely clariˇed up to now.

The NavierÄStokes equations conserve kinetic energy and helicity in inviscid
limit. Presence of two quadratic invariants leads to the possibility of appearance
of double cascade. It means that cascades of energy and helicity take place in
different ranges of wave numbers analogously to the two-dimensional turbulence
and/or the helicity cascade appears concurrently to the energy one in the direction
of small scales [40, 41]. Particularly, helicity cascade is closely connected with
the existence of exact relation between triple and double correlations of velocity
known as ®2/15¯ law analogously to the ®4/5¯ Kolmogorov law [42]. Corre-
sponding to [40] aforementioned scenarios of turbulent cascades differ each other
by spectral scaling. Theoretical arguments given by Kraichnan [43] and results of
numerical calculations of NavierÄStokes equations [44Ä46] support the scenario
of concurrent cascades. The appearance of helicity in turbulent system leads
to constraint of non-linear cascade to the small scales. This phenomenon was
ˇrst demonstrated by Kraichnan [43] within the modelling problem of statistically
equilibrium spectra and later in numerical experiments.

Turbulent viscosity and diffusivity, which characterize in	uence of small-
scale motions on heat and momentum transport, are basic quantities investigated
in the theoretic and applied models. The constraint of direct energy cascade
in helical turbulence has to be accompanied by decrease of turbulent viscos-
ity. However, no in	uence of helicity on turbulent viscosity was found in some
works [47, 48]. Similar situation is observed for turbulent diffusivity in helical
turbulence. Although the modelling calculations demonstrate intensiˇcation of
turbulent transfer in the presence of helicity [49, 50] direct calculation of dif-
fusivity does not conˇrm this effect [49, 51, 52]. Helicity is the pseudoscalar
quantity hence it can be easily understood, that its in	uence appears only in
quadratic and higher terms of perturbation theory or in the combination with other
pseudoscalar quantities (e. g. large-scale helicity). Really, simultaneous consider-
ation of memory effects and second-order approximation indicate effective in	u-
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ence of helicity on turbulent viscosity [53,54] and turbulent diffusivity [50,55,56]
already in the limit of small or inˇnite correlation time.

Helicity, as we shall see below, does not affect known results in one-loop
approximation and, therefore, it is necessary to turn to the second order (two-loop)
approximation to be able to analyze possible consequences. It is also important
to say that within the framework of the classical Kraichnan model, i. e., model
of passive advection by the Gaussian velocity ˇeld with δ-like correlations in
time, it is not possible to study the in	uence of the helicity because all potentially
®helical¯ diagrams are identically equal to zero at all orders in the perturbation
theory. In this sense, the investigation of the helicity in the present model can be
consider as the ˇrst step to analyze the helicity in genuine turbulence.

The paper is organized as follows: In Sec. 1 we present deˇnition of the model
and introduce the helicity to the transverse projector of a given pair correlation
function of the velocity ˇeld. We give the ˇeld theoretic formulation of the
original stochastic problem and discuss the corresponding diagrammatic technique.
In Sec. 2 we analyze the ultraviolet (UV) divergences of the model, establish its
multiplicative renormalizability and calculate the renormalization constants in the
two-loop approximation. In Sec. 3 we analyze possible scaling regimes of the
model, associated with nontrivial and physically acceptable ˇxed points of the
corresponding RG equations. There are ˇve such regimes, anyone of them can be
realized in dependence on the values of parameters of the model. We discuss the
physical meaning of these regimes (e. g., some of them correspond to zero, ˇnite,
or inˇnite correlation time of the advecting ˇeld) and their regions of stability
in the space of the model parameters. In Sec. 4 the two-loop corrections to the
effective diffusivity are calculated. In Conclusion the discussion of results is
presented.

1. FIELD THEORETIC DESCRIPTION OF THE MODEL

The advection of a passive scalar ˇeld θ(x) ≡ θ(t,x) in helical turbulent
environment is described by the stochastic equation

∂tθ + vi∂iθ = ν0Δθ + f, (1)

where ∂t ≡ ∂/∂t, ∂i ≡ ∂/∂xi, ν0 is the molecular diffusivity coefˇcient (hereafter
all parameters with a subscript 0 denote bare parameters of unrenormalized theory;
see below), � ≡ ∂2 is the Laplace operator, vi ≡ vi(x) is the ith component
of the divergence-free (owing to the incompressibility) velocity ˇeld v(x), and
f ≡ f(x) is an artiˇcial Gaussian random noise with zero mean and correlation
function

〈f(x)f(x′)〉 = δ(t − t′)C(r/L), r = x− x′, (2)
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where parentheses 〈. . . 〉 hereafter denote average over corresponding statistical
ensemble and L is an integral scale. The random noise maintains the steady-
state of the system but the detailed form of the function C(r/L) in Eq. (2) is
inessential in our further consideration. It is only important that the function
C(r/L) is ˇnite and decreases rapidly for r ≡ |r| � L. In spite of the fact that
in real problems the velocity ˇeld v(x) satisˇes the NavierÄStokes equation, in
what follows, we suppose that statistics of velocity ˇeld is given in the form of
the Gaussian distribution with zero mean and pair correlation function

〈vi(x)vj(x′)〉 =
∫

dωddk
(2π)d+1

P ρ
ij(k)Dv(ω, k) exp[−i(t − t′) + ik(x − x′)], (3)

with

Dv(ω, k) =
D0k

4−d−2ε−η

(iω + u0ν0k2−η)(−iω + u0ν0k2−η)
, (4)

where k ≡ |k|. The transverse projector P ρ
ij(k) re	ects vectorial nature of the

solenoidal velocity ˇeld and will be speciˇed below. Here D0 ≡ g0ν
3
0 is a positive

amplitude factor and introduced parameter g0 plays the role of the coupling
constant of the model, the analog of the coupling constant λ0 in the λ0ϕ

4 model
of critical behavior [12, 13]. In addition, g0 is a formal small parameter of the
ordinary perturbation theory. The parameter u0 gives the ratio of the turnover time
of a scalar ˇeld and the velocity correlation time. The positive exponents ε and
η (ε = O(η)) are small RG expansion parameters, the analogs of the parameter
ε = 4−d in the λ0ϕ

4 theory. Thus we have a kind of double expansion model in
the ε − η plane around the origin ε = η = 0. Correlation function (4) is directly
related to the energy spectrum via the frequency integral [22,58,59]

E(k) � kd−1

∫
dωDv(ω, k) � g0ν

2
0

u0
k1−2ε. (5)

Therefore, the coupling constant g0 and the exponent ε control the behavior of the
equal-time pair correlation function of the velocity ˇeld (mean square velocity)
or, equivalently, energy spectrum. On the other hand, the parameter u0 and the
second exponent η are related to the frequency ω � u0ν0k

2−η which characterizes
the mode k [58Ä61]. Thus, in our notation, the value ε = 4/3 corresponds
to the celebrated Kolmogorov ®two-thirds law¯ for the spatial statistics of the
velocity ˇeld or, equivalently, ®ˇve-thirds law¯ for the energy spectrum, and
η = 4/3 corresponds to the Kolmogorov frequency. Simple dimensional analysis
shows that g0 and u0, which we commonly term as charges, are related to the
characteristic ultraviolet (UV) momentum scale Λ (or inner length l ∼ Λ−1) by

g0 � Λ2ε+η, u0 � Λη. (6)
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For completeness, we remain d-dependence in expressions (3) and (4) (d is the
dimensionality of the x space), although, of course, when one investigates system
with helicity the dimension of the x space must be strictly equal to three. It
allows one to study d-dependence of the non-helical case of the model. To
include helicity aforementioned transverse projector P ρ

ij(k) is taken in the form

P ρ
ij(k) = Pij(k) + Hij(k) = δij − kikj/k2 + iρεijl

kl

k
. (7)

Here Pij(k) = δij − kikj/k2 represents non-helical part of the total transverse

projector P ρ
ij(k). On the other hand, Hij(k) = iρεijl

kl

k
mimics the presence of

helicity in the 	ow. Thus, formally, the transition to the helical 	uid corresponds
to the breaking of spatial parity, and, technically, this is expressed by the fact
that the correlation function is speciˇed in the form of mixture of a true tensor
and a pseudotensor. The tensor εijl is Levi-Civita's completely antisymmetric
tensor of rank 3 (it is equal to 1 or −1 according to whether (i, j, l) is an even
or odd permutation of (1, 2, 3) and zero otherwise), and the real parameter of
helicity ρ controls the amount of helicity. Due to the requirement of positive
deˇniteness of the correlation function the absolute value of ρ must be in the
interval |ρ| ∈ 〈0, 1〉 [29, 30]. Nonzero helical part proportional to ρ physically
expresses existence of nonzero correlations 〈v rotv〉.

The general model (3), (4) contains two important special cases: the rapid-
change model limit when u0 → ∞ and g′0 ≡ g0/u2

0 = const,

Dv(ω, k) → g′0ν0k
−d−2ε+η, (8)

and the quenched (time-independent or frozen) velocity ˇeld limit which is deˇned
by u0 → 0 and g′′0 ≡ g0/u0 = const,

Dv(ω, k) → g′′0ν2
0k−d+2−2επδ(ω), (9)

which is similar to the well-known models of the random walks in random
environment with long range correlations; see, e. g., Refs. [62,63].

Using the MartinÄSiggiaÄRose mechanism [64] the stochastic problem
(1)Ä(4) can be treated as a ˇeld theory with action functional

S(θ, θ′,v) = θ′Dθθ
′/2 + θ′[−∂t + ν0�− (vi∂i)]θ − vD−1

v v/2, (10)

where θ′ is an auxiliary scalar ˇeld, and Dθ and Dv are correlators (2) and
(3), respectively. In the action (10) all the required integrations over x = (t,x)
and summations over the vector indices are understood. The ˇrst four terms in
Eq. (10) represent the DominicisÄJanssen-type action for the stochastic problem
(1), (2) at ˇxed v, and the last term represents the Gaussian averaging over v.
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Model (10) corresponds to a standard Feynman diagrammatic technique with
the bare propagators 〈θθ′〉0 and 〈vivj〉0 (in the time-momentum representation)

〈θ(t,k)θ′(t′,k)〉0 = θ(t − t′)e−ν0k2(t−t′), (11)

〈vi(t,k)vj(t′,k)〉0 =
D0

2u0k1+2ε
e−u0ν0k2−η(t−t′)P ρ

ij(k), (12)

where θ(t−t′) is the step function, or (in the momentum-frequency representation)

〈θ(ω,k)θ′(ω,k)〉0 =
1

−iω + ν0k2
, (13)

〈vi(ω,k)vj(ω,k)〉0 = P ρ
ij(k)Dv(ω, k), (14)

where Dv(ω, k) is given directly by Eq. (4). In the Feynman diagrams, these
propagators are represented by the lines which are shown in Fig. 1 (the end with
a slash in the propagator 〈θθ′〉0 corresponds to the ˇeld θ′, and the end with-
out a slash corresponds to the ˇeld θ). The triple vertex (or interaction vertex)
−θ′vj∂jθ = θ′vjVjθ, where Vj = ikj (in the momentum-frequency representa-
tion), is presented in Fig. 1, where momentum k is 	owing into the vertex via the
auxiliary ˇeld θ′.

Fig. 1. Left: Graphical representations of the needed propagators of the model. Right:
The triple (interaction) vertex of the model. Momentum k is entering into the vertex via
ˇeld θ′

2. RENORMALIZATION GROUP ANALYSIS

Model (10) is logarithmic for ε = η = 0 (the coupling constant g0 is dimen-
sionless) and, in the framework of known dimensional regularization and minimal
substraction (MS) scheme, which we use, possible ultraviolet (UV) divergences
have the form of poles in various linear combinations of ε and η in the correla-
tion functions. Using the standard analysis of quantum ˇeld theory one ˇnds that,
in the model under consideration, all divergences can be removed by the only

7



counter-term of the form θ′�θ [22]. Thus, the model is multiplicatively renor-
malizable, which is expressed explicitly in the multiplicative renormalization of
the parameters g0, u0, and ν0 in the form

ν0 = νZν , g0 = gμ2ε+ηZg, u0 = uμηZu. (15)

Here the dimensionless parameters g, u and ν are the renormalized counterparts
of the corresponding bare ones, μ is the renormalization mass (a scale setting
parameter), an artefact of dimensional regularization. Newly introduced quantities
Zi = Zi(g, u; d, ρ; ε, η) = Zi(g, u; d, ρ; ε) are renormalization constants (note that
if ρ is nonzero then d = 3) and, in general, contain poles of linear combinations
of ε and η. However, as detailed analysis shows, to obtain all important quantities
as the γ functions, β functions, coordinates of ˇxed points, and the critical
dimensions, the knowledge of the renormalization constants for the special choice
η = 0 is sufˇcient up to two-loop approximation (see details in [22]).

The renormalized action functional has the following form:

SR(θ, θ′,v) = θ′Dθθ
′/2 + θ′[−∂t + νZν�− (v∂)]θ − vD−1

v v/2, (16)

where the correlator Dv is written in renormalized parameters (in wave-number-
frequency representation)

Dv,ij(ω, k) =
P ρ

ij(k)gν3μ2ε+ηk4−d−2ε−η

(iω + uνμηk2−η)(−iω + uνμηk2−η)
. (17)

By comparison of the renormalized action (16) with deˇnitions of the renormal-
ization constants Zi, i = g, u, ν (15) one comes to the relations among them

Zν = Z1, Zg = Z−3
ν , Zu = Z−1

ν . (18)

The second and third relations are consequences of the absence of the renormal-
ization of the term with Dv

g0ν
3
0 = gμ2ε+ην3, u0ν0 = uμην (19)

in renormalized action (16).
The issue of interest is, in particular, the behavior of response functions,

e. g. 〈θ(x)θ′(x′)〉, correlation functions 〈θ(x1)θ(x2) . . . θ(xn)〉, and the equal-
time structure functions

Sn(r) ≡ 〈[θ(t,x) − θ(t,x′)]n〉, r = |x − x′| (20)

in the inertial range, speciˇed by the inequalities l � r � L (l is an internal
length). Here parentheses 〈. . .〉 mean functional average over ˇelds θ, θ′,v with
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weight exp(SR). In the isotropic case, the odd functions S2n+1 vanish, while for
S2n simple dimensional considerations give

S2n(r) = ν−n
0 r2n R2n(r/l, r/L, g0, u0, ρ), (21)

where R2n are some functions of dimensionless variables. In principle, they
can be calculated within the ordinary perturbation theory (i. e., as series in g0),
but this is not useful for investigation of the inertial-range behavior: the coefˇ-
cients are singular in the limits r/l → ∞ and/or r/L → 0, which compensate
the smallness of g0, and in order to ˇnd correct IR behavior we have to sum
the entire series. The desired summation can be accomplished using the ˇeld
theoretic renormalization group (RG) and operator product expansion (OPE);
see [18,19,22].

The RG analysis consists of two main stages. On the ˇrst stage, the multi-
plicative renormalizability of the model is demonstrated and the differential RG
equations for its correlation (structure) functions are obtained. The asymptotic
behavior of the functions like (20) for r/l � 1 and any ˇxed r/L is given by IR
stable ˇxed points (see below) of the RG equations and has the form

S2n(r) = ν−n
0 r2n (r/l)−γnR2n(r/L, ρ), r/l � 1 (22)

with certain, as yet unknown, ®scaling functions¯ R2n(r/L, ρ). In the theory
of critical phenomena [12, 13] the quantity Δ[S2n] ≡ −2n + γn is termed the
®critical dimension¯, and the exponent γn, the difference between the critical
dimension Δ[S2n] and the ®canonical dimension¯ −2n, is called the ®anomalous
dimension¯. In the case at hand, the latter has an extremely simple form: γn =
nε. Whatever be the functions Rn(r/L, ρ), the representation (22) implies the
existence of a scaling (scale invariance) in the IR region (r/l � 1, r/L ˇxed) with
deˇnite critical dimensions of all ®IR relevant¯ parameters, Δ[S2n] = −2n + nε,
Δr = −1, ΔL−1 = 1 and ˇxed ®irrelevant¯ parameters ν0 and l.

On the second stage, the small r/L behavior of the functions R2n(r/L, ρ)
is studied within the general representation (22) using the OPE. It shows that, in
the limit r/L → 0, the functions R2n(r/L, ρ) have the asymptotic form

R2n(r/L) =
∑
F

CF (r/L) (r/L)Δn , (23)

where CF are coefˇcients regular in r/L. In general, the summation is implied
over certain renormalized composite operators F with critical dimensions Δn. In
case under consideration the leading operators F have the form Fn = (∂iθ∂iθ)n.

We have performed the complete two-loop calculation of the critical dimen-
sions of the composite operators Fn for arbitrary values of n, d, u and ρ

Δ[F ] = Δ(1)
n ε + Δ(2)

n ε2, (24)

9



where

Δ(1)
n =

−n(n − 2)(d − 1)
2(d − 1)(d + 2)

(25)

is expression obtained in one-loop approximation.

Two-loop contribution Δ(2)
n in non-helical case is rather cumbersome and

can be found in [24]. The main result of our investigation of the in	uence of
the helicity on the result given in [24] is that although separated two-loop Feyn-
man graphs of operators Fn strongly depend on helicity parameter ρ, such a
dependence disappears in their sum, which gives rise to the critical dimensions
Δn. We can conclude that in two-loop approximation anomalous scaling with
negative exponents (24) is not affected by the existence of nonzero helical cor-
relations 〈v rotv〉 in turbulent incompressible 	ow. It turns out, however, that
region of stability of possible asymptotic regimes governed by ˇxed points of RG
equations, where anomalous scaling takes place, and effective diffusivity rather
strongly depends on ρ.

Let us analyze asymptotic regimes in detail. The structure functions and
the other statistical averages of random ˇelds θ, θ′ satisfy linear differential RG
equations with linear differential operator DRG. For example, RG equation for
pair structure function S2 has the form

DRGS2(r) = 0, (26)

with
DRG = Dμ + βg(g, u)∂g + βu(g, u)∂u − γν(g, u)Dν . (27)

Here Dx ≡ x∂x stands for any variable x and the RG functions (the β and γ
functions) are given by well-known deˇnitions and in our case, using the relations
(18) for the renormalization constants, they acquire the following form:

γν ≡ D̃μ ln Zν , (28)

βg ≡ D̃μg = g(−2ε − η + 3γν), (29)

βu ≡ D̃μu = u(−η + γν). (30)

The renormalization constant Zν is determined by the requirement that response
function G ≡ 〈θθ′〉 must be UV ˇnite when it is written in renormalized variables.
In our case it means that it has no singularities in the limit ε, η → 0. The response
function G is related to the self-energy operator Σθ′θ, which is expressed via the
Feynman graphs, by the Dyson equation. In frequency-momentum representation
it has the following form:

G(ω,p) =
1

−iω + ν0p2 − Σθ′θ(ω, p)
. (31)

10



Thus, Zν is found from the requirement that the UV divergences are canceled in
Eq. (31) after substitution ν0 = νZν . This determines Zν up to an UV ˇnite
contribution, which is ˇxed by the choice of the renormalization scheme. In the
MS scheme all the renormalization constants have the form: 1 + poles in ε, η and
their linear combinations. In contrast to rapid-change model, where only one-loop
diagram exists (it is related to the fact that all higher-order loop diagrams contain
at least one closed loop which is built on by only retarded propagators, thus are
automatically equal to zero), in the case with ˇnite correlations in time of the
velocity ˇeld, higher-order corrections are nonzero. In two-loop approximation
the self-energy operator Σθ′θ is deˇned by diagrams which are shown in Fig. 2.

Fig. 2. The one- and two-loops contributions to the self-energy operator Σθ′θ

As was already mentioned, in our calculations we can put η = 0. This
possibility essentially simpliˇes the evaluations of all quantities [22Ä24]. Then
the divergent parts of diagrams in Fig. 2 have the following analytical form:

A = − Sd

(2π)d

gνp2

4u(1 + u)
d − 1

d
(μL)2ε 1

ε
, (32)

B1 =
S2

d

(2π)2d

g2νp2(d − 1)2

16u2(1 + u)3d2

(μL)4ε

ε

⎡
⎣ 1
2ε

+
2F1

(
1, 1; 2 + d

2 ; 1
(1+u)2

)
(d + 2)(1 + u)2

⎤
⎦, (33)

B2 =
S2

d

(2π)2d

g2νp2(d − 1)
16u2(1 + u)3d2

(μL)4ε

ε

[
2F1

(
1, 1; 2 + d

2 ; 1
(1+u)2

)
(d + 2)(1 + u)

− (d − 2)πρ2

2 2F1

(
1
2
,
1
2
; 1 +

d

2
;

1
(1 + u)2

) ]
, (34)

where A corresponds to one-loop contribution (the ˇrst diagram in Fig. 2), B1 is
related to the second diagram in Fig. 2, and B2 is the result for the third diagram.
Here Sd = 2πd/2/Γ(d/2) denotes the d-dimensional sphere, 2F1(a, b, c, z) =

1+
a b

c · 1z+
a(a + 1)b(b + 1)
c(c + 1) · 1 · 2 z2+. . . represents the corresponding hypergeometric

function. In further investigations the helical term with ρ2 in B2 has to be taken

11



with d = 3 but for completeness we remain the d-dependence in this part of B2

in (34).
In the end, the renormalization constant Zν is given as follows:

Zν = 1 − ḡ

ε

d − 1
d

1
4u(1 + u)

− ḡ2

ε2

(d − 1)2

d2

1
32u2(1 + u)3

+
ḡ2

ε

(d − 1)(d + u)
d2(d + 2)

1
16u2(1 + u)5 2F1

(
1, 1; 2 +

d

2
;

1
(1 + u)2

)
(35)

− ρ2 ḡ2

ε

π

144u2(1 + u)3 2F1

(
1
2
,
1
2
;
5
2
;

1
(1 + u)2

)
,

where in the helical part (the last line) we already substitute d = 3, and we have
introduced new notation ḡ = gSd/(2π)d for simplicity.

Now using the deˇnition of the anomalous dimension γν in Eq. (28) one
comes to the following expression for it:

γν = −2(ḡA + 2ḡ2B), (36)

where

A = −d − 1
d

1
4u(1 + u)

(37)

is the one-loop contribution to anomalous dimension γν and the two-loop one is

B =
(d − 1)(d + u)

16d2(d + 2)u2(1 + u)5 2F1

(
1, 1; 2 +

d

2
;

1
(1 + u)2

)

− πρ2

144u2(1 + u)3 2F1

(
1
2
,
1
2
;
5
2
;

1
(1 + u)2

)
. (38)

In the following section we shall use these results to determine possible scaling
regimes of the model.

3. FIXED POINTS AND SCALING REGIMES

Possible scaling regimes of a renormalized model are directly given by the
infrared (IR) stable ˇxed points of the corresponding system of the RG equations
[12,13]. The ˇxed point of the RG equations is deˇned by β functions, namely,
by requirement of their vanishing. In our model the coordinates g∗, u∗ of the
ˇxed points are found from the system of two equations

βg(g∗, u∗) = βu(g∗, u∗) = 0. (39)

12



The beta functions βg and βu are deˇned in Eqs. (29) and (30). To investigate
the IR stability of a ˇxed point it is enough to analyze the eigenvalues of the
matrix Ω of ˇrst derivatives

Ωij =
(

∂βg/∂g ∂βg/∂u
∂βu/∂g ∂βu/∂u

)
. (40)

The IR asymptotic behavior is governed by the IR stable ˇxed points, i. e., those
for which both eigenvalues are positive.

The possible scaling regimes of the model in one-loop approximation were
investigated in [22], and the two-loop approximation without helicity was studied
in [24]. Our question is what restrictions on ®phase¯ diagram of scaling regimes
are given by helicity (in two-loop approximation).

First of all, we shall study the rapid-change limit: u → ∞. In this regime
it is convenient to make transformation to new variables, namely, w ≡ 1/u, and
g′ ≡ g/u2, with the corresponding changes in the β functions

βg′ = g′(η − 2ε + γν), (41)

βw = w(η − γν). (42)

In this notation the anomalous dimension γν acquires the following form:

γν = −2(ḡ′A′ + 2ḡ′2B′), (43)

where again ḡ′ = g′Sd/(2π)d. The one-loop contribution A′ acquires the form

A′ = −d − 1
d

1
4(1 + w)

(44)

and the two-loop correction B′ is

B′ =
(d − 1)(dw + 1)w2

16d2(d + 2)(1 + w)5 2F1

(
1, 1; 2 +

d

2
;

w2

(1 + w)2

)

− πρ2w

144(1 + w)3 2F1

(
1
2
,
1
2
;
5
2
;

w2

(1 + w)2

)
. (45)

It is evident that in the rapid-change limit w → 0 (u → ∞) the two-loop
contribution B′ is equal to zero. It is not surprising because in the rapid-change
model there are no higher-loop corrections to the self-energy operator [18, 19],
thus we arrive to the one-loop result of Ref. [22] with the anomalous dimension
γν of the form

γν = lim
w→0

(d − 1)ḡ′

2d(1 + w)
=

(d − 1)ḡ′

2d
. (46)
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In this limit we have two ˇxed points denoted as FPI and FPII in [22]. The ˇrst
ˇxed point is trivial, namely

FPI : w∗ = g′∗ = 0, (47)

with γ∗
ν = 0, and diagonal matrix Ω with eigenvalues (diagonal elements)

λ1 = η, λ2 = η − 2ε. (48)

The region of stability is shown in Fig. 3. The second point is deˇned as

FPII : w∗ = 0, ḡ′∗ =
2d

d − 1
(2ε − η), (49)

with γ∗
ν = 2ε − η. These are exact one-loop expressions as a result of non-

existence of the higher-loop corrections. That means that they have no corrections
of order O(ε2) and higher (we work with assumption that ε � η, therefore it also
includes corrections of the types O(η2) and O(ηε)). The corresponding ®stability
matrix¯ is triangular with diagonal elements (eigenvalues):

λ1 = 2(η − ε), λ2 = 2ε − η. (50)

The region of stability of this ˇxed point is shown in Fig. 3.

Fig. 3. Left: The ®phase¯ diagram of scaling regimes in one-loop approximation. The
ˇxed points FPI-FPIII are not changed in the two-loop approximation (there are no higher-
loops corrections as well). Right: The in	uence of the helicity on the stability of the ˇxed
point FPIV in two-loop approximation (details see in text)
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Now let us analyze the ®frozen regime¯ with frozen velocity ˇeld, which is
mathematically obtained from the model under consideration in the limit u → 0.
To study this transition it is appropriate to change the variable g to the new
variable g′′ ≡ g/u [22]. Then the β functions are transformed to the following
ones:

βg′′ = g′′(−2ε + 2γν), (51)

βu = u(−η + γν), (52)

where βu function is not changed, i. e., it is the same as the initial one (30). In
this notation the anomalous dimension γν has the form

γν = −2(ḡ′′A′′ + 2ḡ′′2B′′), (53)

where, as always, ḡ′′ = g′′Sd/(2π)d. The one-loop part A′′ is now deˇned as

A′′ = −d − 1
d

1
4(1 + u)

(54)

and the two-loop one, B′′, is given as

B′′ =
(d − 1)(d + u)

16d2(d + 2)(1 + u)5 2F1

(
1, 1; 2 +

d

2
;

1
(1 + u)2

)

− πρ2

144(1 + u)3 2F1

(
1
2
,
1
2
;
5
2
;

1
(1 + u)2

)
. (55)

In the limit u → 0 the functions A′′ and B′′ aquire the following form:

A′′
0 = −d − 1

4d
, (56)

and

B′′
0 =

(d − 1)2F1

(
1, 1; 2 + d

2 ; 1
)

16d(d + 2)
−

πρ2
2F1

(
1
2 , 1

2 ; 5
2 ; 1

)
144

. (57)

The system of β functions (51) and (52) exhibits two ˇxed points, denoted as
FPIII and FPIV in [22], related to the corresponding two scaling regimes. One
of them is again trivial, namely,

FPIII : u∗ = g′′∗ = 0, (58)

with γ∗
ν = 0. The eigenvalues of the corresponding matrix Ω, which is diagonal

in this case, are
λ1 = −2ε, λ2 = −η. (59)
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Thus this regime is IR stable only if both parameters ε and η are negative
simultaneously as can be seen in Fig. 3. The second, non-trivial, point is

FPIV : u∗ = 0, ḡ′′∗ = − ε

2A′′
0
− B′′

0

2A′′2
0

ε2, (60)

where A′′
0 and B′′

0 are deˇned in Eqs. (56) and (57), respectively.
When we study system with the helicity then the dimension of the space is

ˇxed for d = 3. The ˇxed point FPIV is given as

u∗ = 0 ḡ′′∗ = 3ε +
3
2

(
1 − 3π2ρ2

16

)
ε2. (61)

Therefore, in the helical case, the situation is a little bit more complicated as
a result of a competition between the non-helical and helical terms within the
two-loop corrections. The matrix Ω is triangular with the diagonal elements (they
are taken already at the ˇxed point)

λ1 = 2ε +
(
−1 +

3π2ρ2

16

)
ε2, (62)

λ2 = ε − η, (63)

where the explicit dependence of the eigenvalue λ1 on the parameter ρ takes
place. The requirement to have positive values for the parameter ḡ′′∗ , and at the
same time for the eigenvalues λ1, λ2 leads to the region of stable ˇxed point.
The results are shown in Fig. 3. The picture is rather complicated due to the very
existence of the ®critical¯ absolute value of ρ

ρc =
4√
3π

, (64)

which is deˇned from the condition of vanishing of the two-loop corrections in
Eqs. (61) and (62): (

−1 +
3π2ρ2

16

)
= 0. (65)

When the helicity is not present, the system exhibits this type of ˇxed point
(and, of course, the corresponding scaling behavior) in the region restricted by
inequalities: ε > 0, ε = η, and ε < 2 (d = 3). The last condition is changing
when helicity is switched on. The important feature here is that the two-loop
contributions to ḡ′′∗ and λ1 have the same structure but opposite sign. This leads
to the different sources of conditions in the case when |ρ| < ρc and |ρ| > ρc,
respectively. In the situation with |ρ| < ρc the positiveness of λ1 plays crucial
role and one has the following region of stability of the IR ˇxed point FPIV:

ε > 0, ε > η, ε <
32

16 − 3π2ρ2
. (66)
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On the other hand, in the case with |ρ| > ρc, the principal restriction on the IR
stable regime is yielded by the condition ḡ′′∗ > 0 with the ˇnal IR stable region
deˇned as

ε > 0, ε > η, ε <
32

−16 + 3π2ρ2
. (67)

Therefore, if absolute value of the helicity parameter ρ continuously increases, the
region of stability of the ˇxed point deˇned by the last inequality in Eq. (66) is
increasing too. This restriction vanishes completely when |ρ| reaches the ®critical¯
value ρc, and the picture becomes the same as in the one-loop approximation [22].
In this rather speciˇc situation the two-loop in	uence on the region of stability of
the ˇxed point is exactly zero: the helical and non-helical two-loop contributions
are canceled by each other. Then if the absolute value of parameter ρ increases
further, the last condition appears again, namely the third condition in Eq. (67),
and restriction becomes stronger when |ρ| tends to it maximal value, |ρ| = 1.
In the case of the maximal breaking of mirror symmetry (maximal helicity),
|ρ| = 1, the region of the IR stability of the ˇxed point is deˇned by inequalities:
ε > 0, ε = η, and ε < 2.351 (see Fig. 3). It is interesting enough that the presence
of helicity in the system leads to the enlargement of the stability region.

Now let us turn to the most interesting scaling regime with ˇnite value of the
ˇxed point for the variable u. By short analysis one immediately concludes that
the system of equations

βg = g(−2ε − η + 3γν) = 0, (68)

βu = u(−η + γν) = 0 (69)

can be fulˇlled simultaneously for ˇnite values of g, u only in the case when the
parameter ε is equal to η: ε = η. In this case the function βg is proportional to
the function βu. As a result we have not one ˇxed point but a line of ˇxed points
in the g − u plane. The value of the ˇxed point for the variable g in two-loop
approximation is given as follows (we denote it as FPV):

FPV : ḡ∗ = − 1
2A∗

ε − 1
2
B∗
A3

∗
ε2, (70)

with exact one-loop result for γ∗
ν = ε = η (this is, of course, already directly

given by Eq. (69)). Here A∗ and B∗ are expressions A and B from Eqs. (37), (38)
which are taken in the ˇxed point value u∗ of the variable u. The possible values
of the ˇxed point for variable u∗ can be restricted (and will be restricted) as we
shall discussed below. The ®stability matrix¯ Ω has the following eigenvalues:

λ1 = 0, λ2 = 3ḡ∗
(

∂γν

∂g

)
∗

+ u∗
(

∂γν

∂u

)
∗
. (71)
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The vanishing of the eigenvalue λ1 is an exact result which is related to the
degeneracy of the system of Eqs. (68) and (69) when nonzero solutions in respect
to g and u are assumed. Equivalently, it re	ects the existence of a borderline
direction in the g − u plane along the line of the ˇxed points.

In the helical case the coordinates of the ˇxed point are deˇned by the
following equation:

ḡ∗ = 3u∗(1 + u∗)ε +
3u∗ε

2

20(1 + u∗)2

(
2(3 + u∗)2F1

(
1, 1;

7
2
;

1
(1 + u∗)2

)

−5π(1 + u∗)2ρ2
2F1

(
1
2
,
1
2
;
5
2
;

1
(1 + u∗)2

) )
. (72)

The competition between the helical and non-helical terms appears again which
yields a nontrivial restriction for the ˇxed point values of the variable u to have
positive ˇxed values for the variable g. The eigenvalue λ2 of the matrix Ω is
now

λ2 =
2 + u∗
1 + u∗

ε +
ε2

140(1 + u∗)6

[
8u(3 + u)2F1

(
2, 2;

9
2
;

1
(1 + u∗)2

)

+ 14(1 + u∗)2(u∗(3 + u∗) − 6) 2F1

(
1, 1;

7
2
;

1
(1 + u∗)2

)
(73)

+ 7πρ2(1 + u∗)2

×
(

10(1 + u∗)2
(

1
2
,
1
2
;
5
2
;

1
(1 + u∗)2

)
− u∗

(
3
2
,
3
2
;
7
2
;

1
(1 + u∗)2

)) ]

with nontrivial helical part which plays an important role in determination of the
region of the IR stability of the ˇxed point.

It cannot be seen immediately from Eqs. (72) and (73) but numerical analysis
shows that again important role is played by ρc = 4/(

√
3π). First, let us study

the case when |ρ| < ρc = 4/(
√

3π). The corresponding regions of stable IR ˇxed
points with g∗ > 0 are shown in Fig. 4. In the case when helicity is not present
(ρ = 0, see the corresponding curve in Fig. 4), the only restriction is given by
condition that λ2 > 0, on the other hand, the condition g∗ > 0 is fulˇlled without
any restriction on the parameter space. When arbitrary small helicity is present,
i. e., ρ > 0, the restriction related to the positiveness of g∗ arises and is stronger
when |ρ| is increasing (the right curve for the concrete value of ρ in Fig. 4) and
starts to play the dominant role. At the same time, with increasing of |ρ| the
importance of the positiveness of the eigenvalue λ2 decreases (the left curve for
the concrete value of ρ in Fig. 4). For a given |ρ| < ρc there exists an interval
of values of the variable u∗ for which there is no restriction on the value of the
parameter ε. For example, for |ρ| = 0.1 it is 1.128 < u∗ < 13.502, for |ρ| = 0.5,
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Fig. 4. The region of stability of the ˇxed point FPV as a function of the helicity parameter
ρ for |ρ| < ρc (left) and for |ρ| > ρc (right). Details see in text

0.217 < u∗ < 0.394, and for |ρ| = 0.7, 0.019 < u∗ < 0.029. Now let us turn
to the case |ρ| ≥ ρc. When |ρ| obtains its ®critical¯ value ρc, the IR ˇxed point
is stable for all values of u∗ > 0 and ε > 0, i. e., the condition λ2 > 0 becomes
fulˇlled without any restrictions on the parameter space. On the other hand, the
condition g∗ > 0 yields strong enough restriction and it becomes stronger when
|ρ| tends to its maximal value |ρ| = 1 as can be seen in Fig. 4.

The most important conclusion of our two-loop investigation of the scaling
regimes is the fact that the possible restrictions on the regions of stability of the
IR ˇxed points are ®pressed¯ to the region with rather large values of ε, namely,
ε ≥ 2, and do not disturb the regions with relatively small ε. For example, the
Kolmogorov point (ε = η = 4/3) is not in	uenced.

4. EFFECTIVE DIFFUSIVITY

One of the interesting objects from the theoretical as well as experimen-
tal point of view is so-called effective diffusivity ν̄. In this section let us
brie	y investigate the effective diffusivity ν̄, which replaces initial molecular
diffusivity ν0 in equation (1) due to the interaction of a scalar ˇeld θ with ran-
dom velocity ˇeld v. Molecular diffusivity ν0 governs exponential dumping in
time all 	uctuations in the system in the lowest approximation, which is given
by the propagator (response function) (11) G(t − t′,k) = 〈θ(t,k)θ′(t′,k)〉0 =
θ(t− t′) exp(−ν0k

2(t− t′)). Analogously, the effective diffusivity ν̄ governs ex-
ponential dumping of all 	uctuations described by full response function, which
is deˇned by Dyson equation (31). Its explicit expression can be obtained by the
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RG approach. In accordance with general rules of the RG (see, e. g., [13]) all
principal parameters of the model g0, u0 and ν0 are replaced by their effective
(running) counterparts, which satisfy the Gell-MannÄLow RG equations

s
dḡ

ds
= βg(ḡ, ū), s

dū

ds
= βu(ḡ, ū), (74)

s
dν̄

ds
= −ν̄γν(ḡ, ū), (75)

with initial conditions ḡ|s=1 = g, ū|s=1 = u, ν̄|s=1 = ν. Here s = k/μ, β and
γ functions are deˇned in (28)Ä(30) and all running parameters clearly depend
on variable s. Straightforward integration (at least numerical) of equations (74)
gives way how to ˇnd their ˇxed points. Instead one very often solves the set of
equations βg(g∗, u∗) = βu(g∗, u∗) = 0 which deˇnes all ˇxed points g∗, u∗. Just
last approach we used above when we classiˇed all ˇxed points. Due to special
form of β functions (29), (30) we are able to solve equation (75) analytically.
Using (74) and (29) one immediately rewrites (75) in the form

dν̄

ν̄
=

γν

2ε + η − 3γν

dḡ

ḡ
(76)

which can be easily integrated. Using initial conditions the solution acquires the
form

ν̄ = (
gν3

ḡs2ε+η
)1/3 = (

D0

ḡk2ε+η
)1/3, (77)

where to obtain the last expression we used the equations gμ2ε+ην3 = g0ν
3
0 = D0

(see (19)). We emphasize that above solution is exact, i. e., the exponent 2ε + η
is exact too. However, in infrared region k � μ ∼ l−1, ḡ → g∗, which can be

calculated only pertubatively. In the two-loop approximation g∗ = g
(1)
∗ ε + g

(2)
∗ ε2

and after the Taylor expansion of g
1/3
∗ in (77) we obtain

ν̄ ≈ ν∗

(
D0

g
(1)
∗ ε

)1/3

k− 2ε+η
3 , ν∗ ≡ 1 − g

(2)
∗ ε

3g
(1)
∗

. (78)

Remind that for the Kolmogorov values ε = η = 4/3 the exponent in (78)
becomes equal to −4/3. Let us estimate the contribution of helicity to the effective
diffusivity in nontrivial point above denoted as FPV (72). In this point ε = η
((2ε + η)/3 = 2ε) and

ν∗ = 1 − ε

12(1 + u∗)

×
(

2(3 + u∗)
5(1 + u∗)2

2F1

(
1, 1;

7
2
;

1
(1 + u∗)2

)
−πρ2

2F1

(
1
2
,
1
2
;
5
2
;

1
(1 + u∗)2

))
.(79)
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In Fig. 5 is shown dependence of the ν∗ on the helicity parameter ρ and the
IR ˇxed point u∗ of the parameter u. As one can see from these ˇgures when
u∗ → ∞ (the rapid change model limit) the two-loop corrections to ν∗ = 1 are
vanishing. Such a behavior is related to the fact, which was already stressed in
the text when the IR ˇxed points were analyzed, that within the rapid change
model there are no two- and higher-loop corrections at all. On the other hand,
the largest two-loop corrections to the ν∗ are given in the frozen velocity ˇeld
limit (ν∗ → 0) (especially for the non-helical case, see Fig. 5). It is interesting

Fig. 5. Left: The dependence of ν∗ on the helicity parameter ρ for deˇnite IR ˇxed point
values u∗ of the parameter u. Right: The dependence of ν∗ on the IR ˇxed point u∗ for
the concrete values of the helicity parameter ρ

that for all ˇnite values of the parameter u∗ there exists a value of the helicity
parameter ρ for which the two-loop contribution to ν∗ are canceled. For example,
for the frozen velocity ˇeld limit (u∗ = 0) such a situation arises when the helicity
parameter ρ is equal to its ®critical¯ value ρc = 4/(

√
3π) (this situation can be

seen in Fig. 5 (right)). It is again the result of the competition between the non-
helical and helical parts of the the two-loop corrections as is shown in Eq. (79).
Further important feature of expression (79) is that it is linear in the parameter
ε. Thus, when one varies the value of ε the picture is the same as in Fig. 5 and
only the scale of corrections is changed. In Fig. 5 we have shown the situation
for the most interesting case when ε is equal to its ®Kolmogorov¯ value, namely,
ε = 4/3.

CONCLUSION

We have studied the advection of a scalar ˇeld by turbulent 	ow in the
framework of the extended Kraichnan model and investigated the in	uence of
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helicity on anomalous scaling, stability of asymptotic regimes and effective dif-
fusivity. Such an investigation is useful for understanding of efˇciency of toy
models (like Kraichnan model) to study the real turbulent motions by means of
modern theoretical methods including the renormalization group approach. Actu-
ally, we performed two-loop calculations of the divergent parts of the Feynman
graphs, which are necessary to achieve multiplicative renormalization of equiv-
alent ˇeld theoretic model. In this way we have shown that anomalous scaling,
which is typical for the Kraichnan model and its numerous extensions [10, 24],
is not violated by inclusion of helicity to the incompressible 	uid. On the other
hand, stability of the asymptotic regimes, values of the ˇxed RG points, and the
turbulent diffusivity strongly depend on amount of helicity. It is shown that the
presence of helicity in the system leads to the restrictions of the possible values
of the parameters of the model. The most interesting fact is existence of a ®crit-
ical¯ value ρc of the helicity parameter ρ which divides the interval of possible
absolute values of ρ into two parts with completely different behavior. Such a
situation is given by the fact that in two-loop approximation there is a competition
between the non-helical and helical contributions. Within of the so-called frozen
limit the presence of helicity enlarges the region of parameter space with stable
scaling regime, and, as a result of above-mentioned competition, if |ρ| = ρc the
corresponding two-loop restriction is vanished completely and one is coming to
the one-loop results [22]. Similar splitting, although more complicated, into two
nontrivial behavior of the ˇxed point was also obtained in the general case with
ˇnite correlations in time of the velocity ˇeld. The in	uence of helicity on the
effective diffusivity was also discussed. The main role in its determination is
played by the ˇxed point value ν∗. It was shown that ν∗ strongly depends on the
helicity parameter ρ mainly in the so-called frozen limit case when u∗ → 0.
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